乙基多杀菌素对棉铃虫的胁迫效应及对天敌影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙基多杀菌素是由土壤放线菌产生的天然产物,对多种重要农业害虫有毒杀作用,新颖特别的作用机理使其成为目前市场上防治害虫的潜力新型杀虫药剂。乙基多杀菌素可以有效的防治棉铃虫等鳞翅目害虫,研究乙基多杀菌素对棉铃虫的胁迫效应和对天敌的影响,可以为棉铃虫的综合防治提供理论依据。主要结论如下:
     1.乙基多杀菌素和阿维菌素对棉铃虫、小地老虎、斜纹夜蛾和甜菜夜蛾都有致死效应,而且与阿维菌素相比,乙基多杀菌素对这四种鳞翅目害虫的毒力更高;但乙基多杀菌素对绿盲蝽和棉蚜没有致死效应,而阿维菌素对棉蚜有很好的防治效果;测定了乙基多杀菌素和阿维菌素对采自不同地域的田间棉铃虫种群的毒力效果,发现乙基多杀菌素的毒杀效果较好,而且不同地理种群棉铃虫的LC50无显著差异,但阿维菌素对不同地理种群棉铃虫的毒杀效果差异较大;用乙基多杀菌素处理抗Bt棉铃虫种群和敏感种群,结果发现乙基多杀菌素与Bt蛋白之间存在一定的负交互抗性。
     2.通过田间小区试验,我们研究了乙基多杀菌素对棉田主要害虫和天敌的影响。结果表明,与对照相比,高剂量乙基多杀菌素和阿维菌素对棉蚜、棉盲蝽种群增长有一定的抑制作用;但对烟粉虱没有显著影响;对瓢虫、小花蝽和草蛉和寄生性天敌的田间种群数量也没有显著性影响。
     3.研究乙基多杀菌素亚致死剂量对棉铃虫生长发育的影响。结果发现,乙基多杀菌素处理后,棉铃虫幼虫的存活率随着药剂的剂量增加而降低;同时不同剂量乙基多杀菌素可以降低棉铃虫的幼虫体重、蛹重、化蛹率和羽化率;幼虫历期、预蛹期和蛹期延长,同时棉铃虫成虫的单雌产卵量、卵孵化率也降低。
     4.不同剂量乙基多杀菌素处理后,棉铃虫体内解毒代谢酶发生变化,棉铃虫体内的羧酸酯酶、谷胱甘肽-S-转移酶活力降低,且随着处理的乙基多杀菌素浓度升高而下降,但乙基多杀菌素处理后,棉铃虫体内的乙酰胆碱酯酶、多功能氧化酶比活力增加,并且随着乙基多杀菌素浓度增加而增大。
     5.通过转录组测序比较分析了乙基多杀菌素处理组与对照组棉铃虫之间的基因表达在转录组水平上的差异,并通过定量PCR的方法验证了部分差异基因在棉铃虫体内的表达量差异。通过转录组测序结合生物信息学分析发现乙基多杀菌素处理后,一些基因表现为上调和下调。其中包括与作用靶标、神经调控蛋白、表皮蛋白、解毒代谢、修复免疫和能量代谢等相关的基因。
Spinetoram is a kind of natural substance produced by soil actinomycete, which is toxic to many major agricultural insect pests. At present, spinetoram becomes a potential insecticide to control insect pests in the market because of its novel special action mechanism. Spinetoram is effective to some lepidoptera species, such as cotton bollworm, Helicoverpa armigera (Hubner), and research on the action mechanism of spinetoram on H. armigera could provide a theoretical basis for rational use of spinetoram. The main results are as follow:
     1. Both spinetoram and abamectin had lethal effect to some lepidoptera species such as H. armigera, Spodoptera exigura, Spodoptera litura and Agrotis ipsilon. Compared with abamectin, spinetoram had better control efficiency to these four lepidoptera species, but spinetoram had no activity on Apolygus lucorum and Aphis gossypii, while abamectin could control A. gossypii well. The toxic efficiency of spinetoram and abamectin to H. armigera which collected from different geographical locations were determinated. Spinetoram had better efficiency than abamectin, and the differences of LC50S of spinetoram among H. armigera populations from different locations were not significant, but differences of the LC50S of abamectin among different location populations were obvious. After treated Bt-resistant and Bt-susceptible H. armigera strain with spinetoram, the results showed a little negative cross-resistance between spinetoram and Bt.
