中国林蛙基因工程抗菌肽制备及生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用基因工程方法首次从中国林蛙皮肤组织中扩增了一个新的抗菌肽基因,对扩增的序列进行分析,结果表明,扩增的序列为一个新的中国林蛙抗菌肽基因;构建了此基因的原核表达质粒和真核表达质粒,经在大肠杆菌和酵母菌中诱导表达,筛选出了能够表达较高生物活性抗菌肽的酵母表达株;用纯化的表达产物进行体外抑菌谱、抑瘤作用、热稳定性及作用模式的研究。结果表明,G+和G-均表现抗性,可以体外抑杀肿瘤细胞,但不对正常人胚肾细胞无明显抑杀作用;温度和pH值对重组表达抗菌肽活性没有明显的影响;用重组表达抗菌肽的进行细胞溶血性实验、抗炎作用以及对血管通透性等小鼠体内安全性实验,结果表明,重组表达的抗菌肽有一定的溶血活性;能明显降低致炎剂导致的小鼠耳肿胀,能明显抑制小鼠血管通透性,从而降低炎症的发生率;给实验小鼠口服重组表达抗菌肽后,实验组小鼠体重一过性下降后恢复正常。本研究克隆并鉴定了一个新的中国林蛙抗菌肽基因,并比较和优化了中国林蛙抗菌肽在不同表达系统中表达、纯化等一系列的实验条件。确定了使用酵母表达系统表达重组林蛙抗菌肽的条件。利用得到的重组林蛙抗菌肽蛋白,进行生物活性研究,从而为基因工程生产重组林蛙抗菌肽和该抗菌肽的应用研究奠定了基础。
Antibiotic peptide are a group of small molecule peptides produced by plants,insects, amphibians and mammals including human beings. These peptides have manybiological activities including antibacterial, antifungal, antivirus, antitumor andantiparasite. The antibiotic peptides is encoded by an ORF. The antibiotic peptides arethe most important nature defense material of the amphibians because of their specialliving environment, which have high effective and broad-spectrum antibacterialactivities and hardly inducing drug-resistance. Because a lot of drug-resistance strainsare emerging prominently at present, the antibiotic peptides of amphibians have themany chance to be a new kind of antibacterial drug for clinical use. Extracting natureamphibians antibiotic peptides have the limits of little raw material, high cost, lowyield and complex process, the purpose of this research is to overcome these defectsand to produce the peptide by the method of gene engineering in order to be research anew path for prepate abundanceantibacterial peptide.
    Cloning and sequencing of the rana skin antibiotic peptide gene. Three pairs ofdegenerate primers were designed and synthesized according to the frog skinantibacterial peptide gene reported in GenBank and the rana skin antibiotic peptidegene was amplified by RT-PCR from rana Skin. The structural gene of rana skinantibiotic peptide gene was cloned, sequenced and phylogenesis analysised, and theresult showed that, compared with the reported gene sequence in Genbank, thehomology of the complete DNA sequence was 45.8-74.2% and the deduced aminoacid sequence was 12.7-147.7%,the major variability region was localized in the
    mature peptide gene sequence, and the signal peptide gene was highly conservative.According to the sequenced rana skin antibiotic peptide gene, the hydrophobicity,surface polarity, isoelectric point, molecular weight, secondary structure of theantibiotic peptide was predicted using the software DNAstar, showing that the maturepeptide was consited of 67 aa, The molecular weight was 7943.2 Dalton, The pH was4.62, the isoelectric point was 8.95,the predicted second structure was mainly α-spiral and random coil, seldomβ-folding with highly amphipathic properties. Theapparentely variation between the cloned gene and the reported gene in Genbankshowed that this a new antibiotic peptide gene.Expression of the recombinant rana skin antibacterial peptide in E.coli. The genewas amplified from the recombinant plasmid pGEM-TRC carrying the fragmentencoding rana antibacterial peptide by PCR, which was then cloned into theexpression vector pEX-3X, so that the rana antibacterial peptide gene expressionplasmid pEX-3XRC was constructed. Positive plasmid was identified by doublerestriction enzyme digestion and PCR, and then transformed into the competent celland induced with IPTG. The expressed recombinant protein was purified. The resultsshowed that the rana antibacterial peptide gene was expressed from the recombinantcell pEX-3XRC/DE3.The optimal conditions were determined that the induction timewas 4 hours, the temperature was 37℃, the pH was 7.3 and the IPTG concentrationwas 1mmol/L,under this conditions the expressed recombinant protein,existed in formof inclusion bodies,was about 3.65mg/ml,.Expression of the recombinant rana antibiotic peptide using Pichia pastorisexpression system. The Pichia pastoris expression system is being used successfullyfor the production of various recombinant heterologous proteins and becoming thefirst expression system for a series of production. In order to study the actiivites and toprovide relevant prophase test data for large production in the future, the ranaantibiotic peptide was expressed using Pichia pastoris expression system. Thestrategies for the expression of the antibiotic peptide in the expression system. Thehost strain was GS115, the secreting type vector was pPIC9K and the recombinantgene was under the control of the Pichia pastoris α-factor. The expression systemwas then consisted of complete rana skin antibiotic peptide gene , the secreting typevector pPIC9K vector and the host Pichia pastoris GS115.The expression level of
    recombinant protein in the supernatant was test by PCR,SDS-PAGE and assay of theantibacterial activities in vitro, the result showed that every transformedpPIC9KPlw/GS115strain could expressed the recombinant peptide and the expressedpeptide could inhibit relevant bacterial. The expression of the rana skin antibiotic geneand the purification of the recombinant peptide. After determination of the expressionsystem and conditions, the rana skin antibiotic peptide gene was expressed in P.pastoris GS115 carrying the expression vector pPIC9K in which the completeantibiotic peptide gene was cloned. The positive clones were screened by thementhods of plate G418 pressure and His auxotroph and a total of 55 strains werescreened. The antibacterial activites of the recombinant peptides were determined bythe way of shake-flask and three of the 3 strains showed higher activites, theproducing host were named BR7,BR9 and BRw2 ,respectively. The BR9 was used asthe seed strain and the BR9, the BRw2 were used as reserved strains. The optimationof large-scale shake flask culture of the recombinant strain pPIC9KBR9/GS115. Whenthe ratio of the medium BMGY:BMMY was 1:1 and even enlarge the total volum ,The result of the optimation of the methanol concentration was 1%, pH and OD valuewere pH 5.0 and OD600 2.0 before induction. In order to keep the recombinant proteinfolding correctly, keep the pH value 7.0 and culture 28℃ after