低幅高频机械振动波(LMHF)对人成纤维细胞影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:为了探讨机械振动刺激对皮肤创面的影响,本研究欲建立正弦式低幅高频(Low-magnitude and high-frequency,LMHF)振动波体外研究的生物模型,研究机械振动波对人类皮肤成纤维细胞迁移、增殖、分化以及细胞外基质的影响,进而深入理解机械力对皮肤创面愈合影响的机制。
     方法:①在以往的关于全身振动的研究基础上,利用特制的正弦式低幅高频振动器,对人类皮肤成纤维细胞进行体外振动,尝试不同的振动参数,观察振动后细胞的变化情况,分析不同条件的振动对成纤维细胞的不同影响,最终选择合适的振动参数作为后续研究的基础。根据前期振动研究的结果以及本研究观察到的现象,本研究最终选择的振动参数为:振动加速度a=0.4g,振动时间t=15分钟,振动频率分别为f=30、50、65、100Hz。②对人类成纤维细胞进行正弦式低幅高频振动处理后,利用细胞迁移划痕实验的方法,来检测振动处理后22小时细胞迁移的速率。③分别应用CellQuanti-Blue和BrdU细胞活性检测方法检测正弦式低幅高频振动波对人类成纤维细胞增殖能力的影响。④利用Real-time PCR技术检测经过正弦式低幅高频振动波长时间(3-5d)刺激之后的人类成纤维细胞内α-SMA,以及主要细胞外基质的mRNA基因表达水平,进而研究机械振动波对成纤维细胞的分化和细胞外基质分泌的影响。
     结果:①在本实验的振动参数条件下,长时间(30min)的振动刺激会导致部分细胞发生坏死。镜下可见成纤维细胞突起数目减少,胞体由长梭形变为细长型或椭圆形,部分胞体内可以看到聚集的小空泡样改变,活细胞率下降。但是15min的振动刺激后,细胞的外形和活性跟对照组相比较,并没有明显的变化。②与对照组相比较,所有振动处理组内成纤维细胞的迁移能力均有明显降低(p<0.05)。并且这种降低的趋势与频率的增高成反比,即频率越高,细胞迁移的速度越慢,频率65Hz和100Hz的两组之间并没有差异性,但是从分析图表上我们可以发现仍呈下降趋势。同时我们还发现振动方向对细胞迁移的速率的影响不大。③与对照组相比,f=30Hz、50Hz、65Hz的振动刺激对细胞的增殖能力并没有显著的影响(p>0.05),但是f=100Hz的振动会显著降低成纤维细胞的增殖能力。④对人类成纤维细胞进行长时间(3-5d)体外低幅高频振动刺激,成纤维细胞内的α-SMA有了增高的趋势,其中以f=50Hz振动组增高最明显,具有统计学意义。但是对细胞外基质蛋白的基因表达影响不明显。
     结论:本研究在基于前人研究的基础上,首次建立了正弦式机械振动波对人类皮肤成纤维细胞影响的体外生物模型,为后续进一步开展广泛研究打下了基础。低幅高频的机械振动波会减缓皮肤成纤维细胞的迁移速率,这种降低的趋势与一定范围内频率的增高成反比(f=30-100Hz),但是不同方向的振动对细胞的迁移速度并没有明显的影响。正弦式机械振动波对人类成纤维细胞增值能力的影响与振动的条件有关,当振动频率小于100Hz时,机械振动波对细胞的增殖能力并没有明显的影响。但是在振动频率大于100Hz的时候,细胞的增殖能力会受到抑制。长时间低幅高频机械振动波对人类皮肤成纤维细胞向肌成纤维细胞的分化具有一定的促进作用,但是对细胞外基质蛋白的分泌则影响不明显。由于机械力振动对生物体的影响是一个非常复杂的过程,体内实验和体外实验之间存在非常大的差别,因此本研究的发现具有一定的局限性,需要更进一步的详细探索来逐渐认识机械振动波对皮肤创面的影响及其相关机制。
Objective: Low-Magnitude and High-Frequency (LMHF) vibration has becomeincreasingly popular over the last several years as a method of exercise or clinical treatment.However, the efficiency of LMHF applied on the cutaneous wound healing has not beenreported. The authors developed a novel in vitro model to investigate the effects of lowmagnitude and high frequency vibration on the migration, proliferation, differentiation andextracellular matrix of human cutaneous fibroblasts in order to understand the potentialapplication of mechanical vibration on wound healing.
     Methods: The authors tested a vibration bioreactor customized by company to figure outthe suitable parameters of mechanical vibration for human fibroblasts in vitro study. Thevibration bioreactor could stimulate sinusoid mechanical vibration waves with lowmagnitude (a<1g) and high frequency (f=30-100Hz). Based on the previously study, humancutaneous fibroblasts were subjected to vibration treatment (f=30,50,65,100Hz; a=0.4×g;t=15minutes). The effect of low magnitude and high frequency on fibroblasts migrationwas investigated via in-vitro scratch assay which means a wound gap was created on themonolayer and healing percentage was measured after vibration. Cells proliferationchanging after vibration treatment was analyzed using CellQuanti-Blue Assay and BrdUassay. The mRNA level of α-SMA and several vital extracellular matrix protein weredetected by real-time polymerase chain reaction (PCR) after mechanical vibration.
     Results: After exposure to sinusoid mechanical vibration for longer time (30min), part offibroblasts would be detached from bottom under microscope. Cellular morphologychanged from long spindle to short and round with the number of dendrites decreased. While, there were no significant difference of fibroblasts morphology and cellular viabilitybetween15min vibration group and control. Migration of human cutaneous fibroblast in allexperimental groups significantly (p<0.01) decreased compared with control group. Themigration speed tended to decrease with the frequency increasing but have no relationshipwith the direction of sinusoid vibration. The proliferation of fibroblasts stimulated afterexposure to low-magnitude and high frequency vibration (f=30Hz,50Hz,65Hz, a=0.4×g,t=15minutes) has no significant difference with control group, whereas f=100Hz vibrationconsiderably decreased cell proliferation (p<0.01). The mRNA expression of α-SMA hadbeen increased by3-5days vibration, which means mechanical vibration might bias thefibroblasts to differentiate into myofibroblasts. However, no significant differences ofextracellular matrix protein mRNA was observed between any experimental groups andcontrol.
     Conclusions: We reported the effect of the LMHF vibration-wound healing in-vitro modelfor the first time. The present results showed that horizontal low magnitude and highfrequency vibration (f=30Hz,50Hz,65Hz, a=0.4×g, t=15min) could slow down the humancutaneous fibroblasts migration but haven’t significant effect on the cells proliferation.Long-term low magnitude and high frequency vibration tend to bias cutaneous fibroblastsdifferentiate into myofibroblasts while could not change the extracellular matrixarrangement. This study has certain limitation because the effects of mechanical vibrationon the biology field are so complicated and confusing. Further investigations should beperformed to discover the mechanism of the biological application of mechanical forces.
引文
1. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again.FASEB journal: official publication of the Federation of American Societies forExperimental Biology20:811-827,2006.
    2. Jaalouk, D. E., Lammerding, J. Mechanotransduction gone awry. Nature reviews.Molecular cell biology10:63-73,2009.
    3. Chan, M. E., Uzer, G., Rubin, C. T. The Potential Benefits and Inherent Risks ofVibration as a Non-Drug Therapy for the Prevention and Treatment of Osteoporosis.Current osteoporosis reports,2013.
    4. Jacobs, P. L., Burns, P. Acute enhancement of lower-extremity dynamic strength andflexibility with whole-body vibration. Journal of strength and conditioning research/National Strength&Conditioning Association23:51-57,2009.
    5. Rittweger, J. Vibration as an exercise modality: how it may work, and what itspotential might be. European journal of applied physiology108:877-904,2010.
    6. Rittweger, J., Schiessl, H., Felsenberg, D. Oxygen uptake during whole-body vibrationexercise: comparison with squatting as a slow voluntary movement. European journalof applied physiology86:169-173,2001.
    7. Xie, L., Jacobson, J. M., Choi, E. S., et al. Low-level mechanical vibrations caninfluence bone resorption and bone formation in the growing skeleton. Bone39:1059-1066,2006.
    8. Rauch, F. Vibration therapy. Developmental medicine and child neurology51Suppl4:166-168,2009.
    9. Rauch, F., Sievanen, H., Boonen, S., et al. Reporting whole-body vibration interventionstudies: recommendations of the International Society of Musculoskeletal andNeuronal Interactions. Journal of musculoskeletal&neuronal interactions10:193-198,2010.
    10. del Pozo-Cruz, B., Hernandez Mocholi, M. A., Adsuar, J. C., et al. Effects of wholebody vibration therapy on main outcome measures for chronic non-specific low backpain: a single-blind randomized controlled trial. Journal of rehabilitation medicine:official journal of the UEMS European Board of Physical and Rehabilitation Medicine43:689-694,2011.
    11. Alguacil Diego, I. M., Pedrero Hernandez, C., Molina Rueda, F., et al. Effects ofvibrotherapy on postural control, functionality and fatigue in multiple sclerosis patients.Arandomised clinical trial. Neurologia (Barcelona, Spain)27:143-153,2012.
    12. Judex, S., Lei, X., Han, D., et al. Low-magnitude mechanical signals that stimulatebone formation in the ovariectomized rat are dependent on the applied frequency butnot on the strain magnitude. Journal of biomechanics40:1333-1339,2007.
    13. Judex, S., Boyd, S., Qin, Y.-X., et al. Adaptations of Trabecular Bone to LowMagnitude Vibrations Result in More Uniform Stress and Strain Under Load. Annals ofbiomedical engineering31:12-20,2003.
    14. Ozcivici, E., Luu, Y. K., Rubin, C. T., et al. Low-level vibrations retain bone marrow'sosteogenic potential and augment recovery of trabecular bone during reambulation.PloS one5: e11178,2010.