     2. The impact of spinetoram on major insect pests and natural enemies in cotton field were evaluated by field plot experiments. Compared with control, high-dose of spinetoram and abamectin could inhibit the population increase of cotton aphid and cotton mirid bug, but had no obviously effect on whitefly population. Spinetoram had no obviously effect on parasitoids and predators such as ladybug, orius, and lacewing.
     3. The effects of sub-lethal dose of spinetoram on growth and development of H. armigera were analyzed. After treated by spinetoram, the survival percentage of H. armigera larvea reduced along with increasing of the treated dose. The larval weight, pupal weight, pupation rate and eclosion rate reduced after treated by spinetoram at different doses. The larval development time, pre-pupal duration and pupal duration delayed, the eggs laid per female and egg hatch percentage were also reduced after treated with spinetoram.
     4. The enzyme activities of H. armigera larvae were changed after treated withdifferent dose of spinetoram. The activities of CarE (carboxylesterase) and GST (glutathione-S-transferases) were reduced along with increasing of the treated doses. However, the activities of AchE (acetylcholinesterase) and MFO (mixed-function oxidases) were promoted along with increasing of the treated doses.
     5. The gene changes of H. armigera larvae aftertreated with spinetoram were analyzed at transcriptional level using transcriptome sequencing analysis method, and expressions of parts of changed genes were verified by qRT-PCR. By transcriptome and bio-information analysis, we found some genes expressed higher and some expressed lower in treated H. armigera larvae than control. The unigenes maybe involved in the action process of spinetoram on H. armigera, and the functions of these unigenes were annotated as action target, cutieular protein, detoxification and metabolism, repair and immune, and regulation.
引文
[1]郭予元:棉铃虫的研究.北京:中国农业出版社;1998.
    [2]Fitt GP. An Australian approach to IPM in cotton:integrating new technologies to minimise insecticide dependence. Crop Protection,2000,19(8-10):793-800.
    [3]方宣钧,贾士荣.中国转基因抗虫棉产业化进展.生物技术通报,1999(2):39-40.
    [4]吴孔明,陆宴辉.种植Bt棉花可有效控制棉铃虫在我国多作物生态系统中的发生与危害.中国基础科学,2009(03):27-28.
    [5]高疆林,罗树凯,李子等.新疆阿拉尔垦区棉田农药使用情况调查分析.新疆农垦科技,2013(09):18-19.
    [6]Wu KM, Lu YH, Feng HQ, et al. Suppression of cotton bollworm in multiple crops in china in areas with Bt toxin-containing cotton. Science,2008,321 (5896):1676-1678.
    [7]Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology. Annu Rev Entomol,1998,43:701-726.
    [8]Tabashnik BE, Gassmann AJ, Crowder DW, et al. Insect resistance to Bt crops:evidence versus theory. Nat Biotechnol,2008,26(2):199-202.
    [9]Tabashnik BE, Van Rensburg JB, Carriere Y. Field-evolved insect resistance to Bt crops:definition, theory, and data. J Econ Entomol,2009,102(6):2011-2025.
    [10]Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J Econ Entomol,2010, 103(4):1031-1038.
    [11]Tabashnik BE, Sisterson MS, Ellsworth PC, et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol,2010,28(12):1304-1307.
    [12]Dhurua S, Gujar GT. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera:Gelechiidae), from India. Pest Manag Sci,2011, 67(8):898-903.
    [13]Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, et al. Field-evolved resistance to Bt maize by western corn rootworm. Plos One,2011,6(7):e22629.
    [14]Gassmann AJ. Field-evolved resistance to Bt maize by western corn rootworm:predictions from the laboratory and effects in the field. Journal of Invertebrate Pathology,2012,110(3):287-293.
    [15]赵建周,赵奎军,范贤林等.Bt棉不同品系对棉铃虫杀虫效果的比较.中国农业科学,2000(5):100-102.
    [16]Lu YH, Wu KM, Jiang YY, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science,2010,328(5982):1151-1154.
    [17]Gassmann AJ, Petzold-Maxwell JL, Clifton EH, et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America,2014, DOI: 10.1073/pnas.1317179111.
    [18]盛承发,苏建伟,宣维健等.关于害虫生态防治若干概念的讨论.生态学报,2002,22(4):597-602.
    [19]Zhang H, Yin W, Zhao J, et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. Plos One,2011,6(8):e22874.
    [20]Tabashnik BE, Wu K, Wu Y. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. Journal of Invertebrate Pathology,2012,110(3):301-306.