inducing. All thesemade good foundation for high density fermentation in the future. the purification ofthe recombinant peptide. Compared the followed two purification methods anddetermined the best purification protocol: the first method was ammonium sulfateprecipitation followed by dialysis, the yield after precipitation was 10%~20% andafter dialysis was 5%;the second method was ultrafiltration and the yield was 17%.The antibacterial activity of the recombinant peptide, in vitro. The antibacterialspectra and titer of the recombinant peptide were tested by agar diffusion method, andheat and pH stability were also tested. The result showed that the antibacterial spectraof the recombinant peptide was very wide, it could inhibit some Gram-positive andGram-negative bacteria including salmonella ( S.C500 ) , Escherichia coli(ATCC25922), Bacillus subtilis (ADB403), Staphylococcus aureus (ATCC25923),streptococcus (ATCC55121), listeria (ATCC54004), Pseudomonas aeruginosa(ATCC25922), Bacillus cereus (CMCC(B)63301), Bacillus anthracis ( C40-205strain),Paeteurella(clinical isolate, swine), Klebsiella pneumoniae(clinical isolate,
    Homo sapien),but could not inhibit fungus such as Candida albicans (ATCC10231))and E.coli. standard strain(ATCC25922)and engineering strain BL21(DE3).Therecombinant peptide could show its activity when temperature was between 20~65℃ and pH was 5~9, and could not lost its activity even boiled 5~10 min at 100℃.The antibacterial activity unit of the purified recombinant antibiotic peptide wasequal to 0.8×10-3ug/ml of ampicillin according to the standard of the antibacterialactivity of ampicillin.Effect on cell permeability and antibacterical activity in vivo. The activitesshowed by the purified recombinant peptide in vivo were tested in mice. Thehaemocytolysis action was tested by measuring yan-methemoglobin in the blood;anti-inflammatory action was tested by swelling of ear and effect on capillarypermeability;and effect on the growth of the mice was tested by comparing the weightbefore and after administration. The results showed that the recombinant peptide hadstrong haemolysis activities but had the activity of anti-inflammatory which couldreduce the swelling of the mice ears and inhibit vasopermeability, comparing the miceweight of the sample group with the control group before and after administrationshowed that the sample group lost 11.95%.In this study, the rana skin antibiotic peptide gene was cloned, sequenced andexpressed in E.coli and P. pastoris, respectively. All these provided data for highdensity fermentation of rana skin antibiotic peptide using P. pastoris expressionsystem and made good foundation for research of mechanism and action of thisantibiotic peptide in the future.
引文
[1] Andreu, D, Merrifield, R.B., Steiner, H. and Boman, H.G. Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc. Natl. Acad. Sci. USA, 1983. 80:6475-6479
    [2] Andreu, D. y Rivas, L. Animal antimicrobial peptides: an overview. Biopolymers, 1998.47. 415-433
    [3] Balasubramanian, D. J. Am. Chem. Soc. 1967.89:5445-5449
    [4] Bartz QR. Isolation and characterization of chloromycetin. Biolchem,1948, (172) :445~450
    [5] Bax, A. & Davis, DG MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 1985.65, 355?360
    [6] Berendsen, H.J.C., van der Spoel, D. and van Drunen, R. (1995) Comp. phys. Comm.91:43-56
    [7] Berendsen, H.J.C. and van Gunsteren, W.F. (1987) GROMOS87 manual, Groningen, University of Groningen
    [8] Berendsen, H.J.C., Postman, J.P.M., van Gunsteren, W.F. and Hermans, J. (1981) Intermolecular forces, Dordrecht, Reidel Publishing Co
    [9] Boman, HG. Peptide antibiotics and their role in innate immunity. Annu.Rev. Immunol. 1995.13:61-92
    [10] Andreas R. Koczulla, Robert Bals. Antimicrobial peptides: Current status and therapeuticpotential. Drugs, 2003,63(4):389-460
    [11] Hancock, K. E. W., T. Falla, M. H. Brown. Cationic bactericidal peptides. Adv. Microb.Phsiol. 1995, 37: 135— 175
    [12] Kleinkauf,H. H, Von Dohren. Peptide antibiotics, β-lactams and related compounds. Crit.Rev. Biotechnol. 1988, 8: 1-32
    [13] Perlman, D, M. Bodansky. Biosythesis of peptide antibiotics. Ann. Rev. Biochem, 1971, 40:449-464
    [14] Stein,T.J.Vater, V. Kruft, A. Otto, et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular mutienzyme templates. J. Biol. Chem. Sci, 1996, 271: 15428-15435
    [15] 陈杖榴. 兽医药理学.中国农业出版社,2001,第二版:225-226
    [16] Kondejewski, L. H., S. W. Farmer, D. S. Wishart, et al Gramicidin S is active against both gram-positive and gram-negative bacteria. Int. J. Pept. Protein Res., 1996, 47: 460-466
    [17] Robert E. W. Hancock, Daniel S. Chapple Peptide antibiotics. Antimicrob. Agents Chemother., 1999, 1: 1317-1323
    [18] Jensen,T., S. S. Pedersen, S. Garne, C. Heilmann, N. Hoiby, C.Koch. Colistin inhalation therapy in cystic fibrosis patients with chronic Psedomonas aeruginosa lung infection. J.Antimicrob. Chemother. 1987, 19:831-838
    [19] Kondejewski, L. H., S. W. Farmer, D. S. Wishart, et al Effect of ring size of gramicidin S analogs on structure, antibacterial and hemolytic activity. J. Biol. Chem.., 1996,271:25261-25268
    [20] Schneider, A., T. Stachelhaus, M. A. Mahariel Targeted ateration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 1998, 257:308-318
    [21] Kiss, G., H. Michl On the venomous skin secretion of the orange speckled frog Bombina variegata. Toxicon 1962, 1:33-39
    [22] Csordas, A., H. Michl. Isolation and structure a haemolytic polypeptide from the defensive secretion of European Bombina species. Monatsh. Chem. 1970,101:182-189
    [23] Habermann, E. Bee and wasp venoms. Science, 1972, 177:314-322
    [24] Robert E. W. Hancock Cationic peptide: effectors in innate immunity and novel antimicrobials. The Lancet infectious disease, 2001,1 :156-164
    [25] Robert E. W. Hancock, Gill Diomand The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology, 2000, 8:402-410
    [26] Robert E. W. Hancock Peptide antibiotics. The Lancet, 1997, 349:418-422
    [27] 佘锐萍,刘环,宋俊霞等. 兔圆小囊组织发育及其肠道粘膜免疫关系的研究. 中国学术期刊文摘(科技快报),2000,6(10):1322-1323
    [28] 李冰玲,佘锐萍,宋俊霞. 实验性感染兔巴氏杆菌兔圆小囊内产溶菌酶细胞的观察. 中国学术期刊文摘(科技快报),2001,7(2):400
