植入电子器件的体导电能量传递原理及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各类植入电子器件的公共技术问题之一是如何有效地向植入电子器件提供足够的电能,维持其长期、稳定、可靠地运行,实现其预期的功能。尽管植入电子器件存在多种可能的供电方案,但目前只有电池供电和磁感应供电技术得到广泛的临床应用。对电池供电的植入电子器件,由于电池容量受限,导致植入电子器件的使用寿命较短,例如心脏起搏器的实际寿命是2-5年。当然,磁感应耦合技术可将丰富的体外电能传递到体内植入电子器件,但由于生物体中存在着大量的离子型体液,其传导作用使磁感应耦合效率低;同时,为了向植入电子器件提供足够的能量,磁感应耦合的发射线圈必须发射较强的射频功率,它又将对附近的医学设备等形成较强的射频干扰。
     为了克服磁感应技术的缺点和延长植入电子器件的使用寿命,本文提出利用生物组织的体导电特性将体外电能跨皮肤地传递到植入电子器件的可充电电池来维持植入电子器件长期、稳定、可靠地运行。本文重点研究了体导电能量传递的原理,即采用紧贴皮肤的电极组(称为电极皮肤单元),利用生物组织的离子型传导电流将激励到体外电极组的电能耦合到体内电极组,并传递到植入电池和电子器件。考虑到电极的极化效应和离子型传导电流的特点,体导电能量传递系统的电流应为交流电流,从而形成了体导电能量传递的技术方案。
     为了有效地分析体导电能量传递系统的特性,建立了具有明确物理意义的电极皮肤单元的X型等效电路模型,导出了X型等效电路参数与电极开路阻抗关系的计算公式;以电极皮肤单元的X型等效电路模型为基础,提出了分析体导电能量传递系统特性的电路分析方法。与数值计算电极皮肤单元的泊松方程或拉普拉斯方程比较,电路分析方法具有计算简单、概念明确的特点,能分析体导电能量传递系统的整体特性。用电路分析方法系统地分析了体导电能量传递电路的特性:交流电流传递效率、植入电池的充电条件、充电电流传递效率、能量传递效率。通过电路分析,发现了决定体导电能量传递系统特性的主要参数:输入回路阻抗比(ILIR)、输出回路阻抗比(OLIR)和电压比(V1/V2),这些参数确定了体导电能量传递的效率。由此,提出了提高体导电能量传递效率的方法:阻抗法和电压法。通过电路分析,还发现了体导电能量传递系统的另一些重要特性:植入电池的充电条件和充电电流传递效率极限。根据植入电池的充电条件和实验验证,作用在体外电极组的最佳信号波形是交变方波。
     根据体导电能量传递技术方案和电路分析结果,设计和制作了体导电能量传递原型电路。实验结果是:在工作频率为5 kHz时,通过新鲜的猪皮传递到电池的充电电流是2.8 mA,相应的充电电流传递效率达到27%,能量传递效率为11%。
     理论和实验均证明:生物组织的体导电特性可以有效地将体外电能跨皮肤地传递到体内的植入电子器件。
The power supply is a common concern for implantable devices. There are several possible approaches to power implants, however, only battery and magnetic inductive coupling are practical. The service life of an implantable device powered by a battery is short because of the limited battery capacity. For example, the real service life for a cardiac pacemaker is 2-5 years. On the other hand external rich energy can be transformed into implantable devices by magnetic inductive coupling. But its conversion efficiency in power delivery is generally poor due to the energy loss in conductive biological tissue . In order to maintain a sufficient amount of power transfer, a large RF power must be transmitted. This causes RF interference to nearby medical instruments.