    [21]Wan P, Huang Y, Wu H, et al. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. Plos One,2012,7(1):e29975.
    [22]马世骏.谈农业害虫的综合防治.昆虫学报,1976,19(2):129-140.
    [23]邱式邦.植保工作必须坚持“预防为主,综合防治”的方针.中国农业科学,1996,1:41-47.
    [24]Johnson DM. Behavioral ecology of larval dragonflies and damselflies. Trends Ecol Evol,1991, 6(1):8-13.
    [25]Bruce TJ, Matthes MC, Chamberlain K, et al. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA,2008,105(12):4553-4558.
    [26]Vandermoten S, Mescher MC, Francis F, et al. Aphid alarm pheromone:an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol,2012,42(3):155-163.
    [27]Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. Journal of Chemical Ecology,2010,36(1):80-100.
    [28]Sanahuja Q Banakar R, Twyman RM, et al. Bacillus thuringiensis:a century of research, development and commercial applications. Plant Biotechnol J,2011,9(3):283-300.
    [29]Sims SR. Bacillus thuringiensis var kurstaki [CrylA(c)] protein expressed in transgenic cotton: Effects on beneficial and other non-target insects. Southwestern Entomologist,1995, 20(4):493-500.
    [30]赵建周,赵奎军,卢美光等.华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究.中国农业科学,1998(5):1-6.
    [31]赵奎军,赵建周:转基因抗虫棉花与害虫的互作关系研究进展.植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会:中国重庆;1998.
    [32]Georghiou GP, Saito T:Pest resistance to pesticides. New York:Plenum; 1983.
    [33]Paterson AH, Wendel JF, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature,2012,492(7429):423-428.
    [34]夏敬源,王月恒,马艳,王春义.不同类型棉田昆虫群落调查的抽样方法研究.棉花学报,1995(03):179-183.
    [35]崔金杰,雒珺瑜,夏敬源等.4种不同类型棉田昆虫群落结构的比较.西北农林科技大学学报(自然科学版),2005(12):48-52.
    [36]许立瑞,李洪刚,徐春明等.转Bt基因抗虫棉田昆虫群落结构的研究.山东农业科学,2002(3):13-17.
    [37]万方浩,刘万学,郭建英.不同类型棉田棉铃虫天敌功能团的组成及时空动态.生态学报,2002(06):935-942.
    [38]刘万学,万方浩,郭建英.转Bt基因棉田节肢动物群落营养层及优势功能团的组成与变化.生态学报,2002(05):729-735.
    [39]吕文彦,秦雪峰,徐艳聆等.不同类型棉田昆虫群落结构研究.中国生态农业学报,2009(02):330-334.
    [40]Ware GW. Effects of pesticides on nontarget organisms. Residue Rev,1980,76:173-201.
    [41]赵善欢:昆虫毒理学.北京:中国农业出版社;1993.
    [42]张宗炳:昆虫毒理学的研究.北京:北京大学出版社;1982.
    [43]Huter OF. Use of natural products in the crop protection industry. Phytochemistry Reviews,2011, 10(2):185-194.
    [44]Jin ZH, Xu B, Lin SZ, et al. Enhanced production of Spinosad in Saccharopolyspora spinosa by genome shuffling. Applied Biochemistry and Biotechnology,2009,159(3):655-663.
    [45]Kim DS, Brooks DJ, Riedl H. Lethal and sublethal effects of abamectin, spinosad, methoxyfenozide and acetamiprid on the predaceous plant bug Deraeocoris brevis in the laboratory. Biocontrol,2006,51(4):465-484.
    [46]Mertz FP, Yao RC. Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol,1990, 40(1):28-33.
    [47]Jin ZH, Xu B, Lin SZ, et al. Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol,2009,159(3):655-663.
    [48]Matsushima P, Broughton MC, Turner JR, et al. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa:effects of chromosomal insertions on macrolide A83543 production. Gene,1994,146(1):39-45.
    [49]Gaisser S, Carletti I, Schell U, et al. Glycosylation engineering of spinosyn analogues containing an L-olivose moiety. Org Biomol Chem,2009,7(8):1705-1708.
    [50]De Amicis CV, Graupner PR, Erickson JA, et al. The stereochemical outcome of electrophilic addition reactions on the 5,6-double bond in the spinosyns.J Org Chem,2001,66(25):8431-8435.
    [51]Vojoudi S, Saber M, Hejazi MJ, et al. Toxicity of chlorpyrifos, spinosad and abamectin on cotton bollworm, Helicoverpa armigera and their sublethal effects on fecundity and longevity. Bulletin of Insectology,2011,64(2):189-193.