    [29] 王可洲,佘锐萍. 兔圆小囊组织中抗菌肽类物质的分离纯化及抗菌活性研究. 科学技术与工程,2003,3(2):151-154
    [30] MacFarlane ELA, Kwasnicka A, Hancock REW. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial peptides and aminoglycosides. Microbiology 2000;146: 2543–2554
    [31] Groisman E. A., Aspedon A. The genetic basis of microbial resistance to antimicrobial peptides. Methods Mol. Biol. 1997, 78:205-215
    [32] Boman H. G., AgeRBerth B.,Boman A. Mechanism of action on Escherichia coli of cecropin p1 and PR-39, two antibacterial peptides from oig intestine. Infect Immun., 1993, 61:2978-2984
    [33] Chrestensen B., Fink J., Merrifield R.B., et al Channel –forming properties of cecropins and related model compounds incorporated into plannar lipid membrances. Proc. Natl. Acad. Sci. USA, 1998, 85:5072-5076
    [34] De Samblanx GW, Goderis IJ, Thevissen K, et al. Mutational analysis of a plant defensin from radish (Raphanus sativus L) reveals two adjacent sites importance for antifungal activity. J Biol Chem, 1997, 272:1171-1179
    [35] Helmerhorst EJ, Breeuwer P, van't Hof W, et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 1999;274: 7286–7291
    [36] Giacometti A, Cirioni O, Barchiesi F, Caselli F, Scalise G. In-vitro activity of polycationic peptides against Cryptosporidium parvum, Pneumocystis carinii and yeast clinical isolates. J Antimicrob Chemother 1999;44: 403–406
    [37] Jaynes JM, Burton CA, Barr SB, et al. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum. FASEB J 1998;2: 2878–2883
    [38] Chalk R, Towns on H, Ham PJ. Brugia pahangi: the effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp Parasitol 1995;80: 401–406
    [39] Soballe PW, Maloy WL, Myrga ML, Jacob LS, Herlyn M. Experimental local therapy of human melanoma with lytic magainin peptides. Int J Cancer 1995;60: 280–284
    [40] Peck-Miller KA, Blake J, Cosand WL, Darveau RP, Fell HP. Structure-activity analysis of the antitumor and hemolytic properties of the amphiphilic α-helical peptide, C18G. Int J Pept Protein Res 1994;44: 143–51
    [41] 高秀秋,尚德志. 哺乳动物防御素. 锦州医学院学报,2002,23(3):56-58
    [42] Zhang L, Hancock REW. Peptide antibiotics. In: Hughes D, Andersson DI, eds. Antibiotic resistance and antibiotic development. Reading: Harwood Academic Publishers, 2000: 209–232
    [43] Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995;13: 61–92
    [44] Gudmundsson GH, AgeRBerth B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods 1999;232: 45–54
    [45] Scott MG, Hancock. REW. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000;20: 407–431
    [46]Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers 1998;47: 415–433
    [47] Meister M, Hetru C, Hoffmann JA. The antimicrobial host defense of Drosophila. Curr Top Microbiol Immunol 2000;248: 17–36
    [48] Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999;286: 113
    [49] Hancock REW, Lehrer RI. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16: 82–88
    [50] Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock REW. An α-helical cationic antimicrobial peptide selectively modulates macrophage response to LPS and directly alters macrophage gene expression . J Immunol 2000;165: 3358–3365
    [51] Wanecek M, Weitzberg E, Rudehill A, Oldner A. The endothelin system in septic and endotoxin shock. Eur J Pharmacol 2000;407: 1–15
    [52] Hancock REW, Scott MG. The role of antimicrobial peptides n animal defences. Proc Natl Acad Sci USA 2000;97: 8856–8861
    [53] Zhang L, Scott MG, Yan H, Mayer LD, Hancock REW. Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide and lipid monolayers. Biochemistry 2000;39: 14504–14514
    [54] VaRBanac D, Zanetti M, Romeo D. Chemotactic and protease-inhibiting activities of antibiotic peptide precursors. FEBS Lett 1993;317: 255–258
    [55] Brodsky IE,Ernst RK,Miller SI,Falkow S .mig-14 is a salmonella gene that plays a role in bacterial resistance to antimcrobial peptides.J Bacteriol,2002;184(12):3203-13
    [56] Bals R, Lang C, Weiner DJ et al.Rhesus monkey(Macaca mulatta)mucosal antimicrobial peptides are close homlolgues of human molecules.Clin Diagn Lab Immunol,2001;8(2):370-5
    [57] Michel Salzet.Vertebrate innate immunity resembles a mosaic ofinvertebrate immune responses. TRENDS in Immunology Vol.22 No.6 June 2001,285-288
    [58] Lai R , Zheng YT , Sun JH , Zhang Y. Antimicrobial peptides from the skin secretion of Chinese red belly toad Bombina maxima . Peptides , 2002b.23 : 427 -435
    [59] Dagan A , Efron L , Gaidukov L , Mor A , Ginsburg H. In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimi2 crob Agents Chemother. 2002. 46 : 689 -694
    [60] Efron L , Dagan A , Gaidukov L , Mor A , Ginsburg H. Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraery2 throcytic malaria parasite leading to increased specific antiparasitic activity in culture. J . Biol . Chem. 2002.277 : 24067 -24072 [61 Mystkowska ET , Niemierko A , Komar A , Sawicki W. Embry2 otoxicity of magainin222amide and its enhancement by cyclodextrin , albumin , hydrogen peroxide and acidification . Hum. Re2 prod. 2001. 16 : 1457 -1463
    [62] Olson L , Soto AM , Knoop FC , Conlon JM. Pseudin22 : An antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog . Biochem. Biophys . Res . Commun . 2001. 288 :1001 -1005
    [63] Duellman W E , Trueb L. Biology of Amphibians. New York :McGraw2Hill Book Company , 1986
    [64] 叶昌媛,费梁,胡淑琴. 中国珍稀及经济两栖动物. 成都: 四川科学技术出版社,1993
    [65] Mohamed F A , Soto A , Knoop F C , et al . Antimicrobial peptides isolated from skin secretions of the diploid frog ,Xenopus tropicalis (Pipidae) . Biochimica et Biophysica Acta ,2001 , 1 550 (1) : 81~89
    [66] Issacson T , Soto A , Iwamuro S , et al . Antimicrobial peptideswith atypical structural feature from the skin of the Japanese brown frog Rana japonica. Peptides , 2002 , 23 (3) : 419~425
    [67] Zasloff M. Antimicrobial peptides of multicellular organisms.Nature , 2002 , 415(6 870) : 389~395
    [68] Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin : what do they tell us ? Biopolymers ,1998 , 47 (6) : 435~450
    [69] Conlon J M, Kolodziejek J , Nowotny N. Antimicrobial peptides from ranid frogs : taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica et Biophysica Acta ( BBA ) 2Proteins & Proteomics , In Press ,Uncorrected Proof , Available online 28 September 2003