     In order to avoid the major drawback of magnetic inductive coupling method and expand the service life of implantable devices this paper presents the energy delivery process based on volume conduction across skin and connective tissue. An x-type equivalent circuit model for the energy delivery process has been constructed and a circuit analysis method based on the model has been proposed. The circuit analysis method is useful and can be applied for whole volume conduction energy delivery system. Theoretical analyses and experiments had been conducted to evaluate the characteristics of energy delivery based on volume conduction, such as, AC current transmission efficiency, implantable battery recharging condition, recharging current transmission efficiency, energy transmission efficiency. According to circuit analysis three important parameters were defined to evaluate performance of power delivery. These parameters are Input Loop Impedance Ratio (ILIR), Output Loop Impedance Ratio (OLIR) and Voltage Ratio (VR) for determining recharging current transmission efficiency. Two methods for enhancing recharging current transmission efficiency have been proposed: those are impedance method and voltage method. According to the implantable battery recharging condition derived from circuit analysis, it is concluded that square wave is the best one for exciting external electrodes in energy delivery based on volume conduction.
     According to the circuit analysis results, a circuit prototype based on volume conduction had been developed. In our preliminary experiment, it had delivered a 5 kHz current of up to 2.8 mA across freshly harvested pigskin with a current transmission efficiency of 27%.
     Theoretical analyses and experiments have proved that electrical energy can be transformed efficiently from an external body into implantable devices in the body through volume conduction.
引文
[1] W. Greatbatch, C. F. Holmes, “History of implantable devices,” IEEE Eng. Med. Biol. Mag., Sep.1991, Vol.10, No.3: pp.38 – 41, 49.
    [2] Richard S. Sanders, Michael T. Lee, “Implantable Pacemakers,” Proceedings of IEEE, March 1996,Vol.84, No.3: pp. 480-486.
    [3] William M. Smith and Raymond E. Ideker, “Automatic Implantable Cardioverter-defibrillators,” Annu. Rev. Biomed. Eng. 1999.1: pp. 331–346.
    [4] Blake S. Wilson, Dewey T. Lawson, Joachim M. Muller, Richard S. Tyler, and Jan Kiefer, “Cochlear Implants Some Likely Next Steps,” Annu. Rev. Biomed. Eng. 2003. 5:pp.207–49.
    [5] James D.Weiland, Wentai Liu, and Mark S. Humayun, “Retinal Prosthesis,”” Annu. Rev. Biomed. Eng. 2005. 7: pp.361–401.
    [6] Martin Schuettler, Klaus Peter Koch, “Implantable Biomedical Microsystems for Neural Prostheses,” IEEE Eng. Med. & Biol. Mag., 2005,10: pp.58-65.
    [7] M. Schwarz, L. Ewe, N. Hijazi, B.J. Hosticka, J. Huppertz, S. Kolnsberg, W. Mokwa, and H.K. Trieu, “Micro Implantable Visual Prostheses,” 1st Annual International JEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, October 12-14,2000, Lyon, France, pp. 461-465.
    [8] Y.K. Song W. R. Patterson C. W. Bull, J. Beals, et al., “Development of a Chipscale Integrated Microelectrode/Microelectronic Device for Brain Implantable Neuroengineering Applications,” IEEE Trans. Neural Systems and Rehabilitation Eng., Jun. 2005, Vol.12, No.2, pp.220-226.
    [9] Leif H. Finkel, “Neuroengineering Models of Brain Disease,” Annu. Rev. Biomed. Eng. 2000. 02: pp.577–606.
    [10] Theodore W. Berger, Michel Baudry, Roberta D. Brinton and etc., “Brain-Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics,” Proceedings of IEEE, July 2001, Vol.89, No.7: pp. 994-1012.
    [11] William R. Patterson, Yoon-Kyu Song, Christopher W. Bull, Ilker Ozden, Andrew P. Deangellis, Christopher Lay, J. Lucas McKay, Arto V. Nurmikko, John D. Donoghue, and Barry W. Connors, “A Microelectrode/Microelectronic Hybrid Device for Brain Implantable Neuroprosthesis Applications,” ” IEEE Tran. Bio-Med. Eng., October 2004, Vol.51, No.10: pp. 1845-1853.