    [52]Sharma A, Srivastava A, Ram B, et al. Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions. Pest Manag Sci,2007,63(11):1141-1145.
    [53]Boeck LD, Papiska HR, Wetzel RW, et al. A54145, a new lipopeptide antibiotic complex: discovery, taxonomy, fermentation and HPLC. J Antibiot (Tokyo),1990,43(6):587-593.
    [54]Luo Y, Ding X, Xia L, et al. Comparative proteomic analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci,2011,9:40.
    [55]Kim HJ, White-Phillip JA, Ogasawara Y, et al. Biosynthesis of spinosyn in Saccharopolyspora spinosa:synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK. JAm Chem Soc,2010,132(9):2901-2903.
    [56]Kim HJ, Pongdee R, Wu Q, et al. The biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of the cross-bridging precursor and identification of the function of SpnJ. JAm Chem Soc, 2007,129(47):14582-14584.
    [57]Kirst HA. The spinosyn family of insecticides:realizing the potential of natural products research. JAntibiot (Tokyo),2010,63(3):101-111.
    [58]Kirst HA. The spinosyn family of insecticides:realizing the potential of natural products research. Journal of Antibiotics,2010,63(3):101-111.
    [59]Hong L, Zhao Z, Melancon CE,3rd, et al. In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. J Am Chem Soc,2008,130(14):4954-4967.
    [60]Ruan X, Pereda A, Stassi DL, et al. Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. JBacteriol,1997,179(20):6416-6425.
    [61]Wang C, Zhang X, Chen Z, et al. Strain construction for enhanced production of spinosad via intergeneric protoplast fusion. Can J Mcrobiol,2009,55(9):1070-1075.
    [62]Sparks TC, Crouse GD, Dripps JE, et al. Neural network-based QSAR and insecticide discovery: spinetoram. J Comput Aided Mol Des,2008,22(6)393-401.
    [63]Crouse GD, Sparks TC, DeAmicis CV, et al. Chemistry and insecticidal activity of the spinosyns. Pesticide Chemistry and Bioscience:The Food-Environment Challenge,1999, DOI: 10.1533/9781845698416.4.155(233):155-166.
    [64]Sheehan LS, Lill RE, Wilkinson B, et al. Engineering of the spinosyn PKS:directing starter unit incorporation. J Nat Prod,2006,69(12):1702-1710.
    [65]Thompson GD, Dutton R, Sparks TC. Spinosad-a case study:an example from a natural products discovery programme. Pest Manag Sci,2000,56(8):696-702.
    [66]Saunders DG. Fate of spinosad in the environment. Down to Earth,1996,52(1):21-28.
    [67]Gary D, Robert D. Spinosad a case study:an example from a nature products discovery programme. Pest Manag Sci,2000,56(8):696-702.
    [68]Mota-Sanchez D, Hollingworth RM, Grafius EJ, et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae). Pest Manag Sci,2006,62(1)30-37.
    [69]秦文,高菊芳.多杀菌素类杀虫剂的抗性与交互抗性.世界农药,2013,35(4):16-22.
    [70]Cleveland CB, Bormett GA, Saunders DG, et al. Environmental fate of spinosad.1. Dissipation and degradation in aqueous systems. JAgric Food Chem,2002,50(11):3244-3256.
    [71]Mandal K, Singh S, Battu RS, et al. An overview of persistence of spinosad in biotic and abiotic components of the environment and advances in its estimation techniques. Bull Environ Contain Toxicol,2013,90(4):405-413.
    [72]Besard L, Mommaerts V, Abdu-Alla G, et al. Lethal and sublethal side-effect assessment supports a more benign profile of spinetoram compared with spinosad in the bumblebee Bombus terrestris. Pest Manag Sci,2011,67(5):541-547.
    [73]Holt KM, Opit GP, Nechols JR, et al. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions. Exp Appl Acarol,2006,38(2):141-149.
    [74]Cleveland CB, Mayes MA, Cryer SA. An ecological risk assessment for spinosad use on cotton. Pest Manag Sci,2002,58(1):70-84.
    [75]Prabhu K, Murugan K, Nareshkumar A, et al. Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi. Asian Pac J Trop Med,2011,4(8):610-613.
    [76]Ismail MS, Soliman MF, El Naggar MH, et al. Acaricidal activity of spinosad and abamectin against two-spotted spider mites. Exp Appl Acarol,2007,43(2):129-135.