    [70] Toledo R C , Jared C. Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol , 1995 , 111A(1) :1~29
    [71] Lacombe C , Carmen C D , Dunia I. Peptide secretion in the cutaneous glands of south American tree frog Phyllomedusa bicolor : an ultrastructural study. European Journal of Cell Biology , 2000 , 79 : 631~641
    [72] 陆宇燕 , 李丕鹏 . 我国几种有尾两栖动物部分器官的机能形态学研究 . 四川动 物,1999 ,18(1) :15~19
    [73] Zug G R , Vitt L J , Caldwell J P. Herpetology ( second edition) . New York : Academic Press , 2001
    [74] Delfino G, Nosi D , Giachi F. Secretory granule2cytoplasm relationships in serous glands of anurans : ultrastructural evidence and possible functional role. Toxicon , 2001 , 39 (8) :1 161~1 171
    [75] Swendsen C L , Sphepard D. A study of antimicrobial effects of mountain dusky salamander mucus. Jon Hasfjord : Nat Sci Seminar Abstracts , 1998
    [76] Barra D , Simmaco M, Boman H G. Gene2encoded peptide antibiotics and innate immunity. Do 'animalcules ' have defence budgets ? FEBS Letters , 1998 , 430 (1~2) : 130~134
    [77] Hancock R E W, Chapple D S. Peptide antibiotics.Antimicrobial Agents and Chemotherapy , 1999 , 43 (6) : 1 317~1 323
    [78] Mor A , Amiche M, Nicolas P. Synthesis , structure ,synthesis , and activity of dermaseptin b , a novel vertebrate defensive peptide from frog skin : relationship with adenoregulin. Biochemistry , 1994 , 33 (21) : 6 642~6 650
    [79] Zasloff M. Magainins , a class of antimicrobial peptides from Xenopus skin : isolation , characterization of two active forms ,and partial cDNA sequence of precursor. Pro Natl Acad Sci USA , 1987 , 84 : 5 449~5 453
    [80] 徐 强 , 华 跃 进 , 徐 步 进 等 . 蛙 类 皮 肤 分 泌 物 中 的 抗 菌 肽 和 抗 癌 肽 . 动 物 学 杂志,2002 ,37(2) :73~76
    [81] 赖仞,赵宇,杨东明等. 六种常见两栖类动物皮肤分泌物的生物活性比较. 动物学研究,2002 , 23 (2) : 113~119
    [82] Batista C V F , Scalonib A , Rigdenc D J , et al . A novel heterodimeric antimicrobial peptide from the tree2frog Phyllomedusa distincta. FEBS Letters , 2001 , 494(1~2) : 85~89
    [83] Mohamed F A , Lips K R , Knoop F C , et al . Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog , Rana areolata. Biochimica et Biophysica Acta ,2002 , 1 601 (1) : 55~63
    [84] Mohamed F A , Knoop F C , Vaudry H , et al . Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex. Peptides , 2003 , 24 (7) : 955~961
    [85] Batista C V F , Silva R D , Sebben A , et al . Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides , 1999 , 20(6) : 679~686
    [86] Maloy WL , Kari U P. Structure2avtivity studies on magainins and other host defense peptides. Biopolymers ( Peptide Science) , 1995 , 37 : 105~122
    [87] Lai R , Zheng Y T , Shen J H , et al . Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides , 2002 , 23(3) : 427~435
    [88] Rinaldi A C. Antimicrobial peptides from amphibian skin : an expanding scenario. Current Opinion in Chemical Biology , 2002 , 6 (6) : 799~804
    [89] Simmaco M, Mignogna G, Canofeni S , et al . Temporins , antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem , 1996 , 242 (3) : 788~792
    [90] Andreu D , Rivas L. Animal antimicrobial peptides : an overview. Biopolymers ( Peptide Science) , 1998 , 47(6) : 415~433
    [91] Oren Z , Shai Y. Mode of action of linear amphipathicα2helical antimicrobial peptides. Biopolymers ( Peptide Science) , 1998 ,47(6) : 451~463
    [92] 杨博, 王永华. 抗菌肽研究进展. 生命科学,2002 , 14(3) :144~145
    [93] 文加才,秦永忠,宋爱刚. 阳离子抗茵肽的研究进展. 国外医药抗生素分册,2002 ,23 (6) :237~271
    [94] Papagianni M. Ribosomally synthesized peptides with antimicrobial properties : biosynthesis , structure , function , and applications. Biotechnology Advances , 2003 , 21(6) : 465~499
    [95] Lai R , Liu H , Lee W H , et al . An anionic antimicrobial peptide from toad Bombina maxima. Biochemical and Biophysical Research Communications , 2000 , 295 (4) : 796~799
    [96] Schrêder J M. Epithelial peptide antibiotics. Biochemical Pharmacology , 1999 , 57(2) : 121~134
    [97] Simmaco M, Boman A , Mangoni M L , et al . Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Letters , 1997 . 416 (3) : 273~275
    [98] Rollins2Smith L A , Carey C , Longcore J , et al . Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis , the chytrid fungus associated with global amphibian declines. Developmental and Comparative Immunology , 2002 . 26(5) : 471~479
    [99] Li Q , Lawrence C B , Xing H Y, et al . Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta , 2001 .212 (4) : 635~639
    [100] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev,2000.24: 45–66
    [101] Guarna MM, Lesnicki GJ, Tan BM, et al. On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris. Biotechnol Bioeng,1997. 56(3): 279–286
    [102] Villatte F, Hussein AS, Bachmann TT, Schmid RD. Expression level of heterologous proteins in Pichia pastoris is influenced by flask design. Appl Microbiol Biotechnol , 2001. 55: 463–465
    [103] SilbeRBach M, Maier B, Zimmermann M, Buchs J. Glucose oxidation by Gluconobacter oxydans: characterization in shaking flasks, scale-up and optimization of the pH profile. Appl Microbiol Biotechnol ,2003.62: 92–98
    [104] Cereghino GPL, Cereghino JL, Ilgen C, Cregg J. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol ,2002.13(4): 329–332
    [105] Bushell ME, Rowe M, Avignone-Rossa CA, Wardell JN. Cyclic fed-batch culture for production of human serum albumin in Pichia pastoris. Biotech Bioeng ,2003.82(6): 678–683
    [106] Boze H, Laborde C, Chemardin P, et al. High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris. Process Biochem,2001.36: 907–913
    [107] Yang Z, Zhou X, Zhang Y. Improvement of recombinant hirudin production by controlling NH4+ concentration in Pichia pastoris fermentation. Biotechnol Letts, 2004b.26: 1013–1017
    [108] Xie J, Zhang L, Ye Q, et al. Angiostatin production in cultivation of Pichia pastoris fed with mixed caRBon sources. Biotechnol Letts, 2003.25: 173–177
    [109] Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene ,1997.190: 55–62
    [110] Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Prot Exp Pur ,2003.28: 321–330