    [12] Dorin Panescu, “Vagus nerve stimulation for the treatment of depression,” IEEE Eng. Med.& Biol. Mag., Nov./Dec. 2005, pp. 68-72.
    [13] W. Liu, M. Sivaprakasam, G. Wang, et al, “Implantable Biomimetic Microelectronic Systems Design,” IEEE Eng. Med.& Biol. Mag., 2005,10: 66-74.
    [14] Yamu Hu, & Mohamad Sawan, “A fully integrated low-power BPSK demodulator for implantable medical devices,” IEEE Trans. Circuit and System, Dec. 2005, Vol.52, No.12: pp 2552-2560
    [15] R. J. Sclabassi, Q. Liu, S. A. Hackworth, G. A. Justin, and M. Sun, “Platform Technologies to Support Brain- Computer Interfaces,” Neurosurgery Focus, 2006, 20(5): pp1-13.
    [16] P. Valddstri, A. Menciassi, A. Arena and P. Dario, “An implantable telemetry platform system for in vivo monitoring of physiological parameters,” IEEE Tran. Info. Tech. Bio-Med., Sep., 2004,Vol.8, No.3, pp271-278.
    [17] W. G. Scanlon,J. B. Burns and N. E. Evans, “Radiowave propagation from a tissue–implanted source at 418 MHz and 916.5 MHz ,” IEEE Tran. Bio-Med. Eng., April 2000, Vol.47, No.4: pp527-534.
    [18] S.Y. Lee et al., “VLSI implementation of wireless power and data transmission circuits for micro-stimulator,” VLSI Technology, Systems, and Applications, 2003 International Symposium Oct 2003, pp.164 – 167.
    [19] K. Goto T. Nakagawa, O. Nakamura and S. Kawata, “An implantable power supply with an optically rechargeable lithium battery,” IEEE Tran. Bio-Med. Eng., Vol.48, No.7, pp830-833, July 2001.
    [20] S. Suzuki, T. Katane, H. Saotome and O. Saito., “A proposal of Electric Power Generating for implanted medical devices,” IEEE Tran. Mag. Vol.35.No.5, pp3586-3588, Sep. 1999.
    [21] D. L. Polla, E.G. Erdman, “Microdevices in Medicine,” Annu. Rev. Biomed. Eng. 2000. 02:551–76.
    [22] Khalil Najafi, “Recent Progress in Micromachining Technology and Application in Implantable Biomedical Systems,” IEEE Sixth International Symposium on Micro Machine and Human Science, 1995, pp.11-20.
    [23] DAMIEN C. RODGER AND YU-CHONG TAI, “Microelectronic Packaging for Retinal Prostheses,” IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, SEPTEMBER/OCTOBER 2005, pp.82-57.
    [24] David J. Edell, Januz Kuzma, and Del Petraitis, “Implantable Electronic Systems of Tomorrow,” 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam1996, pp.2174-2176.
    [25] Philip R. Troyk, “Injectable Electronic Identification, Monitoring, and Stimulation Systems,” Annu. Rev. Biomed. Eng. 1999. 01:177–209.
    [26] A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. W. LI, Michael J. Cima, and R.Langer, “A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices,” Proceedings of IEEE, VOL.92, NO.1, January 2004. pp. 6-21.
    [27] William J. Heetderks,“RF Powering of Millimeter- and Submillimeter-Sized Neural Prosthetic Implants,” IEEE Tran. Bio-Med. Eng., MAY 1988, Vol.35, No.5, pp.323-327.
    [28] Brian Smith, Zhengnian Tang, Mark W. Johnson, Soheyl Pourmehdi, Martha M. Gazdik, James R. Buckett, and P. Hunter Peckham, “An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle,” IEEE Tran. Bio-Med. Eng., APRIL 1998, VOL.45, No.4, pp.463-474.
    [29] Koenraad Van Schuylenbergh and Robert Puers, “Self Tuning Inductive Powering for Implantable Telemetric Monitoring Systems,” The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Stockholm, Sweden, June 25-29. 1995, pp.55-58.