    [77]Spinosad-a case study:an example from a natural products discovery programme
    [78]Bohm C, Schnyder M, Thamsborg SM, et al. Assessment of the combination of spinosad and milbemycin oxime in preventing the development of canine Angiostrongylus vasorum infections. Vet Parasitol,2014,199(4):272-277.
    [79]Dryden MW, Ryan WG Bell M, et al. Assessment of owner-administered monthly treatments with oral spinosad or topical spot-on fipronil/(S)-methoprene in controlling fleas and associated pruritus in dogs. Vet Parasitol,2013,191(3):340-346.
    [80]Authority. APaVM:Evaluation of the new active spinetoram in the product DELEGATE INSECTICIDE. Australia:Canberra; 2008.
    [81]崔丽,张佳,黄文九等.美国果菜类蔬菜2010年农药使用情况分析.农药科学与管理,2012,33(5):15-22.
    [82]Sial AA, Brunner JF. Assessment of resistance rsk in oblique banded leaf roller (Lepidoptera: Tortricidae) to the reduced-risk insecticides Chlorantraniliprole and Spinetoram. J Econ Entomol, 2010,103(4):1378-1385.
    [83]Sial AA, Brunner JF. Toxicity and residual efficacy of Chlorantraniliprole, Spinetoram, and Emamectin Benzoate to oblique banded leaf roller (Lepidoptera:Tortricidae). J Econ Entomol, 2010,103(4):1277-1285.
    [84]Gao X, Zhao H, Zhang G, et al. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Curr Microbiol,2012,65(2):128-132.
    [85]夏燕春,王超,陈园等.基于基因组重排技术的多杀菌索高产菌株选育.化工学报,2009,5:31-39.
    [86]Van Steenwyk RA, Dunley JE. Spinetoram-a Second Generation Spinosyn Insecticide for Pear Pest Management. Proceedings of the Xth International Pear Symposium,2008,2(800):867-873.
    [87]Salgado VL. Studies on the Mode of action of Spinosad:insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology,1998,60(2):91-102.
    [88]Perry T, McKenzie JA, Batterham P. A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochem Mol Biol,2007,37(2):184-188.
    [89]Hucho FW, Oberthur F, F. L. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M11 of the receptor subunits. FEBS Lett,1986,205:137-142.
    [90]Imoto K, Methfessel C, Sakmann B, et al. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature,1986,324(6098):670-674.
    [91]Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. JMol Biol,1993,229(4):1101-1124.
    [92]Millar NS, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invert Neurosci,2007,7(1):53-66.
    [93]Madden DR. The structure and function of glutamate receptor ion channels. Nat Rev Neurosci, 2002,3(2):91-101.
    [94]Marshall J, Buckingham SD, Shingai R, et al. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBOJ,1990,9(13):4391-4398.
    [95]Lummis SC, Ellory JC, Sattelle DB. The cross-linking reagent dimethyl suberimate modifies the target size of an insect nervous system nicotinic acetylcholine receptor. Neurosci Lett,1988, 87(l):145-150.
    [96]Amar M, Thomas P, Wonnacott S, et al. A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine recepton when expressed in Xenopus oocytes. Neurosci Lett,1995,199(2):107-110.
    [97]Yao X, Song F, Chen F, et al. Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor beta subunits influence neonicotinoid selectivity. Insect Biochem Mol Biol,2008, 38(9):834-840.
    [98]Liu Z, Williamson MS, Lansdell SJ, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA,2005,102(24):8420-8425.
    [99]Perry T, Heckel DQ McKenzie JA, et al. Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochem Mol Biol,2008,38(5):520-528.
    [100]Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunit Mdalpha6 from Musca domestica is diversified via post-transcriptional modification. Insect Molecular Biology, 2007,16(3):325-334.
    [101]May RM. How many species are there on Earth? Science,1988,241 (4872):1441-1449.
    [102]Pimm SL, Russell GJ, Gittleman JL, et al. The future of biodiversity. Science,1995, 269(5222):347-350.
    [103]Whalley P, Jarzembowski EA. A new assessment of Rhyniella, the earliest known insect, from the Devonian of Rhynie, Scotland. Nature,1981:291-317.
    [104]彩万志,庞雄飞,花保祯等.北京:中国农业大学出版社;2001.
    [105]Konno Y, Scott JG Biochemistry and genetics of abamectin resistant in the housefly. Pesticide Biochemistry and Physiology,1991,41:21-28.