    [111] Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D. Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng ,2004. 85(4): 367–375
    [112] Zhou X-S, Lu J, Fan WM, Zhang Y-X. Development of a responsive methanol sensor and its application in Pichia pastoris fermentation. Biotechnol Lett ,2002.24: 643–646
    [113] Surribas A, Cos O, Montesinos JL, Valero F. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis. Biotechnol Lett, 2003.25: 1795–1800
    [114] Whittaker MM, Whittaker JW. Expression of recombinant galactose oxidase by Pichia pastoris. Prot Exp Pur ,2000.20: 105–111
    [115] Crowley J, McCarthy B, Nunn NS, Harvey LM, McNeil B. Monitoring a recombinant Pichia pastoris fed batch process using Fourier transform mid-infrared spectroscopy (FT-MIRS). Biotechnol Lett ,2000.22: 1907–1912
    [116] Opekarov′a M, Tanner W. Specific lipid requirements of membrane proteins — a putative bottleneck in heterologous expression. Biochim Biophys Acta, 2003.1610: 11–22
    [117] Ruf A, M¨uller F, D'Arcy B, et al. The monotopic membrane protein human oxidosqualene cyclase is active as monomer. Biochem Biophys Res Commun ,2004. 315: 247–254
    [118] Tate CG, Haase J, Baker C, et al. Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. Biochim Biophys Acta ,2003.1610: 141–153
    [119] Han X, Bartlam M, Jin Y-H, et al. The expression of SARS–CoV M gene in P. pastoris and the diagnostic utility of the expression product. J Virol Methods, 2004. 122: 105–111
    [120] Karlsson M, Fotiadis D, Sj¨ovall S, et al. Reconstitution of water channel function of an aquaporin overexpressed and purified from Pichia pastoris. FEBS Lett ,2003.537: 68–72
    [121] Cregg JM, Cereghino L, Shi J, Higgins DR. Recombinant protein expression in Pichia pastoris. Mol Biotech ,2000.16: 23–52
    [122] Offermanns S. G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol ,2003.83: 101–130
    [123] Huang J-S, Ramamurthy SK, Lin X, Le Breton GC. Cell signalling through thromboxane A2 receptors. Cell Signal ,2004.16:521–533
    [124] White JF, Trinh LB, Shiloach J, Grisshammer R. Automated large-scale purification of a G protein-coupled receptor for neurotensin. FEBS Lett ,2004.564: 289–293
    [125] Ignatov A, Hermans-Borgmeyer I, Schaller HC. Cloning and characterization of a novel G-protein-coupled receptor with homology to galanin receptors. Neuropharmacology ,2004. 46: 1114–1120
    [126] Zhen Z, Bradel-Tretheway BG, Dewhurst S, Bidlack JM. Transient overexpression of κ and μ opioid receptors using recombinant adenovirus vectors. J Neurosci Methods,2004. 136(2): 133–139
    [127] Lundstrom K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim Biophys Acta, 2003.1610: 90–96
    [128] Sarramegna V, Talmont F, de Roch MS, Milon A, Demange P. Green fluorescent protein as a reporter of human μ-opioid receptor overexpression and localization in the methylotrophic yeast Pichia pastoris. J Biotechnol ,2002.99: 23–39
    [129] Opekarov′a M, Tanner W. Specific lipid requirements of membrane proteins — a putative bottleneck in heterologous expression. Biochim Biophys Acta, 2003.1610: 11–22
    [130] De Jong LAA, Grunewald S, Franke JP, Uges, DRA, Bischoff R. Purification and characterisation of the recombinant human dopamine D2S receptor from Pichia pastoris. Prot Exp Pur,2004.33: 176–184
    [131] Swendsen C L , Sphepard D. A study of antimicrobial effects of mountain dusky salamander mucus. Jon Hasfjord : Nat Sci Seminar Abstracts , 1998
    [132] Barra D , Simmaco M, Boman H G. Gene2encoded peptide antibiotics and innate immunity. Do ‘animalcules'have defence budgets ? FEBS Letters , 1998 .430 (1~2) : 130~134
    [133] Hancock R E W, Chapple D S. Peptide antibiotics.Antimicrobial Agents and Chemotherapy , 1999 , 43 (6) : 1 317~1 323
    [134] Mor A , Amiche M, Nicolas P. Synthesis , structure ,synthesis , and activity of dermaseptin b , a novel vertebratedefensive peptide from frog skin : relationship withadenoregulin. Biochemistry , 1994 .33 (21) : 6 642~6 650
    [135] Zasloff M. Magainins , a class of antimicrobial peptides from Xenopus skin : isolation , characterization of two active forms ,and partial cDNA sequence of precursor. Pro Natl Acad Sci USA , 1987.84 : 5 449~5 453
    [136] 杨安平,王宗伟. 蚕蛹抗癌作用的研究进展. 中医药导报, 2005 . 11 (8) :85~86
    [137] 陈国富,王立中,韦昌雷等.林蛙的开发利用价值.特种经济动植物,1999,3:11
    [138] Bothner-By, A.A, Stephans, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. J. Am. Chem. Soc. 1984.106:811-813
    [139] Bowen J.P. and Allinger, N.L. In Reviews in Computational Chemistry, Vol. 2, Lipkowitz, K.B. and Boyd, D.B. eds. VCH Pubishers, New York, pp. 1991.81-97
    [140] Boman HG, Lee JY, Cell-free immunity in cecropia A model system for antibacterial proteins. Eur. J. Biochem,1991.201: 23-31
    [141] Burkert, U. and Allinger, N.L. ACS Monograph 177, American Cherical Society, Washington, D.C., 1982.339pp
    [142] Dinur, U. and Hagler, A.T. In Reviews in Computational Chenistry, Vol.2, Lipkowitz, K.B. and Boyd, D.B. Eds. VCH publishers, New York, pp. 1991.99-164
    [143] Duggan, Ann, N.Y. Acad. Sci. 1948.51:177
    [144] Ehrlich, J., Gottlieb ,D., Burkholder, P.R., Anderson, L.E. and Pridham, T.G. J. Bact. 1948. 56:467-477
    [145] Ennahar, S., Sashihara ,T., Sonomoto, K. and Ishizaki, A. FEMS Microbiol. Rev. 2000. 24:85-106
    [146] Epand, R.F., Epand, R.M., Formaggio, F., Crisma, M., Wu, H., Lethrer, R.I. and Toniolo, C. Eur. J. Biochem, 2001.268:703-712
    [147] Bevins CL,Zasloff M.Peptides from frog skin .Annual Reciew of Biochemistry, 1990.59:395-414
    [148] Andren D,Aschauer H,Kreil G.Solid-phsase synthesis of PYLa and isolation of itsnatural counterpart,PGLa〔PYLa-(4-24)〕,from skin secretion of Xenopus laevis.European journal of Bilchemistry,1985.149:531-535
    [149] Hans V,Westerhoff,Davor J.Magainins and the disruption of membrane-linked free energy transduction.Proc Nati Acad Sci USA,1989.197-233
    [150] Jacob J,Zaosloff M.Antimicrobial peptides.In:Boman H G,Marsh J,Goode J A eds.Ciba Symposium 186.Chichester:Wiley,1994.197-223
    [151] 赖仞, 赵宇, 刘衡等,两栖类动物皮肤活性物质的利用兼论中国两栖类资源开发的策略.动物学研究,2002 , Feb. 23 ( 1) : 65~70
    [152] Charles L B ,Michael Z. 1990. Peptides from frog skin . Annu . Rev .Biochem. 59 :395 -414.