    [30] Nattapon Chaimanonart, Keith R. Olszens, Mark D. Zimmerman, Wen H. Ko, and Darrin J. Young, “Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005, pp.5194-5197.
    [31] D. Onen', M. P. Mintchev, “Implantable, Transcutaneously Powered Neurostimulator System to Restore Gastrointestinal Motility,” Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology Kahuku, Oahu, Hawaii u 12 - 15 May 2005,pp.132-135.
    [32] Kazuya Goto, Tetsuya Nakagawa, Osamu Nakamura, andSatoshi Kawata, “An Implantable Power Supply with an Optically Rechargeable Lithium Battery,” IEEE Tran. Bio-Med. Eng., Vol.48, No.7, JULY 2001, pp. 830-833.
    [33] A. K. M. Shamsuddin, T. Tamura, K. Nakajima and T. Togawa, “Preliminary Study of Transcutaneous Optical Coupling for Implantable Devices using GaAs Solar Cell,” Proceedings RC IEEE-EMBS & 14th BMESl – 1995,pp.1.39-1.40.
    [34] M. GroB, R. Bd, K. Kohler, J. Schaub, andD. Jager, “OPTICAL SIGNAL AND ENERGY TRANSMISSION FOR A RETINA IMPLANT,” Procaedings of The First Joint BMESEMBS Conference Serving Humanity, Advancing Technology Od. 13-16, '99, Atlanta, GA, pp.476.
    [35] S. G. MacDonald, 2003, U. S. Patent No.US 6640137 B2.
    [36] G. A. Justin, Y. Z. Zhang, R. J. Sclabassi, and M. Sun, “Biofuel Cells as a Possible Power Source for Implantable Electronic Devices,” In Proc 30th Northeastern Bioengineering Conference, Springfield, MA, Apr 2004, pp.45-46.
    [37] Shin-nosuke Suzuki, Tamotsu Katane, Hideo Saotome and Osami Saito,“A Proposal of Electric Power Generating System for Implanted Medical Devices,” IEEE TRANSACTIONS ON MAGNETICS, SEPTEMBER 1999, Vol.35, No.5, pp.3586-3588.
    [38] S. Suzuki, T. Katane and O. Saito, “Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy,” J Artif Organs, 2003, pp145-148.
    [39] Zhide Tang, Robert J.Sclabassi, Caixin Sun, Jun Zhao, Steven A. Hackworth and Mingui Sun “Circuit Model of Battery Recharging by Volume Conduction” in Proc. IEEE Annu. Northeast Bio-eng. Conf. 32th, Easton, PA, April 2006, pp123-124.
    [40] Zhide Tang, Robert J.Sclabassi, Caixin Sun, J. Zhao, S. A. Hackworth, Jun Zhao, and M. Sun, “Transcutaneous Battery Recharging By Volume Conduction and its Circuit Modeling,” in Proc. 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society, New York, NY, Sept., 2006, pp.644-647.
    [41] S. Grimnes and O.G.Martinsen, “Bioimpedance & Bioeletricity Basics,” San Diego, CA, Academic Press, 2000.
    [42] Adam Heller, “Implanted Electrochemical Glucose Sensors for the Management of Diabetes,” Annu. Rev. Biomed. Eng. 1999. 01:153–175.
    [43] Z. S. Zumsteg, C. Kemere, S. O’Driscoll, G. Santhanam, R. E. Ahmed, K. V. Shenoy, and T.H. Meng, “Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems,” IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL.13, NO.3, SEP. 2005, pp.273-279.
    [44] Joel Voldman, Martha L. Gray, and Martin A. Schmidt,“Microfabrication in Biology and Medicine,” Annu. Rev. Biomed. Eng. 1999. 01:401–425.
    [45] Wim L. C. Rutten, “Selective Electrical Interfaces with the Nervous System,” Annu. Rev. Biomed. Eng. 2002. 4:407–52.
    [46] Gianluca Lazzi, “Thermal effects of bioimplants, ” IEEE Eng. Med.& Biol. Mag., 2005,10: 76-81.