    15. Ozcivici, E., Luu, Y. K., Adler, B., et al. Mechanical signals as anabolic agents in bone.Nature reviews. Rheumatology6:50-59,2010.
    16. Garman, R., Gaudette, G., Donahue, L. R., et al. Low-level accelerations applied in theabsence of weight bearing can enhance trabecular bone formation. Journal oforthopaedic research: official publication of the Orthopaedic Research Society25:732-740,2007.
    17. Wang, J. H., Thampatty, B. P. An introductory review of cell mechanobiology.Biomechanics and modeling in mechanobiology5:1-16,2006.
    18. Wolchok, J. C., Brokopp, C., Underwood, C. J., et al. The effect of bioreactor inducedvibrational stimulation on extracellular matrix production from human derivedfibroblasts. Biomaterials30:327-335,2009.
    19. Hardy, K., Spanos, S. Growth factor expression and function in the human and mousepreimplantation embryo. The Journal of endocrinology172:221-236,2002.
    20. Muglia, U., Motta, P. M. A new morpho-functional classification of the Fallopian tubebased on its three-dimensional myoarchitecture. Histology and histopathology16:227-237,2001.
    21. Figueroa, A., Vicil, F., Sanchez-Gonzalez, M. A. Acute exercise with whole-bodyvibration decreases wave reflection and leg arterial stiffness. American journal ofcardiovascular disease1:60-67,2011.
    22. Figueroa, A., Gil, R., Wong, A., et al. Whole-body vibration training reduces arterialstiffness, blood pressure and sympathovagal balance in young overweight/obesewomen. Hypertension research: official journal of the Japanese Society ofHypertension35:667-672,2012.
    23. Figueroa, A., Gil, R., Sanchez-Gonzalez, M. A. Whole-body vibration attenuates theincrease in leg arterial stiffness and aortic systolic blood pressure during post-exercisemuscle ischemia. European journal of applied physiology111:1261-1268,2011.
    24. Rittweger, J., Ehrig, J., Just, K., et al. Oxygen uptake in whole-body vibration exercise:influence of vibration frequency, amplitude, and external load. International journal ofsports medicine23:428-432,2002.
    25. Rubin, C. T., Capilla, E., Luu, Y. K., et al. Adipogenesis is inhibited by brief, dailyexposure to high-frequency, extremely low-magnitude mechanical signals.Proceedings of the National Academy of Sciences of the United States of America104:17879-17884,2007.
    26. Sen, B., Xie, Z., Case, N., et al. Mechanical signal influence on mesenchymal stem cellfate is enhanced by incorporation of refractory periods into the loading regimen.Journal of biomechanics44:593-599,2011.
    27. Luu, Y. K., Capilla, E., Rosen, C. J., et al. Mechanical stimulation of mesenchymalstem cell proliferation and differentiation promotes osteogenesis while preventingdietary-induced obesity. Journal of bone and mineral research: the official journal ofthe American Society for Bone and Mineral Research24:50-61,2009.
    28. Nakagami, G., Sanada, H., Matsui, N., et al. Effect of vibration on skin blood flow inan in vivo microcirculatory model. Bioscience trends1:161-166,2007.
    29. Ichioka, S., Yokogawa, H., Nakagami, G., et al. In vivo analysis of skinmicrocirculation and the role of nitric oxide during vibration. Ostomy/woundmanagement57:40-47,2011.
    30. van Nes, I. J., Latour, H., Schils, F., et al. Long-term effects of6-week whole-bodyvibration on balance recovery and activities of daily living in the postacute phase ofstroke: a randomized, controlled trial. Stroke; a journal of cerebral circulation37:2331-2335,2006.
    31. Ebersbach, G., Edler, D., Kaufhold, O., et al. Whole body vibration versusconventional physiotherapy to improve balance and gait in Parkinson's disease.Archives of physical medicine and rehabilitation89:399-403,2008.
    32. Slatkovska, L., Alibhai, S. M., Beyene, J., et al. Effect of12months of whole-bodyvibration therapy on bone density and structure in postmenopausal women: arandomized trial. Annals of internal medicine155:668-679, W205,2011.
    33. Ward, K., Alsop, C., Caulton, J., et al. Low magnitude mechanical loading isosteogenic in children with disabling conditions. Journal of bone and mineralresearch: the official journal of the American Society for Bone and Mineral Research19:360-369,2004.
    34. Gaston, J., Quinchia Rios, B., Bartlett, R., et al. The response of vocal fold fibroblastsand mesenchymal stromal cells to vibration. PloS one7: e30965,2012.
    35. Joel Gaston, B. Q. R., Rebecca Bartlett, Craig Berchtold, Susan L. Thibeault. TheResponse of Vocal Fold Fibroblasts and Mesenchymal Stromal Cells to Vibration. PloSone7:8,2012.
    36. Matsuura, K., Hayashi, N., Kuroda, Y., et al. Improved development of mouse andhuman embryos using a tilting embryo culture system. Reproductive biomedicineonline20:358-364,2010.
    37. Heo, Y. S., Cabrera, L. M., Bormann, C. L., et al. Dynamic microfunnel cultureenhances mouse embryo development and pregnancy rates. Human reproduction(Oxford, England)25:613-622,2010.
    38. Arashi, M., Sugama, J., Sanada, H., et al. Vibration therapy accelerates healing ofStage I pressure ulcers in older adult patients. Advances in skin&wound care23:321-327,2010.
    39. On the anatomy and physiology of the skin. III. The elasticity of the cutis By ProfessorK. Langer Presented at the meeting of27th November1861. British journal of plasticsurgery31:185-199,1978.
    40. Agha, R., Ogawa, R., Pietramaggiori, G., et al. A review of the role of mechanicalforces in cutaneous wound healing. The Journal of surgical research171:700-708,2011.
    41. Erba, P., Miele, L. F., Adini, A., et al. A morphometric study of mechanotransductivelyinduced dermal neovascularization. Plast Reconstr Surg128:288e-299e,2011.
    42. Erba, P., Ogawa, R., Ackermann, M., et al. Angiogenesis in wounds treated bymicrodeformational wound therapy. Annals of surgery253:402-409,2011.
    43. Jacobs, S., Simhaee, D. A., Marsano, A., et al. Efficacy and mechanisms ofvacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model.Journal of plastic, reconstructive&aesthetic surgery: JPRAS62:1331-1338,2009.
    44. Scherer, S. S., Pietramaggiori, G., Mathews, J. C., et al. The mechanism of action ofthe vacuum-assisted closure device. Plast Reconstr Surg122:786-797,2008.
    45. McNulty, A. K., Schmidt, M., Feeley, T., et al. Effects of negative pressure woundtherapy on fibroblast viability, chemotactic signaling, and proliferation in a provisionalwound (fibrin) matrix. Wound repair and regeneration: official publication of theWound Healing Society [and] the European Tissue Repair Society15:838-846,2007.
    46. Concannon, M. J., Puckett, C. L. Wound coverage using modified tissue expansion.Plast Reconstr Surg102:377-384,1998.
    47. Santiago, G. F., Bograd, B., Basile, P. L., et al. Soft tissue injury management with acontinuous external tissue expander. Annals of plastic surgery69:418-421,2012.
    48. Turgut, G., Ozcan, A., Sumer, O., et al. Reconstruction of complicated scalp defect viaskin traction. The Journal of craniofacial surgery20:263-264,2009.
    49. Daya, M., Nair, V. Traction-assisted dermatogenesis by serial intermittent skin tapeapplication. Plast Reconstr Surg122:1047-1054,2008.
    50. Pietramaggiori, G., Liu, P., Scherer, S. S., et al. Tensile forces stimulate vascularremodeling and epidermal cell proliferation in living skin. Annals of surgery246:896-902,2007.
    51. Shrader, C. D., Ressetar, H. G., Luo, J., et al. Acute stretch promotes endothelial cellproliferation in wounded healing mouse skin. Archives of dermatological research300:495-504,2008.
    52. Scherer, S. S., Pietramaggiori, G., Mathews, J. C., et al. Short periodic applications ofthe vacuum-assisted closure device cause an extended tissue response in the diabeticmouse model. Plast Reconstr Surg124:1458-1465,2009.
    53. Ogawa, R., Mitsuhashi, K., Hyakusoku, H., et al. Postoperative electron-beamirradiation therapy for keloids and hypertrophic scars: retrospective study of147casesfollowed for more than18months. Plast Reconstr Surg111:547-553; discussion554-545,2003.
    54. Akaishi, S., Ogawa, R., Hyakusoku, H. Keloid and hypertrophic scar: neurogenicinflammation hypotheses. Medical hypotheses71:32-38,2008.
    55. Ogawa, R. Keloid and hypertrophic scarring may result from a mechanoreceptor ormechanosensitive nociceptor disorder. Medical hypotheses71:493-500,2008.
    56. Akaishi, S., Akimoto, M., Ogawa, R., et al. The relationship between keloid growthpattern and stretching tension: visual analysis using the finite element method. Annalsof plastic surgery60:445-451,2008.
    57. Gurtner, G. C., Werner, S., Barrandon, Y., et al. Wound repair and regeneration. Nature453:314-321,2008.
    58. Opalenik, S. R., Davidson, J. M. Fibroblast differentiation of bone marrow-derivedcells during wound repair. FASEB journal: official publication of the Federation ofAmerican Societies for Experimental Biology19:1561-1563,2005.
    59. Werner, S., Grose, R. Regulation of wound healing by growth factors and cytokines.Physiological reviews83:835-870,2003.
    60. Werner, S., Krieg, T., Smola, H. Keratinocyte-fibroblast interactions in wound healing.The Journal of investigative dermatology127:998-1008,2007.
    1. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again.FASEB journal: official publication of the Federation of American Societies forExperimental Biology20:811-827,2006.
    2. Jaalouk, D. E., Lammerding, J. Mechanotransduction gone awry. Nature reviews.Molecular cell biology10:63-73,2009.
    3. Chan, M. E., Uzer, G., Rubin, C. T. The Potential Benefits and Inherent Risks ofVibration as a Non-Drug Therapy for the Prevention and Treatment of Osteoporosis.Current osteoporosis reports,2013.