    [153] Clarke B T. 1997. The natural history of amphibian skin secretions ,their normal function and potential medical applications . Biol . Rev ,72(3) :365 -379
    [154] E. coli-based production of recombinant HMG-17 and its antibacterial domain. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Aug.22(4):773-7. Chinese
    [155] Expression and biology identification of the human epididymis-specific gene ESC42 in E. coli.Zhonghua Nan Ke Xue. 2005 Feb.11(2):106-11. Chinese
    [156] Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif,2005 Feb.39(2):189-98
    [157] Identification of a new peptide deformylase gene from enterococcus faecium and establishment of a new screening model targeted on PDF for novel antibiotics. Biomed Environ Sci. 2004 Sep.17(3):350-8
    [158] Eijsink VG, Skeie M, Middelhoven PH, BruRBerg MB, Nes IF. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol , 1998.64:3275-3281
    [159] Miller KW, Schamber R, Osmanagaoglu O, Ray B. Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl. Environ.Microbiol, 1998.64:1997-2005
    [160] Fimland G, Johnsen L, Axelsson L, BruRBerg MB, Nes IF, Eijsink VGH, Nissen-Meyer J. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. JBacteriol, 2000.182:2643-2648
    [161] Bessette, PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA , 1999.96:13703-13708
    [162] 李建民,马志飞,曹勤洪等,中国家蚕抗菌肽CBM1、CBM2的克隆和表达研究.生物技术通讯,2005,Jul ,16 (4)
    [163] 卢圣栋.现代分子生物学实验技术.第2版.北京:中国协和医科大学出版社,1999,378-380
    [164] Romanos MA,Clare CA,Clare JJ.Foreign gene expression in yeast: a review. Yeast, 1992.8(2):423-488
    [165] Zhang J, Wu X, Yue YY, et al .Cloning, expression and characterization of antibacterial peptide CM4 in Pichia pastoris. Wei Sheng Wu Xue Bao.2005 .45(5):720-3. Chinese
    [166] 张辉华, 毕英佐, 曹永长.鸡β2-防御素 21 cDNA 的克隆及在毕赤酵母中的表达.畜牧兽 医学报,2005 ,36 (8) ,767~772
    [167] 胡仲秋,樊钰虎,冯瑄等.一种新型抗菌肽 Cecropin B 真核表达载体的构建.生物技术通 讯,2005,16(3):268-269
    [168] 仲燕,刘军华,张建鹏,冯伟华,焦炳华.东海贻贝抗菌肽 Myticin A 基因的克隆表达及其生物学活性.第二军医大学学报,2005, J an;26 (1)
    [169] Roger KB,Francis JC.Glyeosylation of Pichia pastiris-deribed proteins.Biol technol Appl Biochem.1999,30:193-200
    [170] 陈海旭,邹冠玉,屈贤铭等.抗菌肽 Magginin 基因的克隆及其在 Pichia pastoris 中的表达.中国生物化学与分子生物学报,2002,18(4):461-464
    [171] 黄亚东,郑青,李校等.抗菌肽 AD 基因的改造及在毕赤酵目中的表达.华南理工大学学报(自然科学版),2002,(30):2
    [172]韩万江,盛泽娟,张青等.Apila 抗菌肽基因的化学合成、克隆及其在酵母中的表达.复旦学报(自然科学版),1998,(37):2
    [173] Yamada O, Sakamoto K,Tominaga M,et al.Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631. Biosci Biotechnol Biochem. 2005 Mar.69(3):477-82
    [174] Zang SF, Cao RB, JiaY ,et al.Modification of hybrid antimicrobial peptide CecA-mil gene and its over-secretion expression in Pichia pastoris. Wei Sheng Wu Xue Bao. 2005 Apr.45(2):218-22. Chinese
    [175] Nozomi K, Tomoyas A , Hiroshi S , et al . Expression and purification of a small cytokine growth-blocking peptide from armyworm Pseudaletia separate by an optimized fermentation method using the methylotropHic yeast Pichia pastoris . Protein Expression and Purification , 2002 .25 :416 – 4251
    [176] Michael JO Donbue.Over expression in Pichia pastoris and crystallization of an elicidor protein secreted by the pHytopathogenie fungus[J].Protein Expression and Purication, 1996.8:254-261
    [177] Boettner M , Prinz B , Holz C , et al. High-throughout screening for expression of heterologous proteins in the yeast Pichia Pastoris [J ]. J Biotechno , 2002 . 99 :51~62
    [178] Charlet M ,Chernysh S ,PHilippe H ,et al . Innate immunity isolation of several cysteine2rich antimicrobial peptides f rom the blood of a mollusc ,My ti l us edulis . J B iol Chem ,1996.271(36) :21808-21813
    [179] 袁德云,王立梅,胡耀辉.林蛙皮抗菌肽的提取及其某些特性的测定.吉林农业大学学报,2001.23(2):113-116
    [180] Asami Y, Nagano H, Ikematsu S, Murasugi A. An approach to the removal of yeast specific O-linked oligomannoses from human midkine expressed in Pichia pastoris using site-specific mutagenesis. J Biochem ,2000.128: 823–826
    [181] Choi B-K, Bobrowicz P, Davidson RC, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Appl Biol Sci,2003.100(9): 5022–5027
    [182] Miura M, Hirose M, Miwa T, Kuwae S, Ohi H. Cloning and characterisation in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene,2004.324: 129–137
    [183] Bobrowicz P, Davidson RC, Li H, et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology,2004.14(9):757–766
    [184] Hamilton SR, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science. 2003.301(5637):1244–1246
    [185] Egli T, van Dijken JP, Veenuis M, Harder W, Fiechter A. Methanol metabolism in yeasts: regulation of the synthesis of catabolic enzymes. Arch Microbiol. 1980. 124: 115–121
    [186] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 2000.24: 45–66
    [187] Wu JM, Lin JC, Chieng LL, Lee CK, Hsu TA. Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factor in Pichia pastoris. Enz Microb Technol, 2003b.33(4): 453–459
    [188] Callewaert N, Laroy W, Cadirgi H, et al. Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-α-Dmannosidase for N -glycan engineering in Pichia pastoris. FEBS Lett ,2001.503: 173–178