    [47] M. Sun, M. Mickle, W. Liang, Q. Liu, and R. J. Sclabassi, “ Data Communication between Brain Implants and Computer,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): pp.189-192.
    [48] M. Sun, G. A. Justin, P. A. Roche, J. Zhao, B. L.Wessel, Y. Zhang and R. J. Sclabassi, “Passing data and supplying power to neural implants,” Invited Paper, IEEE EMBSMagazine, Special Issue on Clinical Neuroscience and Engineering, N. V. Thakor, Guest Editor, July/August Issue, 2006.
    [49] M. Sun, Q. Liu, W. Liang, B. L. Wessel, P. A. Roche, M. Mickle, and R. J. Sclabassi, “Application of the Reciprocity Theorem to Volume Conduction Based Data Communication Systems between Implantable Devices and Computers,” In IEEE Proc. EMBS’03, Cancun, Mexico, 2003, 4:3352-3355.
    [50] M. Sun, Q. Liu, W. Liang, B. L. Wessel, P. A. Roche, M. Mickle, and R. J. Sclabassi, “A Volume Conduction Antenna for Implantable Devices,” In IEEE Proc. EMBS’03, Cancun, Mexico, 2003, 4:2256-3359.
    [51] M. Sun, P. A. Roche, Jun Zhao, and R. J. Sclabassi, “Switching modulation method for wireless transmission of biological waveforms using a cellphone,” In Proc 30th Northeastern Bioengineering Conference, Springfield, MA, Apr 2004, pp.17-18.
    [52] P. A. Roche, R. J. Sclabassi, Jun Zhao, and M. Sun, “Designing a Cell Phone Adaptor for Biological Waveform Transmission,” In Proc 30th Northeastern Bioengineering Conference, Springfield, MA, Apr 2004, pp. 35-36
    [53] B. L. Wessel, R. J. Sclabassi, P. A. Roche, and M. Sun, “Analytical and Numerical Optimization of an Implantable Volume Conduction Antenna,” In Proc 30th Northeastern Bioengineering Conference, Springfield, MA, Apr 2004, pp.29-30.
    [54] B. L. Wessel, P. A. Roche, M. Sun, and R. J. Sclabassi, “Optimization of an implantable volume conduction antenna,” In Proc IEEE EMBS’04, San Francisco, CA, 2004, pp.4111-4114.
    [55] P. A. Roche, M. Sun, and R. J. Sclabassi, “Signal multiplexing and modulation for volume conduction communication,” In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, Mar 2005, pp.157-160.
    [56] M. Sun, B. L. Wessel, P. A. Roche, J. Zhao, and R. J. Sclabassi, “Computer Simulation of Volume Conduction Based Data Communication Channel for Neuroprosthetic Devices,” In Proc.IEEE EMBS Special Topic Conference on Neural Engineering, Mar 2005, pp.426-429.
    [57] M. Sun, D. L. Li, J. Zhao, P. A. Roche, B. L. Wessel, and R. J. Sclabassi, “Biological Resources within the Human Body Can be Used to Operate Neural Implants,” In Proc.First International Conference on Neural Interface and Control (CNIC), May 2005. pp.6-9.
    [58] D. L. Li, R. J. Sclabassi, and M. Sun, “Bio-Inspired Electric Power Delivery Antenna through Volume Conduction,” In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, Apr 2005, pp.71-72.
    [59] P. A. Roche, J. Zhao, M. Sun, and R. J. Sclabassi, “Using a Cell Phone for Biotelemetry,” In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, Apr 2005, pp.65-66.
    [60] S. Premraj, J. Konwinski, J. Zhao, P. Roche, M. Sun, and R. J. Scalbassi,“An effective method for fabricating implantable test chips before microelectronic design,” In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, Apr 2005, pp.77-78.
    [61] J. Zhao, X. Xu, R. J. Sclabassi, and M. Sun, “Biopotential Electrodes Based on Hydrogel,” in In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, Apr 2005, pp.69-70.