    4. Jacobs, P. L., Burns, P. Acute enhancement of lower-extremity dynamic strength andflexibility with whole-body vibration. Journal of strength and conditioning research/National Strength&Conditioning Association23:51-57,2009.
    5. Slatkovska, L., Alibhai, S. M., Beyene, J., et al. Effect of12months of whole-bodyvibration therapy on bone density and structure in postmenopausal women: arandomized trial. Annals of internal medicine155:668-679, W205,2011.
    6. Ward, K., Alsop, C., Caulton, J., et al. Low magnitude mechanical loading isosteogenic in children with disabling conditions. Journal of bone and mineralresearch: the official journal of the American Society for Bone and Mineral Research19:360-369,2004.
    7. Rittweger, J. Vibration as an exercise modality: how it may work, and what itspotential might be. European journal of applied physiology108:877-904,2010.
    8. Rittweger, J., Schiessl, H., Felsenberg, D. Oxygen uptake during whole-body vibrationexercise: comparison with squatting as a slow voluntary movement. European journalof applied physiology86:169-173,2001.
    9. Xie, L., Jacobson, J. M., Choi, E. S., et al. Low-level mechanical vibrations caninfluence bone resorption and bone formation in the growing skeleton. Bone39:1059-1066,2006.
    10.Rauch, F. Vibration therapy. Developmental medicine and child neurology51Suppl4:166-168,2009.
    11.Rauch, F., Sievanen, H., Boonen, S., et al. Reporting whole-body vibration interventionstudies: recommendations of the International Society of Musculoskeletal andNeuronal Interactions. Journal of musculoskeletal&neuronal interactions10:193-198,2010.
    12.del Pozo-Cruz, B., Hernandez Mocholi, M. A., Adsuar, J. C., et al. Effects of wholebody vibration therapy on main outcome measures for chronic non-specific low backpain: a single-blind randomized controlled trial. Journal of rehabilitation medicine:official journal of the UEMS European Board of Physical and RehabilitationMedicine43:689-694,2011.
    13.Alguacil Diego, I. M., Pedrero Hernandez, C., Molina Rueda, F., et al. Effects ofvibrotherapy on postural control, functionality and fatigue in multiple sclerosispatients. A randomised clinical trial. Neurologia (Barcelona, Spain)27:143-153,2012.
    14.Judex, S., Lei, X., Han, D., et al. Low-magnitude mechanical signals that stimulatebone formation in the ovariectomized rat are dependent on the applied frequency butnot on the strain magnitude. Journal of biomechanics40:1333-1339,2007.
    15.Judex, S., Boyd, S., Qin, Y.-X., et al. Adaptations of Trabecular Bone to LowMagnitude Vibrations Result in More Uniform Stress and Strain Under Load. Annalsof biomedical engineering31:12-20,2003.
    16.Ozcivici, E., Luu, Y. K., Rubin, C. T., et al. Low-level vibrations retain bone marrow'sosteogenic potential and augment recovery of trabecular bone during reambulation.PloS one5: e11178,2010.
    17.Ozcivici, E., Luu, Y. K., Adler, B., et al. Mechanical signals as anabolic agents in bone.Nature reviews. Rheumatology6:50-59,2010.
    18.Garman, R., Gaudette, G., Donahue, L. R., et al. Low-level accelerations applied in theabsence of weight bearing can enhance trabecular bone formation. Journal oforthopaedic research: official publication of the Orthopaedic Research Society25:732-740,2007.
    19.Titze, I. R., Hitchcock, R. W., Broadhead, K., et al. Design and validation of abioreactor for engineering vocal fold tissues under combined tensile and vibrationalstresses. Journal of biomechanics37:1521-1529,2004.
    20.Kutty, J. K., Webb, K. Vibration stimulates vocal mucosa-like matrix expression byhydrogel-encapsulated fibroblasts. Journal of tissue engineering and regenerativemedicine4:62-72,2010.
    21.Hardy, K., Spanos, S. Growth factor expression and function in the human and mousepreimplantation embryo. The Journal of endocrinology172:221-236,2002.
    22.Muglia, U., Motta, P. M. A new morpho-functional classification of the Fallopian tubebased on its three-dimensional myoarchitecture. Histology and histopathology16:227-237,2001.
    23.Figueroa, A., Vicil, F., Sanchez-Gonzalez, M. A. Acute exercise with whole-bodyvibration decreases wave reflection and leg arterial stiffness. American journal ofcardiovascular disease1:60-67,2011.
    24.Figueroa, A., Gil, R., Wong, A., et al. Whole-body vibration training reduces arterialstiffness, blood pressure and sympathovagal balance in young overweight/obesewomen. Hypertension research: official journal of the Japanese Society ofHypertension35:667-672,2012.
    25.Figueroa, A., Gil, R., Sanchez-Gonzalez, M. A. Whole-body vibration attenuates theincrease in leg arterial stiffness and aortic systolic blood pressure during post-exercisemuscle ischemia. European journal of applied physiology111:1261-1268,2011.
    26.Rittweger, J., Ehrig, J., Just, K., et al. Oxygen uptake in whole-body vibration exercise:influence of vibration frequency, amplitude, and external load. International journalof sports medicine23:428-432,2002.
    27.Rubin, C. T., Capilla, E., Luu, Y. K., et al. Adipogenesis is inhibited by brief, dailyexposure to high-frequency, extremely low-magnitude mechanical signals.Proceedings of the National Academy of Sciences of the United States of America104:17879-17884,2007.
    28.Sen, B., Xie, Z., Case, N., et al. Mechanical signal influence on mesenchymal stem cellfate is enhanced by incorporation of refractory periods into the loading regimen.Journal of biomechanics44:593-599,2011.
    29.Luu, Y. K., Capilla, E., Rosen, C. J., et al. Mechanical stimulation of mesenchymalstem cell proliferation and differentiation promotes osteogenesis while preventingdietary-induced obesity. Journal of bone and mineral research: the official journal ofthe American Society for Bone and Mineral Research24:50-61,2009.
    30.Nakagami, G., Sanada, H., Matsui, N., et al. Effect of vibration on skin blood flow inan in vivo microcirculatory model. Bioscience trends1:161-166,2007.
    31.Ichioka, S., Yokogawa, H., Nakagami, G., et al. In vivo analysis of skinmicrocirculation and the role of nitric oxide during vibration. Ostomy/woundmanagement57:40-47,2011.
    32.van Nes, I. J., Latour, H., Schils, F., et al. Long-term effects of6-week whole-bodyvibration on balance recovery and activities of daily living in the postacute phase ofstroke: a randomized, controlled trial. Stroke; a journal of cerebral circulation37:2331-2335,2006.
    33.Ebersbach, G., Edler, D., Kaufhold, O., et al. Whole body vibration versusconventional physiotherapy to improve balance and gait in Parkinson's disease.Archives of physical medicine and rehabilitation89:399-403,2008.
    34.Gusi, N., Raimundo, A., Leal, A. Low-frequency vibratory exercise reduces the risk ofbone fracture more than walking: a randomized controlled trial. BMC musculoskeletaldisorders7:92,2006.
    35.Ruan, X. Y., Jin, F. Y., Liu, Y. L., et al. Effects of vibration therapy on bone mineraldensity in postmenopausal women with osteoporosis. Chinese medical journal121:1155-1158,2008.
    36.Semler, O., Fricke, O., Vezyroglou, K., et al. Results of a prospective pilot trial onmobility after whole body vibration in children and adolescents with osteogenesisimperfecta. Clinical rehabilitation22:387-394,2008.
    37.Bemben, D. A., Palmer, I. J., Bemben, M. G., et al. Effects of combined whole-bodyvibration and resistance training on muscular strength and bone metabolism inpostmenopausal women. Bone47:650-656,2010.
    38.Verschueren, S. M., Roelants, M., Delecluse, C., et al. Effect of6-month whole bodyvibration training on hip density, muscle strength, and postural control inpostmenopausal women: a randomized controlled pilot study. Journal of bone andmineral research: the official journal of the American Society for Bone and MineralResearch19:352-359,2004.
    39.von Stengel, S., Kemmler, W., Engelke, K., et al. Effects of whole body vibration onbone mineral density and falls: results of the randomized controlled ELVIS study withpostmenopausal women. Osteoporosis international: a journal established as resultof cooperation between the European Foundation for Osteoporosis and the NationalOsteoporosis Foundation of the USA22:317-325,2011.
    40.Rubin, C., Recker, R., Cullen, D., et al. Prevention of postmenopausal bone loss by alow-magnitude, high-frequency mechanical stimuli: a clinical trial assessingcompliance, efficacy, and safety. Journal of bone and mineral research: the officialjournal of the American Society for Bone and Mineral Research19:343-351,2004.
    41.Russo, C. R., Lauretani, F., Bandinelli, S., et al. High-frequency vibration trainingincreases muscle power in postmenopausal women. Archives of physical medicine andrehabilitation84:1854-1857,2003.
    42.Iwamoto, J., Takeda, T., Sato, Y., et al. Effect of whole-body vibration exercise onlumbar bone mineral density, bone turnover, and chronic back pain inpost-menopausal osteoporotic women treated with alendronate. Aging clinical andexperimental research17:157-163,2005.
    43.Gilsanz, V., Wren, T. A., Sanchez, M., et al. Low-level, high-frequency mechanicalsignals enhance musculoskeletal development of young women with low BMD.Journal of bone and mineral research: the official journal of the American Society forBone and Mineral Research21:1464-1474,2006.
    44.Ezenwa, B., Burns, E., Wilson, C. Multiple vibration intensities and frequencies forbone mineral density improvement. Conference proceedings:... Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society. IEEEEngineering in Medicine and Biology Society. Conference2008:4186-4189,2008.