    [189] Wu JM, Chieng LL, Hsu TA, Lee CK. Sequential expression of recombinant proteins and their separate recovery from Pichia pastoris cultivation. Biochem Eng J, 2003a.3715: 1–8
    [190] Fu R-H, Wang A-Y, Wang Y-C, Sung H-Y. A cDNA encoding vacuolar type β-D-fructofuranosidase (Osβfruct3 ) of rice and its expression in Pichia pastoris. Biotechnol Lett,2003.25: 1525–1530
    [191] Gellissen G. Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol, 2000.54: 741–750
    [192] Cregg JM, Tschopp JF, Stillman C, et al. High-level expression and efficient assembly of hepatitis B surface antigen in Pichia pastoris. BioTechnology,1987.5: 479–485
    [193] Aoki H, Ahsan MN,Watabe S. Heterologous expression in Pichia pastoris and single-step purification of a cysteine proteinase from northern shrimp. Prot Exp Pur ,2003.31(2): 213–221
    [194] McKinney J, Knappskog PM, Pereira J, et al. Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris. Protein Expr Purif,2004.33: 185–194
    [195] Paramsivam M, Saravanan K, Uma K, et al. Expression, purification and characterization of equine lactoferrin in Pichia pastoris. Prot Exp Pur,2002.26: 28–34
    [196] Peng L, Zhong X, Ou J, et al. High-level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris. J Biotechnol ,2004. 108: 185–192
    [197] Yang G, Zhou H, Lu Y, Lin Y, Zhou S. Comparing expression of different forms of human DNA topoisomerase I in Pichia pastoris. Enz Microb Technol,2004a.34(2): 139–146
    [198] Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D. Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng ,2004.85(4): 367–375
    [199] Slibinskas R, Samuel D, Gedvilaite A, Staniulis J, Sasnauskas K. Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J Biotechnol, 2004.107: 115–124
    [200] Yu J, Li D-Y, Zhang Y-J, et al. High expression of Trigonopsis variabilis D-amino acid oxidase in Pichia pastoris. J Mol Cat B Enz. 2002,18(4–6): 291–297
    [201] Clare JJ, Rayment FB, Ballantyne SP, Sreerkrishna K, Romanos MA. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. BioTechnology,1991. 9: 455–460
    [202] Cregg JM, Cereghino L, Shi J, Higgins DR. Recombinant protein expression in Pichia pastoris. Mol Biotech ,2000.16:23–52
    [203] Brierley RA, Davis RG, Holtz CG. Production of insulin-like growth factor-I in methylotrophic yeast cells. US Patent,1994, No. 5,324,639
    [204] Kobayashi K, Kuwae S, Ohya T, et al. Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris. J Biosci Bioeng,2000.89(5): 479–484
    [205] Siegel RS, Buckholz RG, Thill GP, Wondrack LM. Production of epidermal growth factor in methylotrophic yeasts. International Patent Application, Publ. 1990. No. WO 90/10 697
    [206] Sreekrishna K, Prevatt WD, Thill JP, et al. Production of Bacillus entomotoxins in methylotrophic yeast. European Patent Application, 1993.Publ. No. EP0586 892 A1
    [207] Werten MWT, van den Bosch TJ, Wind RD, Mooibroek H, de Wolf FA. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast ,1999.15(11): 1087–1096
    [208]. Hong F, Meinander NQ, Jonsson LJ. Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng ,2002.79(4): 438–449
    [209] Li Z, Xiong F, Lin Q, et al. Low temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Prot Exp Pur ,2001.21(3): 438–445
    [210] Jahic M, Gustavsson M, Jansen A-K, Martinelle M, Enfors S-O. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. Bio Technology ,2003.102: 42–53
    [211] Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Prot Exp Pur, 2003.28: 321–330
    [212] Sue Macauley-Patrick,* Mariana L. Fazenda, Brian McNeil. Heterologous protein production using the Pichia pastoris expression system .Yeast,2005.22: 249–270
    [213] Zasloff M. Magainins , A class of antimicrobial peptides from Xenopus skins : isolation , characterization of two active forms , and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA ,1987 .84 :5449~5453
    [214] 张素芳,蔡梅红,等.Magainin 和 cecA2mil 抗菌肽基因的密码子优化及在毕赤酵母中的高效表达. 中国生物工程杂志,2004 .24(7) :93~97
    [215] Jacob L , Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. in : Goode J , ed.Antibacterial peptides1 Ciba Fundation Symposium 186.Chichester : Wiley , 1994.197~223
    [216] 胡泰山,魏万贵,陆坚峰,等. 抗菌肽 Magainin II 单克隆抗体的制备及应用. 细胞与分子免疫学杂志,1999 .15 (4) :302~304
    [217] 陈海旭,邹冠玉,屈贤铭等. 抗菌肽 Magainin 基因的克隆及其在 Pichia pastoris 中的表达. 中国生物化学与分子生物学报, 2002 .18 (4) :461~464
    [218] Cregg JM, Madden KR. Development of the methylotrophic yeast, Pichia pastoris, as a host system for the production of foreign proteins. Dev Ind Microbiol, 1988.29: 23–42
    [219] Huang J-S, Ramamurthy SK, Lin X, Le Breton GC. Cell signalling through thromboxane A2 receptors. Cell Signal , 2004.16:521–533
    [220] Ignatov A, Hermans-Borgmeyer I, Schaller HC. Cloning and characterization of a novel G-protein-coupled receptor withhomology to galanin receptors. Neuropharmacology,2004.46: 1114–1120
    [221] Inan M, Meagher MM. The effect of ethanol and acetate on protein expression in Pichia pastoris. J Biosci Bioeng ,2001a.92(4):337–341
    [222] Bevins C L , Zasloff M. Peptides from frog skin. Annual Re2 view of Biochemistry ,1990. 59 :395~414