    [62] M. Sun, W. Liang, B. L. Wessel, Q. Liu, P. A. Roche, M. Mickle, and R. J. Sclabassi, “A super low power implantable antenna for data transmission between implantable devices and computers” (Abstract), First International Conference on Medical Implants, Bethesda, MD, Jul 2003.
    [63] M. Sun, W. Liang, B. L. Wessel, Q. Liu, P. A. Roche, M. Mickle, and R. J. Sclabassi,“Reciprocity of human tissue and its application to implantable devices for data communication” (Abstract), First International Conference on Medical Implants, Bethesda, MD, Jul 2003.
    [64] M. Sun, D. L. Li, P. A. Roche, J. Zhao, B. L. Wessel, and R. J. Sclabassi, “Volume Conduction for Communication and Power Delivery” (Abstract),” NIH Neural Interface Workshop, Bethesda, MD, Sep 2005.
    [65] M. Sun, Y. Q. Shi, Q. Liu, and R. J. Sclabassi, “Data Integration for Management of Medical Images and Waveforms,” Journal of VLSI Signal Processing Systems, Vol.41, No.3, Nov. 2005, pp. 319-328.
    [66] M. Sun, X. Yan, and R. J. Sclabassi, “Soft Computation of Numerical Solutions to Diff erential Equations in EEG Analysis,” In Intelligent Multimedia Processing with Soft Computing, Y-P. Tan, K. H Yap, and L. Wang Ed., Springer-Verlag, Heidelberg, Germany, 2005, pp. 431-451.
    [67] M. Sun, X. Yan, and R. J. Sclabassi, “Solving Partial Differential Equations in Real-Time Using Artifical Neural Network Signal Processing as an Alternative to Finite Element Analysis,” In Proc. IEEE ICNNSP’03, Nanjing, China, 2003, pp. 381-384.
    [68] G. A. Justin, Y. Zhang, M. Sun, and R. J. Sclabassi, “Biofuel Cells: A possible power source for implantable electronic devices,” In Proc IEEE EMBS’04, San Francisco, CA, 2004, pp. 4096-4099.
    [69] G. A. Justin, Y. Zhang, M. Sun, R. J. Sclabassi, “An Investigation of the Ability of White Blood Cells to Generate Electricity in Biofuel Cells,” In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, Apr 2005, pp.277-278.
    [70] J. Zhao, R. J. Sclabassi, and M. Sun, “Biopotential Electrodes Based on Hydrogel,”In Proc. 31st Northeast Bioengineering Conference, Hoboken, NJ, April 2-3, 2005, pp.69-70.
    [71] W. T. Rath, H. L. Journee, D. L. Li, S. A. Hackworth, M. Sun, A. Szelenyi, and R. J. Sclabassi, “ Multi-depth Probe Transcranial Electrical Stimulation Modeling in 2-D using Finite Element Method Analysis,” In Proc.32nd Northeast Bioengineering Conference, Eaton, PA, April 1-2, 2006, pp. 51-52.
    [72] D. L. Li, H. L. Journee, W. T. Rath, A. van Hulzen, R. J. Sclabassi, and M. Sun, “Finite Element Analysis of Action Potential Generation in the Cortico-Spinal Tract During Transcranial Electrical Stimulation,” In Proc. 32nd Northeast Bioengineering Conference, Eaton, PA, April 1-2, 2006, pp. 111-112.
    [73] M. Sun, G. R. Gilbert, D. L. Li, P. A. Roche, J. Zhao, and R. J. Sclabassi, “Transmitting Information and Delivering Power to Implantable Devices by Volume Conduction, ” Abstract, 11th Annual Conference of the American Telemedicine Association, San Diego, CA, 2006.
    [74] R. Vinjamuri, Z.H. Mao, R. J. Sclabassi, and M. Sun, “A NovelArchitecture for the Design of Prosthetic and Robotic Hands, ” In Proc. 32nd Northeast Bioengineering Conference, Eaton, PA, April 1-2, 2006, pp. 164-165.