    45.Lau, E., Al-Dujaili, S., Guenther, A., et al. Effect of low-magnitude, high-frequencyvibration on osteocytes in the regulation of osteoclasts. Bone46:1508-1515,2010.
    1. Chien, S., Li, S., Shiu, Y. T., et al. Molecular basis of mechanical modulation ofendothelial cell migration. Frontiers in bioscience: a journal and virtual library10:1985-2000,2005.
    2. Wrighton, K. H. Cell migration: the mechanics of group travel. Nature reviews.Molecular cell biology13:753,2012.
    3. Ridley, A. J. Rho GTPases and cell migration. Journal of cell science114:2713-2722,2001.
    4. Villalonga, P., Ridley, A. J. Rho GTPases and cell cycle control. Growth factors (Chur,Switzerland)24:159-164,2006.
    5. Friedl, P., Sahai, E., Weiss, S., et al. New dimensions in cell migration. Nature reviews.Molecular cell biology13:743-747,2012.
    6. Heasman, S. J., Ridley, A. J. Mammalian Rho GTPases: new insights into theirfunctions from in vivo studies. Nature reviews. Molecular cell biology9:690-701,2008.
    7. Stengel, K., Zheng, Y. Cdc42in oncogenic transformation, invasion, and tumorigenesis.Cellular signalling23:1415-1423,2011.
    8. Cain, R. J., Ridley, A. J. Phosphoinositide3-kinases in cell migration. Biology of thecell/under the auspices of the European Cell Biology Organization101:13-29,2009.
    9. Niggli, V. Signaling to migration in neutrophils: importance of localized pathways. Theinternational journal of biochemistry&cell biology35:1619-1638,2003.
    10. Chung, C. Y., Funamoto, S., Firtel, R. A. Signaling pathways controlling cell polarityand chemotaxis. Trends in biochemical sciences26:557-566,2001.
    11. Dorrance, A. M., De Vita, S., Radu, M., et al. The Rac GTPase effector p21-activatedkinase is essential for hematopoietic stem/progenitor cell migration and engraftment.Blood121:2474-2482,2013.
    12. Li, J., Johnson, S. E. Ephrin-A5promotes bovine muscle progenitor cell migrationbefore mitotic activation. Journal of animal science91:1086-1093,2013.
    13. Courtneidge, S. A. Cell migration and invasion in human disease: the Tks adaptorproteins. Biochemical Society transactions40:129-132,2012.
    14. Le, X. F., Bast, R. C., Jr. Src family kinases and paclitaxel sensitivity. Cancer biology&therapy12:260-269,2011.
    15. Serrels, A., Canel, M., Brunton, V. G., et al. Src/FAK-mediated regulation ofE-cadherin as a mechanism for controlling collective cell movement: insights from invivo imaging. Cell adhesion&migration5:360-365,2011.
    16. Franchini, K. G. Focal adhesion kinase--the basis of local hypertrophic signalingdomains. Journal of molecular and cellular cardiology52:485-492,2012.
    17. Kichina, J. V., Goc, A., Al-Husein, B., et al. PAK1as a therapeutic target. Expertopinion on therapeutic targets14:703-725,2010.
    18. Whale, A., Hashim, F. N., Fram, S., et al. Signalling to cancer cell invasion throughPAK family kinases. Frontiers in bioscience: a journal and virtual library16:849-864,2011.
    19. Chan, P. M., Manser, E. PAKs in human disease. Progress in molecular biology andtranslational science106:171-187,2012.
    20. Gurtner, G. C., Werner, S., Barrandon, Y., et al. Wound repair and regeneration. Nature453:314-321,2008.
    21. Opalenik, S. R., Davidson, J. M. Fibroblast differentiation of bone marrow-derivedcells during wound repair. FASEB journal: official publication of the Federation ofAmerican Societies for Experimental Biology19:1561-1563,2005.
    22. Werner, S., Grose, R. Regulation of wound healing by growth factors and cytokines.Physiological reviews83:835-870,2003.
    23. Werner, S., Krieg, T., Smola, H. Keratinocyte-fibroblast interactions in wound healing.The Journal of investigative dermatology127:998-1008,2007.
    24. Ando, J., Nomura, H., Kamiya, A. The effect of fluid shear stress on the migration andproliferation of cultured endothelial cells. Microvascular research33:62-70,1987.
    25. Albuquerque, M. L., Waters, C. M., Savla, U., et al. Shear stress enhances humanendothelial cell wound closure in vitro. American journal of physiology. Heart andcirculatory physiology279: H293-302,2000.
    26. Wechezak, A. R., Viggers, R. F., Sauvage, L. R. Fibronectin and F-actin redistributionin cultured endothelial cells exposed to shear stress. Laboratory investigation; ajournal of technical methods and pathology53:639-647,1985.
    27. DiPaolo, B. C., Lenormand, G., Fredberg, J. J., et al. Stretch magnitude andfrequency-dependent actin cytoskeleton remodeling in alveolar epithelia. Americanjournal of physiology. Cell physiology299: C345-353,2010.
    28. Hsu, P. P., Li, S., Li, Y. S., et al. Effects of flow patterns on endothelial cell migrationinto a zone of mechanical denudation. Biochemical and biophysical researchcommunications285:751-759,2001.
    29. Tardy, Y., Resnick, N., Nagel, T., et al. Shear stress gradients remodel endothelialmonolayers in vitro via a cell proliferation-migration-loss cycle. Arteriosclerosis,thrombosis, and vascular biology17:3102-3106,1997.
    30. Gille, J., Swerlick, R. A. Integrins: role in cell adhesion and communication. Annals ofthe NewYork Academy of Sciences797:93-106,1996.
    31. Brown, N. H., Gregory, S. L., Martin-Bermudo, M. D. Integrins as mediators ofmorphogenesis in Drosophila. Developmental biology223:1-16,2000.
    32. Huveneers, S., Danen, E. H. Adhesion signaling-crosstalk between integrins, Src andRho. Journal of cell science122:1059-1069,2009.
    33. Danen, E. H., van Rheenen, J., Franken, W., et al. Integrins control motile strategythrough a Rho-cofilin pathway. The Journal of cell biology169:515-526,2005.
    34. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., et al. Microtubule growthactivates Rac1to promote lamellipodial protrusion in fibroblasts. Nature cell biology1:45-50,1999.
    35. Carlier, M. F., Wiesner, S., Le Clainche, C., et al. Actin-based motility as aself-organized system: mechanism and reconstitution in vitro. Comptes rendusbiologies326:161-170,2003.
    36. Ono, S., Mohri, K., Ono, K. Microscopic evidence that actin-interacting protein1actively disassembles actin-depolymerizing factor/Cofilin-bound actin filaments. TheJournal of biological chemistry279:14207-14212,2004.
    37. Mohri, K., Ono, K., Yu, R., et al. Enhancement of actin-depolymerizingfactor/cofilin-dependent actin disassembly by actin-interacting protein1is required fororganized actin filament assembly in the Caenorhabditis elegans body wall muscle.Molecular biology of the cell17:2190-2199,2006.
    38. Elbaum, M., Chausovsky, A., Levy, E. T., et al. Microtubule involvement in regulatingcell contractility and adhesion-dependent signalling: a possible mechanism forpolarization of cell motility. Biochemical Society symposium65:147-172,1999.
    39. Nabi, I. R. The polarization of the motile cell. Journal of cell science112(Pt12):1803-1811,1999.
    40. Etienne-Manneville, S. Actin and microtubules in cell motility: which one is in control?Traffic (Copenhagen, Denmark)5:470-477,2004.
    41. Watanabe, T., Noritake, J., Kaibuchi, K. Regulation of microtubules in cell migration.Trends in cell biology15:76-83,2005.
    42. Gilmore, A. P., Romer, L. H. Inhibition of focal adhesion kinase (FAK) signaling infocal adhesions decreases cell motility and proliferation. Molecular biology of the cell7:1209-1224,1996.
    43. Ilic, D., Furuta, Y., Kanazawa, S., et al. Reduced cell motility and enhanced focaladhesion contact formation in cells from FAK-deficient mice. Nature377:539-544,1995.
    44. Gu, J., Tamura, M., Pankov, R., et al. Shc and FAK differentially regulate cell motilityand directionality modulated by PTEN. The Journal of cell biology146:389-403,1999.
    45. Wang, H. B., Dembo, M., Hanks, S. K., et al. Focal adhesion kinase is involved inmechanosensing during fibroblast migration. Proceedings of the National Academy ofSciences of the United States of America98:11295-11300,2001.
    46. Li, S., Kim, M., Hu, Y. L., et al. Fluid shear stress activation of focal adhesion kinase.Linking to mitogen-activated protein kinases. The Journal of biological chemistry272:30455-30462,1997.
    47. Mengistu, M., Brotzman, H., Ghadiali, S., et al. Fluid shear stress-induced JNKactivity leads to actin remodeling for cell alignment. Journal of cellular physiology226:110-121,2011.
    48. Infusino, G. A., Jacobson, J. R. Endothelial FAK as a therapeutic target in disease.Microvascular research83:89-96,2012.
    49. Kiosses, W. B., Shattil, S. J., Pampori, N., et al. Rac recruits high-affinity integrinalphavbeta3to lamellipodia in endothelial cell migration. Nature cell biology3:316-320,2001.
    50. Parri, M., Chiarugi, P. Rac and Rho GTPases in cancer cell motility control. Cellcommunication and signaling: CCS8:23,2010.
    51. Wertheimer, E., Gutierrez-Uzquiza, A., Rosemblit, C., et al. Rac signaling in breastcancer: a tale of GEFs and GAPs. Cellular signalling24:353-362,2012.
    52. Vicente-Manzanares, M., Choi, C. K., Horwitz, A. R. Integrins in cell migration--theactin connection. Journal of cell science122:199-206,2009.
    53. Lim, C. J., Kain, K. H., Tkachenko, E., et al. Integrin-mediated protein kinase Aactivation at the leading edge of migrating cells. Molecular biology of the cell19:4930-4941,2008.