    [223] Andren D , Aschauer H , Kreil G. Solid2phase synthesis of PY2 La and isolation of its natural counterpart , PGLa [ PYLa2(4 -24) ] , from skin secretion of Xenopus laevis . European Journal of Biochemistry ,1985.149 : 531~535
    [224] Hans V , Westerhoff , Davor J . Magainins and the disruption of membrane-2 linked free energy transduction. Proc Nati Acad Sci USA ,1989.86 : 6 597~6 601
    [225] Jacob J , Zasloff M. Antimicrobial peptides. In : Boman H G, Marsh J , Goode J A eds. Ciba Symposium 186. Chichester . Wiley ,1994.197~223
    [226] 胡云龙, 郭玉梅. 昆虫抗菌肽作用于K562 细胞病理过程的超微结构研究. 中国媒介生物学及控制杂志. 1995.6 (1) :76-79
    [227] 张双全, 贾红武, 戴祝英. 抗菌肽CM 4 抗K562 癌细胞的超微结构研究. 生物化学与生物物理进展, 1997.24 (2) : 159-163
    [228] MA SA YU K IO , SHUNJ IN. Mode of act ion of a bactericidal p ro tein induced in haemo lymph of S arcop has a pereg rina(flesh2fly) larvae. Biochem J, 1984.222: 119-124
    [229] MA SA YU K IO , SHUNJ IN. Ionopho re act ivity sarco toxin é , a bactericidal p ro tein of S arcop hag a p ereg rina . Biochem J, 1985.229: 453-458
    [230] 贾士荣,屈贤明,主编.马铃薯坑菌肤基因工程[M].北京:中国农业科技出版社,1996
    [231] Merrifield R B, Vizoli L D, Boman H G. Synthesis of the antibacterial peptide cecropin A(1-33). Biochemistry, 1982. 21:5020-5 030
    [232]Fink J, fioman A, Boman H CU, et al. Design, synthesis and antibacterial activity of cecropin model peptides. Int J Peptide Protein Res, 1989.33: 807一813
    [233] Christensen B, Fink J, Merrifield R B. Channel-forming properties of cecropins and related model eornx,undu ince,rlxrated to compounds into planar lipid membranes. Proc Natl Acad Sci USA, 1988.85: 5 072一5 076
    [234] 贾洪武,张双全,戴祝英.家蚕抗菌肽对 IC562 癌细胞的杀伤作用及对细胞超微结构的影响. 蚕业科学.1996.22(4):62
    [235] 王芳,张双全,戴祝英.抗菌肽 CM4 组分对 K562 细胞核染色体 DNA 断裂作用的 SC.GE 研究.南京师范大学学报(自然科学版),1998.21(1):97 一 99
    [236] 陆莹瑾,王禾,屈贤铭. 抗菌肽的固相合成、分离纯化与构效关系的研究. 生物工程学报,1997.13(1):35-41
    [237] 王芳,张双全.抗菌肽抗癌作用机理的研究进展.自然科学进展,1999.(9)2:97-102〕
    [238] 郭玉梅,戴祝英,胡云龙.家蚕抗菌肮的一些性质和抗肿瘤活性.南京师范大学学报(自然科学版),1995,18(1): 62
    [239] 许玉澄,张双全,戴祝英.抗菌肽对 5180 荷瘤小鼠免疫机能影响的研究.中国免疫学杂志,1997 .l3 : 12-14
    [240] 潘卫东、刘向辉、戈峰.海洋岩虫抗菌肽筛选及抗癌活性的初步研究.中国海洋药物,2004.3:1-6
    [241] Soballe P W, Maloy WL , Myrga ML et al . Experimental lo2 cal therapy of human melanoma with lytic magainin peptides. Int J Cancer , 1995 .60 :280~28
    [242] Roaek T , Wegener KL , Bowie J H. The antibiotic and anti2 cancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis . European Journal of Bio2 chemistry , 2000. 237 : 5 330~5 341
    [243] 姜丽丽, 尚德静.蛙类皮肤及其分泌物中生物活性肽的研究进展,中国生化药物杂志,2005,26(4):246-249
    [244] 邓平建主编. 转基因食品食用安全性和营养质量评价及验证. 北京:人民卫生出版社,2003 ,28
    [245] 蓝江林, 周先治, 卓侃等,美洲大蠊(Perip laneta am er icana L. ) 抗菌肽杀菌作用初步观察.福建农林大学学报(自然科学版) ,2004,33 (2):166-168
    [246] Better M, Chang CP,Robinson RR,et al. Escherichia coli secretion of an active chimeric antibody fragment.Science,1988.240:1041
    [247] Friesen PD, Miller LK.The regulation of baculovirus gene expression.Curr. Top. Microbiol.Immunol,1986.131:31
    [248] Harder J, Barrels J, Christophers E,et al. Isolation and Characterization of Human p-Defensin-3, a Novel Human Inducible Peptide Antibiotic. J. Biol. Chem, 2001.276:5707-5713
    [249] 饶贤才,胡晓梅,张克斌等.人源肤抗生素HBD-2表达质粒的构建及其在大肠杆菌中的表达.微生物学免疫学进展,2001,29(3): 1-5
    [250] 邱丁红,毛晓华,徐衡等.新型融合蛋白 hIFN a 1-CB 表达载体的构建,东南大学学报(医学版),2002,21(2): 133-136
    [251] Friesen PD,Miller LK.The regulation of baculovirus gene expression.Curr. Top Microbiol. Immunol,1986.131:31
    [252] Luckow VA,Summers MD. High level expression of nonfused foreign genes with Autographs californica nuclear polyhedrosis virus expression vectors. Virology,1989.170(1): 31-9
    [253] Valore EV, Park CH, Quayle AJ, et al. Human (3-Defensin-1:An Antimicrobial Peptide of Urogenital Tissues,J. Clin. Invest,1998.101:1633一1642
    [254] Gao Y,Huang YF.Advances in eukaryotic expression systems. Zhonghua-Nan-Ke-Xue,2002.8(4):292-298
    [255] Hellwig S,Emde F,Raven NP,et al. Analysis of single-chain antibody production inPichia pastoris using on-line methano control in fed-batch and mixed-feed fermentations. Biotechnol-Bioeng,2001. 74(4): 344-52
    [256] Verma R,Boleti E,George AJ. Antibody engineering: comparison of bacterial, yeast,insect and mammalian expression systems. J-Immunol-Methods,2001.216(1-2): 165-81 [ 257] Destoumieux D , Bule P , Strub JM et al . Recombiant expressionand range of activity of penaeidins ,antimicrobial peptides frompenaeid shrimp. Eur J Biochem ,1999.266 (2) :3352346 [258 ] Vilas Alves AL ,de Samblanx GW, Terras FRG et al . Expres2sion of functional Raphanus sativus antifungal protein in yeast.FEBS Lett , 1994 .384(3) :2282-23221
    [259] 吴映雅,刘飞鹏,周天弘等.抗菌肤与碱性成纤维细胞生长因子基因的融合及其在酵母中的表达,生物工程进展,1998,18(5): 11-14
    [260] Clare JJ,Rayment FB,Ballantine SP,et al.High-level expression of tetanus toxin fragment C inPichia pastoris strains containing multiple tandem interations of the gend.Biotechnology-(N-Y),1991.9(5):455-60
    [261] Clare JJ,Romanos MA,Rayment FB,et al. Production of mouse epidermal growth factor inyeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene,1991.105(2): 205-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700