    [75] Tolga Ezkurt, Mingui Sun, and Robert J. Sclabassi, “Beam space in Spherical Harmonics Domain” accepted in IEEE Int. Conf. of Engineering in Medicine and Biology Society, Sept. 2006.
    [76] N. Yao, H-N. Lee, R. J. Sclabassi, and M. Sun, “Digital Data Communication through Volume Conduction Channel,” Accepted, in IEEE Int. Conf. of Engineering in Medicine and Biology Society, Sept., 2006.
    [77] G. A. Justin, Y. Zhang, X. Cui, M. Sun, and R. J. Sclabassi, “Serotonin (5-HT) released by activated white blood cells in a biological fuel cell provide a potential energy source for electricity generation,” Accepted, in IEEE Int. Conf. of Engineering in Medicine and Biology Society, Sept., 2006.
    [78] R. Pethig,” Dielectric properties of body tissues,” Clin. Phys. Physiol. Meas., 1987, Vol.8, Suppl. A, pp.5-12.
    [79] S. Gabriel, R.W. Lau and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol. 41 (1996) pp.2251–2269.
    [80] J. H. Calderwood, “Electrode–skin impedance from a dielectric viewpoint,” Physiol. Meas. 17 (1996) A131–A139.
    [81] Mark R. Prausnitz,“ The effects of electric current applied to skin: A review for transdermal drug delivery,” Advanced Drug Delivery Reviews 18 (19%), pp.395-425
    [82] Anthony F. Coston, and John K-J. Li, “TRANSDERMAL DRUG DELIVERY: A COMPARATIVE ANALYSIS OF SKIN IMPEDANCE MODELS AND PARAMETERS,” Proceedings of the 25 Annual Intemational Conference of the IEEE EMBS Cancun, Mexico September 17-21,2003.
    [83] Dorin Panescu, Kevin P. Cohen, J. G. Webster, R.A. Stratbucker, “The Mosaic Electrical Characteristics of the Skin,”IEEE Trans. Biomed. Eng., May 1993, Vol.40, No.5, pp.434-439.
    [84] Enrique M. Spinelli, Miguel A. Mayosky, and Ramon Pallás-Areny,“A Practical Approach to Electrode-Skin Impedance Unbalance Measurement,” IEEE Tran. Bio-Med. Eng., JULY 2006, Vol.53, No.7, pp.1451-1453.
    [85] Raymond A. DeCarlo, Pen-Min Lin,” Linear circuit analysis,” Englewood Cliffs, N.J. Prentice Hall, 1995.
    [86] Dominic G.B. Edelen, Anastasios D. Kydoniefs, ”An Introduction to Linear Algebra for Science and Engineering, 2nd,” New York, NY, Elsevier, 1976, pp.223.
    [87] A. Beric, P. J. Kelly, A. Rezai, D. Sterio, A. Mogilner, M. Zonenshayn, B. Kopell, “Complications of deep brain stimulation surgery,” Stereotact Funct Neurosurg, 2001, 77(1-4): pp.73-78.
    [88] Technical Manual No.220822001, “Kinetra Dual Program Neurostimulator for Deep Brain Stimulation,” Medtronic, Inc., 2003.
    [89] B. L. Eppley, “Biomechanical testing of alloplastic PMMA cranioplasty materials,” J Craniofac Surg., Jan 2005, 16(1): pp.140-143.
    [90] 沈永欢,梁在中,许履瑚. 蔡蒨蒨,“实用数学手册,”科学出版社,北京,2004.
    [91] 谢翔,张春,王志华. “生物医学中的植入式电子系统的现状与发展,”电子学报,Vol . 32 ,No.3,Mar. 2004,pp.462-467.
    [92] 谢翔,张春,王志华. “微电子技术在生物医学中的应用与发展,”电路与系统学报,Vol.8, No.2,April,2003,pp.80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700