    54. Satoh, S., Tominaga, T. mDia-interacting protein acts downstream of Rho-mDia andmodifies Src activation and stress fiber formation. The Journal of biological chemistry276:39290-39294,2001.
    55. Hudson, B. I., Kalea, A. Z., Del Mar Arriero, M., et al. Interaction of the RAGEcytoplasmic domain with diaphanous-1is required for ligand-stimulated cellularmigration through activation of Rac1and Cdc42. The Journal of biological chemistry283:34457-34468,2008.
    56. Copeland, J. W., Treisman, R. The diaphanous-related formin mDia1controls serumresponse factor activity through its effects on actin polymerization. Molecular biologyof the cell13:4088-4099,2002.
    57. Wyse, M. M., Lei, J., Nestor-Kalinoski, A. L., et al. Dia-interacting protein (DIP)imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensionalmatrices. PloS one7: e45085,2012.
    58. Alexander, J. S., Elrod, J. W. Extracellular matrix, junctional integrity and matrixmetalloproteinase interactions in endothelial permeability regulation. Journal ofanatomy200:561-574,2002.
    59. Firth, J. A. Endothelial barriers: from hypothetical pores to membrane proteins.Journal of anatomy200:541-548,2002.
    60. Benlimame, N., Le, P. U., Nabi, I. R. Localization of autocrine motility factor receptorto caveolae and clathrin-independent internalization of its ligand to smoothendoplasmic reticulum. Molecular biology of the cell9:1773-1786,1998.
    61. Liang, C. C., Park, A. Y., Guan, J. L. In vitro scratch assay: a convenient andinexpensive method for analysis of cell migration in vitro. Nature protocols2:329-333,2007.
    1. Horiuchi, R., Akimoto, T., Hong, Z., et al. Cyclic mechanical strain maintains Nanogexpression through PI3K/Akt signaling in mouse embryonic stem cells. Experimentalcell research318:1726-1732,2012.
    2. Shimizu, N., Yamamoto, K., Obi, S., et al. Cyclic strain induces mouse embryonic stemcell differentiation into vascular smooth muscle cells by activating PDGF receptor β.Journal of Applied Physiology104:766-772,2008.
    3. Chapman, G. B., Durante, W., Hellums, J. D., et al. Physiological cyclic stretch causescell cycle arrest in cultured vascular smooth muscle cells. American journal ofphysiology. Heart and circulatory physiology278: H748-754,2000.
    4. Maul, T. M., Chew, D. W., Nieponice, A., et al. Mechanical stimuli differentiallycontrol stem cell behavior: morphology, proliferation, and differentiation.Biomechanics and modeling in mechanobiology10:939-953,2011.
    5. Ghazanfari, S., Tafazzoli-Shadpour, M., Shokrgozar, M. A. Effects of cyclic stretch onproliferation of mesenchymal stem cells and their differentiation to smooth musclecells. Biochemical and biophysical research communications388:601-605,2009.
    6. Liu, M., Skinner, S. J., Xu, J., et al. Stimulation of fetal rat lung cell proliferation invitro by mechanical stretch. The American journal of physiology263: L376-383,1992.
    7. Liu, M., Xu, J., Tanswell, A. K., et al. Stretch-induced growth-promoting activitiesstimulate fetal rat lung epithelial cell proliferation. Experimental lung research19:505-517,1993.
    8. Predel, H. G., Yang, Z., von Segesser, L., et al. Implications of pulsatile stretch ongrowth of saphenous vein and mammary artery smooth muscle. Lancet340:878-879,1992.
    9. Yang, Z., Oemar, B. S., Carrel, T., et al. Different proliferative properties of smoothmuscle cells of human arterial and venous bypass vessels: role of PDGF receptors,mitogen-activated protein kinase, and cyclin-dependent kinase inhibitors. Circulation97:181-187,1998.
    10. Zhang, P., Wu, Y., Jiang, Z., et al. Osteogenic response of mesenchymal stem cells tocontinuous mechanical strain is dependent on ERK1/2-Runx2signaling. Internationaljournal of molecular medicine29:1083-1089,2012.
    11. Ozcivici, E., Luu, Y. K., Rubin, C. T., et al. Low-level vibrations retain bone marrow'sosteogenic potential and augment recovery of trabecular bone during reambulation.PloS one5: e11178,2010.
    12. Erba, P., Ogawa, R., Ackermann, M., et al. Angiogenesis in wounds treated bymicrodeformational wound therapy. Annals of surgery253:402-409,2011.
    13. Greene, A. K., Puder, M., Roy, R., et al. Microdeformational wound therapy: effects onangiogenesis and matrix metalloproteinases in chronic wounds of3debilitated patients.Annals of plastic surgery56:418-422,2006.
    14. Kurpinski, K., Chu, J., Hashi, C., et al. Anisotropic mechanosensing by mesenchymalstem cells. Proceedings of the National Academy of Sciences of the United States ofAmerica103:16095-16100,2006.
    15. Guidolin, D., Vacca, A., Nussdorfer, G. G., et al. A new image analysis method basedon topological and fractal parameters to evaluate the angiostatic activity of docetaxelby using the Matrigel assay in vitro. Microvascular research67:117-124,2004.
    16. Sandri, C., Caccavari, F., Valdembri, D., et al. The R-Ras/RIN2/Rab5complex controlsendothelial cell adhesion and morphogenesis via active integrin endocytosis and Racsignaling. Cell research22:1479-1501,2012.
    17. Chen, B., Kemkemer, R., Deibler, M., et al. Cyclic stretch induces cell reorientation onsubstrates by destabilizing catch bonds in focal adhesions. PloS one7: e48346,2012.
    18. Kaunas, R., Usami, S., Chien, S. Regulation of stretch-induced JNK activation bystress fiber orientation. Cellular signalling18:1924-1931,2006.
    19. Rubin, C. T., Capilla, E., Luu, Y. K., et al. Adipogenesis is inhibited by brief, dailyexposure to high-frequency, extremely low-magnitude mechanical signals.Proceedings of the National Academy of Sciences of the United States of America104:17879-17884,2007.
    20. Kaspar, D., Seidl, W., Neidlinger-Wilke, C., et al. Proliferation of human-derivedosteoblast-like cells depends on the cycle number and frequency of uniaxial strain.Journal of biomechanics35:873-880,2002.
    1. Shimizu, N., Yamamoto, K., Obi, S., et al. Cyclic strain induces mouse embryonic stemcell differentiation into vascular smooth muscle cells by activating PDGF receptor β.Journal of Applied Physiology104:766-772,2008.
    2. Petersen, A., Joly, P., Bergmann, C., et al. The impact of substrate stiffness andmechanical loading on fibroblast-induced scaffold remodeling. Tissue engineering. PartA18:1804-1817,2012.
    3. Endo, T., Bryant, S. V., Gardiner, D. M. Astepwise model system for limb regeneration.Developmental biology270:135-145,2004.
    4. Quintana, L., Muinos, T. F., Genove, E., et al. Early tissue patterning recreated bymouse embryonic fibroblasts in a three-dimensional environment. Tissue engineering.Part A15:45-54,2009.
    5. Bott, K., Upton, Z., Schrobback, K., et al. The effect of matrix characteristics onfibroblast proliferation in3D gels. Biomaterials31:8454-8464,2010.
    6. John, J., Quinlan, A. T., Silvestri, C., et al. Boundary stiffness regulates fibroblastbehavior in collagen gels. Annals of biomedical engineering38:658-673,2010.
    7. Engler, A. J., Sen, S., Sweeney, H. L., et al. Matrix elasticity directs stem cell lineagespecification. Cell126:677-689,2006.
    8. Eisenberg, J. L., Safi, A., Wei, X., et al. Substrate stiffness regulates extracellular matrixdeposition by alveolar epithelial cells. Research and reports in biology2011:1-12,2011.
    9. Kurpinski, K., Park, J., Thakar, R. G., et al. Regulation of vascular smooth muscle cellsand mesenchymal stem cells by mechanical strain. Molecular&cellular biomechanics:MCB3:21-34,2006.
    10. Kelly, D. J., Prendergast, P. J. Mechano-regulation of stem cell differentiation and tissueregeneration in osteochondral defects. Journal of biomechanics38:1413-1422,2005.
    11. Ingber, D. E. Tensegrity-based mechanosensing from macro to micro. Progress inbiophysics and molecular biology97:163-179,2008.
    12. Altman, G. H., Horan, R. L., Martin, I., et al. Cell differentiation by mechanical stress.FASEB journal: official publication of the Federation of American Societies forExperimental Biology16:270-272,2002.
    13. Lee, D. A., Knight, M. M., Campbell, J. J., et al. Stem cell mechanobiology. Journal ofcellular biochemistry112:1-9,2011.
    14. Potier, E., Noailly, J., Ito, K. Directing bone marrow-derived stromal cell function withmechanics. Journal of biomechanics43:807-817,2010.
    15. Williams, R. L., Hilton, D. J., Pease, S., et al. Myeloid leukaemia inhibitory factormaintains the developmental potential of embryonic stem cells. Nature336:684-687,1988.
    16. Chambers, I., Colby, D., Robertson, M., et al. Functional expression cloning of Nanog,a pluripotency sustaining factor in embryonic stem cells. Cell113:643-655,2003.
    17. Mitsui, K., Tokuzawa, Y., Itoh, H., et al. The homeoprotein Nanog is required formaintenance of pluripotency in mouse epiblast and ES cells. Cell113:631-642,2003.
    18. Horiuchi, R., Akimoto, T., Hong, Z., et al. Cyclic mechanical strain maintains Nanogexpression through PI3K/Akt signaling in mouse embryonic stem cells. Experimentalcell research318:1726-1732,2012.
    19. Saha, S., Ji, L., de Pablo, J. J., et al. TGFbeta/Activin/Nodal pathway in inhibition ofhuman embryonic stem cell differentiation by mechanical strain. Biophysical journal94:4123-4133,2008.