    [106]Noppun V, Saito T, Miyata T. Cuticular penetration of S-fenvalerate in fenvalerate-resistant and susceptible strains of the diamondback moth, Plutella xylostella (L.). Pesticide Biochemistry and Physiology,1989,33(1):83-87.
    [107]Delorme R, Fournier D. Esterase metabolism and reduced penetration are caused of resistance to deltamethrin in Spodoptera exigua HUB(Lepidoptera:Noctuidea). Pesticide Biochemistry and Physiology,1988,32:240-246.
    [108]Kerns DL, Palumbo JC, Tellez T. Resistance of field strains of beet armyworm (Lepidoptera: Noctuidae) from Arizona and California to carbamate insecticides. J Econ Entomol,1998, 91(6):1038-1043.
    [109]Aronson AI, Han ES, McGaughey W, et al. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl Environ Microbiol,1991,57(4):981-986.
    [110]Heckel DG, Gahan LC, Gould F, et al. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis CrylAc endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J Econ Entomol,1997,90(1):75-86.
    [111]Estabrook RW. The remarkable P4150s:A historical overview of these versatile hemeprotein catalysts. Faseb Journal,1996,10(2):202-204.
    [112]Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily:update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol,1993,12(1):1-51.
    [113]Helvig C, Koener JF, Unnithan GC, et al. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone Ⅲ in cockroach corpora allata. Proc Natl Acad Sci U S A,2004,101(12):4024-4029.
    [114]Sutherland TD, Unnithan GC, Andersen JF, et al. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci U S A,1998, 95(22):12884-12889.
    [115]Kayser H, Winkler T, Spindler-Barth M.26-hydroxylation of ecdysteroids is catalyzed by a typical cytochrome P-450-dependent oxidase and related to ecdysteroid resistance in an insect cell line. Eur J Biochem,1997,248(3):707-716.
    [116]Rose RL, Barbhaiya L, Roe RM, et al. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology,1995,51(3):178-191.
    [117]Murataliev MB, Feyereisen R. Mechanism of cytochrome P450 reductase from the house fly: evidence for an FMN semiquinone as electron donor. FEBS Lett,1999,453(1-2):201-204.
    [118]Reed JR, Cawley GF, Ardoin TG, et al. Environmentally persistent free radicals inhibit Cytochromes P450 activity in rat liver microsomes. Toxicol Appl Pharmacol,2014, DOI: 10.1016/j.taap.2014.03.021.
    [119]McQuarters AB, Wolf MW, Hunt AP, et al.:After 56 Years of Research, Cytochrome P450 reactivity is finally explained. Angew Chem Int Ed Engl,2014, DOI:10.1002/anie.201402404.
    [120]Taylor M, Feyereisen R. Molecular biology and evolution of resistance of toxicants. Mol Biol Evol,1996,13(6):719-734.
    [121]Scott JG, Wen Z. Cytochromes P450 of insects:the tip of the iceberg. Pest Manag Sci,2001, 57(10):958-967.
    [122]Bautista MA, Miyata T, Miura K, et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol,2009,39(1):38-46.
    [123]Motoyama N, Dauterman WC. Comparative studies on the molecular weight of glutathione S-transferases from mammalian livers and an insect. Comp Biochem Physiol B,1979, 63(4):451-454.
    [124]Kulkarni AP, Motoyama N, Dauterman WC, et al. Inhibition of housefly glutathione S-transferase by catecholamines and quinones. Bull Environ Contam Toxicol,1978,20(2):227-232.
    [125]Ramoutar D, Cowles RS, Alm SR. Pyrethroid resistance mediated by enzyme detoxification in Listronotus maculicollis (Coleoptera:Curculionidae) from connecticut.J Econ. Entomol,2009, 102(3):1203-1208.
    [126]Hayes JD, Strange RC. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res,1995,22(3):193-207.
    [127]Hayes JD, Pulford DJ. The glutathione S-transferase supergene family:regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol,1995,30(6):445-600.
    [128]Feng QL, Davey KQ Pang AS, et al. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana:identification, characterization, localization, cDNA cloning, and expression. Insect Biochem Mol Biol,1999,29(9):779-793.
    [129]Clark AG. The comparative enzymology of the glutathione-S-transferases from non-vertebrate organisms. Comp Biochem Physiol B,1989,92:419-446.