    20. Saha, S., Ji, L., de Pablo, J. J., et al. Inhibition of human embryonic stem celldifferentiation by mechanical strain. Journal of cellular physiology206:126-137,2006.
    21. Akimoto, T., Ushida, T., Miyaki, S., et al. Mechanical stretch inhibitsmyoblast-to-adipocyte differentiation through Wnt signaling. Biochemical andbiophysical research communications329:381-385,2005.
    22. Takahashi, K., Murakami, M., Yamanaka, S. Role of the phosphoinositide3-kinasepathway in mouse embryonic stem (ES) cells. Biochemical Society transactions33:1522-1525,2005.
    23. Watanabe, S., Umehara, H., Murayama, K., et al. Activation of Akt signaling issufficient to maintain pluripotency in mouse and primate embryonic stem cells.Oncogene25:2697-2707,2006.
    24. Ghazanfari, S., Tafazzoli-Shadpour, M., Shokrgozar, M. A. Effects of cyclic stretch onproliferation of mesenchymal stem cells and their differentiation to smooth muscle cells.Biochemical and biophysical research communications388:601-605,2009.
    25. Rubin, C. T., Capilla, E., Luu, Y. K., et al. Adipogenesis is inhibited by brief, dailyexposure to high-frequency, extremely low-magnitude mechanical signals. Proceedingsof the National Academy of Sciences of the United States of America104:17879-17884,2007.
    1. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again.FASEB journal: official publication of the Federation of American Societies forExperimental Biology20:811-827,2006.
    2. Jaalouk, D. E., Lammerding, J. Mechanotransduction gone awry. Nature reviews.Molecular cell biology10:63-73,2009.
    3. Chan, M. E., Uzer, G., Rubin, C. T. The Potential Benefits and Inherent Risks ofVibration as a Non-Drug Therapy for the Prevention and Treatment of Osteoporosis.Current osteoporosis reports,2013.
    4. Pellegrini, M. J., Lythgo, N. D., Morgan, D. L., et al. Voluntary activation of the ankleplantar flexors following whole-body vibration. European journal of appliedphysiology108:927-934,2010.
    5. Jacobs, P. L., Burns, P. Acute enhancement of lower-extremity dynamic strength andflexibility with whole-body vibration. Journal of strength and conditioning research/National Strength&Conditioning Association23:51-57,2009.
    6. Rauch, F. Vibration therapy. Developmental medicine and child neurology51Suppl4:166-168,2009.
    7. Rauch, F., Sievanen, H., Boonen, S., et al. Reporting whole-body vibration interventionstudies: recommendations of the International Society of Musculoskeletal and NeuronalInteractions. Journal of musculoskeletal&neuronal interactions10:193-198,2010.
    8. Judex, S., Lei, X., Han, D., et al. Low-magnitude mechanical signals that stimulatebone formation in the ovariectomized rat are dependent on the applied frequency butnot on the strain magnitude. Journal of biomechanics40:1333-1339,2007.
    9. Judex, S., Boyd, S., Qin, Y.-X., et al. Adaptations of Trabecular Bone to LowMagnitude Vibrations Result in More Uniform Stress and Strain Under Load. Annals ofbiomedical engineering31:12-20,2003.
    10. Ozcivici, E., Luu, Y. K., Rubin, C. T., et al. Low-level vibrations retain bone marrow'sosteogenic potential and augment recovery of trabecular bone during reambulation.PloS one5: e11178,2010.
    11. Ozcivici, E., Luu, Y. K., Adler, B., et al. Mechanical signals as anabolic agents in bone.Nature reviews. Rheumatology6:50-59,2010.
    12. Garman, R., Gaudette, G., Donahue, L. R., et al. Low-level accelerations applied in theabsence of weight bearing can enhance trabecular bone formation. Journal oforthopaedic research: official publication of the Orthopaedic Research Society25:732-740,2007.
    13. Hardy, K., Spanos, S. Growth factor expression and function in the human and mousepreimplantation embryo. The Journal of endocrinology172:221-236,2002.
    14. Muglia, U., Motta, P. M. A new morpho-functional classification of the Fallopian tubebased on its three-dimensional myoarchitecture. Histology and histopathology16:227-237,2001.
    15. del Pozo-Cruz, B., Hernandez Mocholi, M. A., Adsuar, J. C., et al. Effects of wholebody vibration therapy on main outcome measures for chronic non-specific low backpain: a single-blind randomized controlled trial. Journal of rehabilitation medicine:official journal of the UEMS European Board of Physical and Rehabilitation Medicine43:689-694,2011.
    16. Alguacil Diego, I. M., Pedrero Hernandez, C., Molina Rueda, F., et al. Effects ofvibrotherapy on postural control, functionality and fatigue in multiple sclerosis patients.Arandomised clinical trial. Neurologia (Barcelona, Spain)27:143-153,2012.
    17. Wang, J. H., Thampatty, B. P. An introductory review of cell mechanobiology.Biomechanics and modeling in mechanobiology5:1-16,2006.
    18. Wolchok, J. C., Brokopp, C., Underwood, C. J., et al. The effect of bioreactor inducedvibrational stimulation on extracellular matrix production from human derivedfibroblasts. Biomaterials30:327-335,2009.
    19. Figueroa, A., Vicil, F., Sanchez-Gonzalez, M. A. Acute exercise with whole-bodyvibration decreases wave reflection and leg arterial stiffness. American journal ofcardiovascular disease1:60-67,2011.
    20. Figueroa, A., Gil, R., Wong, A., et al. Whole-body vibration training reduces arterialstiffness, blood pressure and sympathovagal balance in young overweight/obese women.Hypertension research: official journal of the Japanese Society of Hypertension35:667-672,2012.
    21. Figueroa, A., Gil, R., Sanchez-Gonzalez, M. A. Whole-body vibration attenuates theincrease in leg arterial stiffness and aortic systolic blood pressure during post-exercisemuscle ischemia. European journal of applied physiology111:1261-1268,2011.
    22. Rittweger, J., Schiessl, H., Felsenberg, D. Oxygen uptake during whole-body vibrationexercise: comparison with squatting as a slow voluntary movement. European journalof applied physiology86:169-173,2001.
    23. Rittweger, J., Ehrig, J., Just, K., et al. Oxygen uptake in whole-body vibration exercise:influence of vibration frequency, amplitude, and external load. International journal ofsports medicine23:428-432,2002.
    24. Rittweger, J. Vibration as an exercise modality: how it may work, and what its potentialmight be. European journal of applied physiology108:877-904,2010.
    25. Rubin, C. T., Capilla, E., Luu, Y. K., et al. Adipogenesis is inhibited by brief, dailyexposure to high-frequency, extremely low-magnitude mechanical signals. Proceedingsof the National Academy of Sciences of the United States of America104:17879-17884,2007.
    26. Sen, B., Xie, Z., Case, N., et al. Mechanical signal influence on mesenchymal stem cellfate is enhanced by incorporation of refractory periods into the loading regimen.Journal of biomechanics44:593-599,2011.
    27. Luu, Y. K., Capilla, E., Rosen, C. J., et al. Mechanical stimulation of mesenchymalstem cell proliferation and differentiation promotes osteogenesis while preventingdietary-induced obesity. Journal of bone and mineral research: the official journal ofthe American Society for Bone and Mineral Research24:50-61,2009.
    28. Nakagami, G., Sanada, H., Matsui, N., et al. Effect of vibration on skin blood flow in anin vivo microcirculatory model. Bioscience trends1:161-166,2007.
    29. Ichioka, S., Yokogawa, H., Nakagami, G., et al. In vivo analysis of skinmicrocirculation and the role of nitric oxide during vibration. Ostomy/woundmanagement57:40-47,2011.
    30. van Nes, I. J., Latour, H., Schils, F., et al. Long-term effects of6-week whole-bodyvibration on balance recovery and activities of daily living in the postacute phase ofstroke: a randomized, controlled trial. Stroke; a journal of cerebral circulation37:2331-2335,2006.
    31. Ebersbach, G., Edler, D., Kaufhold, O., et al. Whole body vibration versus conventionalphysiotherapy to improve balance and gait in Parkinson's disease. Archives of physicalmedicine and rehabilitation89:399-403,2008.
    32. Frost, H. M. Bone "mass" and the "mechanostat": a proposal. The Anatomical record219:1-9,1987.
    33. Lang, T., LeBlanc, A., Evans, H., et al. Cortical and trabecular bone mineral loss fromthe spine and hip in long-duration spaceflight. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research19:1006-1012,2004.
    34. Sen, B., Xie, Z., Case, N., et al. Mechanical strain inhibits adipogenesis inmesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology149:6065-6075,2008.
    35. Lubomira Slatkovska, S. M. H. A., Joseph Beyene, Hanxian Hu,Alice Demaras, AngelaM. Cheung. Effect of12months of whole-body vibration therapy on bone density andstructure in postmenopausal women a randomized trial.2011.
    36. Slatkovska, L., Alibhai, S. M., Beyene, J., et al. Effect of12months of whole-bodyvibration therapy on bone density and structure in postmenopausal women: arandomized trial. Annals of internal medicine155:668-679, W205,2011.
    37. Ward, K., Alsop, C., Caulton, J., et al. Low magnitude mechanical loading is osteogenicin children with disabling conditions. Journal of bone and mineral research: theofficial journal of the American Society for Bone and Mineral Research19:360-369,2004.
    38. Xie, L., Jacobson, J. M., Choi, E. S., et al. Low-level mechanical vibrations caninfluence bone resorption and bone formation in the growing skeleton. Bone39:1059-1066,2006.
    39. Pre, D., Ceccarelli, G., Gastaldi, G., et al. The differentiation of human adipose-derivedstem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequencyvibration treatment. Bone49:295-303,2011.
    40. Tirkkonen, L., Halonen, H., Hyttinen, J., et al. The effects of vibration loading onadipose stem cell number, viability and differentiation towards bone-forming cells.Journal of the Royal Society, Interface/the Royal Society8:1736-1747,2011.
    41. Fritton, J. C., Rubin, C. T., Qin, Y. X., et al. Whole-body vibration in the skeleton:development of a resonance-based testing device. Annals of biomedical engineering25:831-839,1997.
    42. Green, D. E., Adler, B. J., Chan, M. E., et al. Devastation of adult stem cell pools byirradiation precedes collapse of trabecular bone quality and quantity. Journal of boneand mineral research: the official journal of the American Society for Bone andMineral Research27:749-759,2012.
    43. Lanyon, L. E., Rubin, C. T. Static vs dynamic loads as an influence on boneremodelling. Journal of biomechanics17:897-905,1984.
    44. Rubin, S. J. a. C. T. Is bone formation induced by high-frequency mechanical signalsmodulated by muscle activity.2010.
    45. Jones, H. H., Priest, J. D., Hayes, W. C., et al. Humeral hypertrophy in response toexercise. The Journal of bone and joint surgery. American volume59:204-208,1977.
    46. Andrea Wysocki, M. B., Tatyana Shamliyan, Robert L. Kane. Whole-Body VibrationTherapy for Osteoporosis State of the Science.2011.
    47. Rizzoli, R., Bianchi, M. L., Garabedian, M., et al. Maximizing bone mineral mass gainduring growth for the prevention of fractures in the adolescents and the elderly. Bone46:294-305,2010.
    48. Titze, I. R. On the relation between subglottal pressure and fundamental frequency inphonation. The Journal of the Acoustical Society of America85:901-906,1989.
    49. Cox, K. A., Alipour, F., Titze, I. R. Geometric structure of the human and caninecricothyroid and thyroarytenoid muscles for biomechanical applications. The Annals ofotology, rhinology, and laryngology108:1151-1158,1999.
    50. Titze, I. R., Hitchcock, R. W., Broadhead, K., et al. Design and validation of abioreactor for engineering vocal fold tissues under combined tensile and vibrationalstresses. Journal of biomechanics37:1521-1529,2004.
    51. Roddy, K. A., Kelly, G. M., van Es, M. H., et al. Dynamic patterns of mechanicalstimulation co-localise with growth and cell proliferation during morphogenesis in theavian embryonic knee joint. Journal of biomechanics44:143-149,2011.
    52. Gaston, J., Quinchia Rios, B., Bartlett, R., et al. The response of vocal fold fibroblastsand mesenchymal stromal cells to vibration. PloS one7: e30965,2012.
    53. Joel Gaston, B. Q. R., Rebecca Bartlett, Craig Berchtold, Susan L. Thibeault. TheResponse of Vocal Fold Fibroblasts and Mesenchymal Stromal Cells to Vibration. PloSone7:8,2012.
    54. Laboureau, J., Dubertret, L., Lebreton-De Coster, C., et al. ERK activation bymechanical strain is regulated by the small G proteins rac-1and rhoA. Experimentaldermatology13:70-77,2004.
    55. Kutty, J. K., Webb, K. Vibration stimulates vocal mucosa-like matrix expression byhydrogel-encapsulated fibroblasts. Journal of tissue engineering and regenerativemedicine4:62-72,2010.
    56. Katsumi, A., Milanini, J., Kiosses, W. B., et al. Effects of cell tension on the smallGTPase Rac. The Journal of cell biology158:153-164,2002.
    57. Katsumi, A., Orr, A. W., Tzima, E., et al. Integrins in mechanotransduction. The Journalof biological chemistry279:12001-12004,2004.
    58. Cho, J. G., Witting, P. K., Verma, M., et al. Tissue vibration induces carotid arteryendothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis?Sleep34:751-757,2011.
    59. Czerwonka, L., Jiang, J. J., Tao, C. Vocal nodules and edema may be due tovibration-induced rises in capillary pressure. The Laryngoscope118:748-752,2008.
    60. Steptoe, P. C., Edwards, R. G. Birth after the reimplantation of a human embryo. Lancet2:366,1978.
    61. Anand, S., Guha, S. K. Mechanics of transport of the ovum in the oviduct. Medical&biological engineering&computing16:256-261,1978.
    62. Blake, J. R., Vann, P. G., Winet, H. A model of ovum transport. Journal of theoreticalbiology102:145-166,1983.
    63. Dillon, R. H., Fauci, L. J., Omoto, C., et al. Fluid dynamic models of flagellar andciliary beating. Annals of the NewYork Academy of Sciences1101:494-505,2007.
    64. Dillon, R. H., Fauci, L. J. An integrative model of internal axoneme mechanics andexternal fluid dynamics in ciliary beating. Journal of theoretical biology207:415-430,2000.
    65. Foo, J. Y., Lim, C. S. Biofluid mechanics of the human reproductive process: modellingof the complex interaction and pathway to the oocytes. Zygote (Cambridge, England)16:343-354,2008.
    66. Mizobe, Y., Yoshida, M., Miyoshi, K. Enhancement of cytoplasmic maturation of invitro-matured pig oocytes by mechanical vibration. The Journal of reproduction anddevelopment56:285-290,2010.
    67. Miyoshi, K., Umezu, M., Sato, E. Effect of hyaluronic acid on the development ofporcine1-cell embryos produced by a conventional or new in vitromaturation/fertilization system. Theriogenology51:777-784,1999.
    68. Miyoshi, K., Taguchi, Y., Sendai, Y., et al. Establishment of a porcine cell line from invitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biology ofreproduction62:1640-1646,2000.
    69. Isachenko, V., Isachenko, E., Kreienberg, R., et al. Human ovarian tissuecryopreservation: quality of follicles as a criteria of effectiveness. Reproductivebiomedicine online20:441-442,2010.
    70. Isachenko, V., Maettner, R., Sterzik, K., et al. In-vitro culture of human embryos withmechanical micro-vibration increases implantation rates. Reproductive biomedicineonline22:536-544,2011.
    71. Isachenko, E., Isachenko, V., Nawroth, F., et al. Effect of long-term exposure atsuprazero temperatures on activity and viability of human ovarian cortex. Fertility andsterility91:1556-1559,2009.
    72. Heo, Y. S., Cabrera, L. M., Bormann, C. L., et al. Dynamic microfunnel cultureenhances mouse embryo development and pregnancy rates. Human reproduction(Oxford, England)25:613-622,2010.
    73. Matsuura, K., Hayashi, N., Kuroda, Y., et al. Improved development of mouse andhuman embryos using a tilting embryo culture system. Reproductive biomedicine online20:358-364,2010.
    74. Ogden, C. L., Carroll, M. D., Curtin, L. R., et al. Prevalence of overweight and obesityin the United States,1999-2004. JAMA: the journal of the American MedicalAssociation295:1549-1555,2006.
    75. Flegal, K. M., Graubard, B. I., Williamson, D. F., et al. Excess deaths associated withunderweight, overweight, and obesity. JAMA: the journal of the American MedicalAssociation293:1861-1867,2005.
    76. Slyper, A. H. The pediatric obesity epidemic: causes and controversies. The Journal ofclinical endocrinology and metabolism89:2540-2547,2004.
    77. Stein, C. J., Colditz, G. A. The epidemic of obesity. The Journal of clinicalendocrinology and metabolism89:2522-2525,2004.
    78.(ADA), A. D. A. Position of the American Dietetic Association: individual-, family-,school-, and community-based interventions for pediatric overweight. Journal of theAmerican Dietetic Association106:925-945,2006.
    79. Stice, E., Shaw, H., Marti, C. N. Ameta-analytic review of obesity prevention programsfor children and adolescents: the skinny on interventions that work. Psychologicalbulletin132:667-691,2006.
    80. Styne, D. M. A plea for prevention. The American journal of clinical nutrition78:199-200,2003.
    81. Jakicic, J. M., Otto, A. D. Physical activity considerations for the treatment andprevention of obesity. The American journal of clinical nutrition82:226S-229S,2005.
    82. Catenacci, V. A., Wyatt, H. R. The role of physical activity in producing andmaintaining weight loss. Nature clinical practice. Endocrinology&metabolism3:518-529,2007.
    83. Maddalozzo, G. F., Iwaniec, U. T., Turner, R. T., et al. Whole-body vibration slows theacquisition of fat in mature female rats. International journal of obesity (2005)32:1348-1354,2008.
    84. Tommaselli, G. A., Di Carlo, C., Di Spiezio Sardo, A., et al. Serum leptin levels andbody composition in postmenopausal women treated with tibolone and raloxifene.Menopause (New York, N.Y.)13:660-668,2006.
    85. Dedeoglu, E. N., Erenus, M., Yoruk, P. Effects of hormone therapy and tibolone onbody composition and serum leptin levels in postmenopausal women. Fertility andsterility91:425-431,2009.
    86. Scholze, A., Tepel, M. Role of leptin in reverse epidemiology in chronic kidney disease.Seminars in dialysis20:534-538,2007.
    87. Nasri, H. Serum leptin concentration and left ventricular hypertrophy and function inmaintenance hemodialysis patients. Minerva urologica e nefrologica=The Italianjournal of urology and nephrology58:189-193,2006.
    88. Kalaitzidis, R. G., Siamopoulos, K. C. The role of obesity in kidney disease: recentfindings and potential mechanisms. International urology and nephrology43:771-784,2011.
    89. Vona-Davis, L., Howard-McNatt, M., Rose, D. P. Adiposity, type2diabetes and themetabolic syndrome in breast cancer. Obesity reviews: an official journal of theInternational Association for the Study of Obesity8:395-408,2007.
    90. Wilhelmi, B. J., Blackwell, S. J., Phillips, L. G. Langer's lines: to use or not to use.Plast Reconstr Surg104:208-214,1999.
    91. Byard, R. W., Gehl, A., Tsokos, M. Skin tension and cleavage lines (Langer's lines)causing distortion of ante-and postmortem wound morphology. International journal oflegal medicine119:226-230,2005.