    [130]Fournier D, Bride JM, Poirie M, et al. Insect glutathione S-transferases. Biochemical characteristics of the major forms from house flies susceptible and resistant to insecticides. J Biol Chem,1992,267(3):1840-1845.
    [131]Snyder MJ, Walding JK, Feyereisen R. Glutathione S-transferases from larval Manduca sexta midgut:sequence of two cDNAs and enzyme induction. Insect Biochem Mol Biol,1995, 25(4):455-465.
    [132]Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J, 2001,359(2)295-304.
    [133]Maymo AC, Cervera A, Sarabia R, et al. Evaluation of metabolic detoxifying enzyme activities and insecticide resistance in Frankliniella occidentalis. Pest Manag Sci,2002, 58(9):928-934.
    [134]Bielza P, Quinto V, Contreras J, et al. Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Manag Sci, 2007,63(7):682-687.
    [135]Zhu YC, Snodgrass GL, Chen MS. Comparative study on glutathione S-transferase activity, cDNA, and gene expression between malathion susceptible and resistant strains of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry and Physiology,2007,87(1):62-72.
    [136]Argentine JA, Clark JM, H. L. Genetics and biochemical mechanisms of abamectin resistance in two isogenic strains of Colorado potato beetle. Pesticide Biochemistry and Physiology,1992, 44(3):191-207.
    [137]Mouches C, Magnin M, Berge JB, et al. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc Natl Acad Sci U S A,1987,84(8):2113-2116.
    [138]Bielza P. Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag Sci,2008,64(11):1131-1138.
    [139]Espinosa PJ, Contreras J, Quinto V, et al. Metabolic mechanisms of insecticide resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Pest Manag Sci,2005, 61(10):1009-1015.
    [140]Gunning RV, Dang HT, Kemp FC, et al. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol, 2005,71(5):2558-2563.
    [141]Walker CH, Mackness MI. Esterases:problems of identification and classification. Biochem Pharmacol,1983,32(22):3265-3269.
    [142]Devonshire AL, Moores GD. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pesticide Biochemistry and Physiology,1982,18(2):235-246.
    [143]Cuong NL, Ben PT, Phuong LT, et al. Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens (Stal) and predator population development in the Mekong Delta, Vietnam. Crop Protection,1997,16(8):707-715.
    [144]Brattsten LB. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. Journal of Chemical Ecology,1988,14(10):1919-1939.
    [145]Field LM, Pickett JA, Wadhams LJ. Molecular studies in insect olfaction. Insect Molecular Biology,2000,9(6):545-551.
    [146]Gu SH, Zhou JJ, Wang GR, et al. Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol,2013,43(3):237-251.
    [147]Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews,1998,62(3):775-806.
    [148]Bravo A, Gomez I, Conde J, et al. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica Et Biophysica Acta-Biomembranes,2004,1667(1):38-46.
    [149]Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology,2006,92(3):166-171.
    [150]Kristensen M, Spencer AQ Jespersen JB. The status and development of insecticide resistance in Danish populations of the housefly Musca domestica L. Pest Manag Sci,2001,57(1):82-89.
    [151]Toda S, Komazaki S, Izawa H, et al. Development of molecular diagnostics-of the two point mutations in acetylcholinesterase gene associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover, (Homoptera:Aphididae) and a survey of genotypic frequency in field populations. Applied Entomology and Zoology,2008,43(1):127-133.
    [152]Mutero A, Pralavorio M, Bride JM, et al. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci USA,1994,91(13):5922-5926.
    [153]Fournier D, Bride JM, Hoffmann F, et al. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. J Biol Chem,1992,267(20):14270-14274.
    [154]Raymond M, Fournier D, Bride JM, et al. Identification of resistance mechanisms in Culex pipiens (Diptera:Culicidae) from southern France:insensitive acetylcholinesterase and detoxifying oxidases. J Econ Entomol,1986,79(6):1452-1458.
    [155]Herrero S, Oppert B, Ferre J. Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Appl Environ Microbiol,2001,67(3):1085-1089.
    [156]Baxter SW, Chen M, Dawson A, et al. Mis-spliced transcripts of nicotinic acetylcholine receptor alpha6 are associated with field evolved spinosad resistance in Plutella xylostella (L.). PLoS Genet,2010,6(1):e1000802.
    [157]Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257(5072):967-971.
    [158]Brooke BD, Koekemoer LL. Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasites & Vectors,2010,3.
    [159]Berge JB, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos Trans R Soc Lond B Biol Sci,1998,353(1376):1701-1705.