    92. Liang, X., Boppart, S. A. Biomechanical properties of in vivo human skin fromdynamic optical coherence elastography. IEEE transactions on bio-medical engineering57:953-959,2010.
    93. Devillers, C., Pierard-Franchimont, C., Schreder, A., et al. High resolution skincolorimetry, strain mapping and mechanobiology. International journal of cosmeticscience32:241-245,2010.
    94. Arashi, M., Sugama, J., Sanada, H., et al. Vibration therapy accelerates healing of StageI pressure ulcers in older adult patients. Advances in skin&wound care23:321-327,2010.
    95. Chin, M. S., Lancerotto, L., Helm, D. L., et al. Analysis of neuropeptides in stretchedskin. Plast Reconstr Surg124:102-113,2009.
    96. Chin, M. S., Ogawa, R., Lancerotto, L., et al. In vivo acceleration of skin growth usinga servo-controlled stretching device. Tissue engineering. Part C, Methods16:397-405,2010.
    97. Avelar, N. C., Simao, A. P., Tossige-Gomes, R., et al. Oxygen consumption and heartrate during repeated squatting exercises with or without whole-body vibration in theelderly. Journal of strength and conditioning research/National Strength&Conditioning Association25:3495-3500,2011.
    98. Nichols, W. W., Denardo, S. J., Wilkinson, I. B., et al. Effects of arterial stiffness, pulsewave velocity, and wave reflections on the central aortic pressure waveform. Journal ofclinical hypertension (Greenwich, Conn.)10:295-303,2008.
    99. Otsuki, T., Takanami, Y., Aoi, W., et al. Arterial stiffness acutely decreases afterwhole-body vibration in humans. Acta physiologica (Oxford, England)194:189-194,2008.
    100. Naghii, M. R., Darvishi, P., Ebrahimpour, Y., et al. Effect of combination therapyof fatty acids, calcium, vitamin D and boron with regular physical activity oncardiovascular risk factors in rat. Journal of oleo science61:103-111,2012.
    101. Wylie, M. P., McGuinness, G. B., Gavin, G. P. Increased susceptibility of arterialtissue to wire perforation with the application of high-frequency mechanical vibrations.IEEE transactions on bio-medical engineering59:1101-1108,2012.
    102. Bolduc, V., Drouin, A., Gillis, M. A., et al. Heart rate-associated mechanical stressimpairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice.American journal of physiology. Heart and circulatory physiology301: H2081-2092,2011.
    103. Krajnak, K., Miller, G. R., Waugh, S., et al. Characterization offrequency-dependent responses of the vascular system to repetitive vibration. Journalof occupational and environmental medicine/American College of Occupational andEnvironmental Medicine54:1010-1016,2012.
    104. Krajnak, K., Riley, D. A., Wu, J., et al. Frequency-dependent effects of vibrationon physiological systems: experiments with animals and other human surrogates.Industrial health50:343-353,2012.
    105. Dong, R. G., Welcome, D. E., McDowell, T. W., et al. A proposed theory onbiodynamic frequency weighting for hand-transmitted vibration exposure. Industrialhealth50:412-424,2012.
    106. Dietz, P., Hoffmann, S., Lachtermann, E., et al. Influence of exclusive resistancetraining on body composition and cardiovascular risk factors in overweight or obesechildren: a systematic review. Obesity facts5:546-560,2012.
    107. Cardinale, M., Bosco, C. The use of vibration as an exercise intervention. Exerciseand sport sciences reviews31:3-7,2003.
    108. Luo, J., McNamara, B., Moran, K. The use of vibration training to enhance musclestrength and power. Sports medicine (Auckland, N.Z.)35:23-41,2005.
    109. Hazell, T. J., Jakobi, J. M., Kenno, K. A. The effects of whole-body vibration onupper-and lower-body EMG during static and dynamic contractions. Appliedphysiology, nutrition, and metabolism=Physiologie appliquee, nutrition etmetabolisme32:1156-1163,2007.
    110. Cochrane, D. J., Stannard, S. R., Sargeant, A. J., et al. The rate of muscletemperature increase during acute whole-body vibration exercise. European journal ofapplied physiology103:441-448,2008.
    111. Lohman, E. B.,3rd, Petrofsky, J. S., Maloney-Hinds, C., et al. The effect of wholebody vibration on lower extremity skin blood flow in normal subjects. Medical sciencemonitor: international medical journal of experimental and clinical research13:CR71-76,2007.
    112. Nordlund, M. M., Thorstensson, A. Strength training effects of whole-bodyvibration? Scandinavian journal of medicine&science in sports17:12-17,2007.
    113. Lohman, E. B.,3rd, Bains, G. S., Lohman, T., et al. Acomparison of the effect of avariety of thermal and vibratory modalities on skin temperature and blood flow inhealthy volunteers. Medical science monitor: international medical journal ofexperimental and clinical research17: MT72-81,2011.
    114. Cardinale, M., Soiza, R. L., Leiper, J. B., et al. Hormonal responses to a singlesession of wholebody vibration exercise in older individuals. British journal of sportsmedicine44:284-288,2010.
    115. Damiano, D. L. Activity, activity, activity: rethinking our physical therapyapproach to cerebral palsy. Physical therapy86:1534-1540,2006.
    116. Stevenson, R. D., Conaway, M., Barrington, J. W., et al. Fracture rate in childrenwith cerebral palsy. Pediatric rehabilitation9:396-403,2006.
    117. Verschueren, S. M., Roelants, M., Delecluse, C., et al. Effect of6-month wholebody vibration training on hip density, muscle strength, and postural control inpostmenopausal women: a randomized controlled pilot study. Journal of bone andmineral research: the official journal of the American Society for Bone and MineralResearch19:352-359,2004.
    118. Bruyere, O., Wuidart, M. A., Di Palma, E., et al. Controlled whole body vibrationto decrease fall risk and improve health-related quality of life of nursing home residents.Archives of physical medicine and rehabilitation86:303-307,2005.
    119. Lam, F. M., Lau, R. W., Chung, R. C., et al. The effect of whole body vibration onbalance, mobility and falls in older adults: a systematic review and meta-analysis.Maturitas72:206-213,2012.
    120. Gusi, N., Raimundo, A., Leal, A. Low-frequency vibratory exercise reduces therisk of bone fracture more than walking: a randomized controlled trial. BMCmusculoskeletal disorders7:92,2006.
    121. Bogaerts, A., Verschueren, S., Delecluse, C., et al. Effects of whole body vibrationtraining on postural control in older individuals: a1year randomized controlled trial.Gait&posture26:309-316,2007.
    122. Schuhfried, O., Mittermaier, C., Jovanovic, T., et al. Effects of whole-bodyvibration in patients with multiple sclerosis: a pilot study. Clinical rehabilitation19:834-842,2005.
    123. Santos-Filho, S. D., Cameron, M. H., Bernardo-Filho, M. Benefits of whole-bodyvibration with an oscillating platform for people with multiple sclerosis: a systematicreview. Multiple sclerosis international2012:274728,2012.
    124. Eftekhari, E., Mostahfezian, M., Etemadifar, M., et al. Resistance training andvibration improve muscle strength and functional capacity in female patients withmultiple sclerosis. Asian journal of sports medicine3:279-284,2012.
    125. Hoffman, B. D., Grashoff, C., Schwartz, M. A. Dynamic molecular processesmediate cellular mechanotransduction. Nature475:316-323,2011.
    126. Orr, A. W., Helmke, B. P., Blackman, B. R., et al. Mechanisms ofmechanotransduction. Developmental cell10:11-20,2006.
    127. Schwartz, M. A., DeSimone, D. W. Cell adhesion receptors inmechanotransduction. Current opinion in cell biology20:551-556,2008.
    128. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., et al. Chapter19: Mechanicalresponse of cytoskeletal networks. Methods in cell biology89:487-519,2008.
    129. Sukharev, S., Betanzos, M., Chiang, C. S., et al. The gating mechanism of the largemechanosensitive channel MscL. Nature409:720-724,2001.
    130. Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., et al. Rho-mediatedcontractility exposes a cryptic site in fibronectin and induces fibronectin matrixassembly. The Journal of cell biology141:539-551,1998.
    131. Li, X., Zhang, Y., Kang, H., et al. Sclerostin binds to LRP5/6and antagonizescanonical Wnt signaling. The Journal of biological chemistry280:19883-19887,2005.
    132. Critchley, D. R. Cytoskeletal proteins talin and vinculin in integrin-mediatedadhesion. Biochemical Society transactions32:831-836,2004.
    133. Ziegler, W. H., Gingras, A. R., Critchley, D. R., et al. Integrin connections to thecytoskeleton through talin and vinculin. Biochemical Society transactions36:235-239,2008.
    134. Defilippi, P., Di Stefano, P., Cabodi, S. p130Cas: a versatile scaffold in signalingnetworks. Trends in cell biology16:257-263,2006.
    135. Sawada, Y., Tamada, M., Dubin-Thaler, B. J., et al. Force sensing by mechanicalextension of the Src family kinase substrate p130Cas. Cell127:1015-1026,2006.
    136. Parsons, J. T., Horwitz, A. R., Schwartz, M. A. Cell adhesion: integratingcytoskeletal dynamics and cellular tension. Nature reviews. Molecular cell biology11:633-643,2010.
    137. Olson, E. N., Nordheim, A. Linking actin dynamics and gene transcription to drivecellular motile functions. Nature reviews. Molecular cell biology11:353-365,2010.
    138. Hahn, C., Schwartz, M. A. Mechanotransduction in vascular physiology andatherogenesis. Nature reviews. Molecular cell biology10:53-62,2009.
    139. Zheng, W., Christensen, L. P., Tomanek, R. J. Differential effects of cyclic andstatic stretch on coronary microvascular endothelial cell receptors andvasculogenic/angiogenic responses. American journal of physiology. Heart andcirculatory physiology295: H794-800,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700