    [160]Mouches C, Pasteur N, Berge JB, et al. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science,1986,233(4765):778-780.
    [161]Waters LC, Simms SI, Nix CE. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in Drosophila. Biochem Biophys Res Commun,1984, 123(3):907-913.
    [162]Houpt DR, Pursey JC, Morton RA. Genes controlling malathion resistance in a laboratory-selected population of Drosophila melanogaster. Genome,1988,30(6):844-853.
    [163]Feyereisen R. Insect P450 enzymes. Annu Rev Entomol,1999,44:507-533.
    [164]Ren XX, Han ZJ, Wang YC. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Archives of Insect Biochemistry and Physiology,2002, 51(3):103-110.
    [165]Schuster SC. Next-generation sequencing transforms today's biology. Nature Methods,2008, 5(1):16-18.
    [166]Shendure J, Ji HL. Next-generation DNA sequencing. Nat Biotechnol,2008, 26(10):1135-1145.
    [167]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437(7057):376-380.
    [168]Shaffer C. Next-generation sequencing outpaces expectations. Nat Biotechnol,2007, 25(2):149.
    [169]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26(10):1135-1145.
    [170]Shendure JA, Porreca GJ, Church GM. Overview of DNA sequencing strategies. Curr Protoc Mol Biol,2008,7(1):321-342.
    [171]Millat Q Chanavat V, Rousson R. Evaluation of a new high-throughput next-generation sequencing method based on a custom ampliSeq library and ion torrent PGM sequencing for the rapid detection of genetic variations in long QT syndrome. Mol Diagn Ther,2014, DOI: 10.1007/s40291-014-0099-y.
    [172]Kim HA, Lim CJ, Kim S, et al. High-throughput sequencing and de novo assembly of Brassica oleracea var. Capitata L. for Transcriptome Analysis. Plos One,2014,9(3):e92087.
    [173]Xu J, Yuan Y, Xu Y, et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol,2014,14(1):83.
    [174]Sun M, Ju H, Zhou Z, et al. Pilot genome-wide study of tandem 3'UTRs in esophageal cancer using high-throughput sequencing. Mol Med Rep,2014,9(5):1597-1605.
    [175]Alamancos GP, Agirre E, Eyras E. Methods to study splicing from high-throughput RNA sequencing data. Methods Mol Biol,2014,1126:357-397.
    [176]Villarino GH, Bombarely A, Giovannoni JJ, et al. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. Plos One,2014,9(4):e94651.
    [177]Girault G, Blouin Y, Vergnaud G, et al. High-throughput sequencing of Bacillus anthracis in France:investigating genome diversity and population structure using whole-genome SNP discovery. BMCGenomics,2014,15(1):288.
    [178]Duarte J, Riviere N, Baranger A, et al. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genomics,2014,15:126.
    [179]Li MY, Wang F, Xu ZS, et al. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics,2014,15(1):242.
    [180]PA CtH, Friedlander MR, Almlof J, et al. Corrigendum:Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol,2014,32(3):291.
    [181]Jiang J, Lv M, Liang Y, et al. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics,2014,15:146.
    [182]McGinn J, Czech B. Small RNA library construction for high-throughput sequencing. Methods Mol Biol,2014,1093:195-208.
    [183]Georgiou Q Ippolito GC, Beausang J, et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol,2014,32(2):158-168.
    [184]Xu ZP, Liu FY, Chen J, et al. Using an F-2 screen to monitor frequency of resistance alleles to Bt cotton in field Populations of Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Pest Manag Sci,2009,65(4):391-397.
    [185]Ando T, Inomata S, Yamamoto M. Lepidopteran sex pheromones. Topics in Current Chmistry, 2004,239:51-96.
    [186]杜静,刘重喜,王相晶等.新颖绿色杀虫剂-spinetoram.世界农药,2010,32(4):55-58.
    [187]梁革梅,谭维嘉,郭予元.人工饲养棉铃红从技术的改进.植物保护,1999,25:15-17.
    [188]梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究.中国农业科学,2000,33(4):46-53.
    [189]Cao GC, Lu Q, Zhang LL, et al. Toxicity of chlorantraniliprole to Cry1Ac-susceptible and resistant strains of Helicoverpa armigera. Pesticide Biochemistry and Physiology,2010, 98(1):99-103.
    [190]覃振新,林韦加,李春元等.6%乙基多杀菌素悬浮剂防治稻纵卷叶螟田间药效试验结果初报.广西植保,2011,24(4):12-13.
    [191]付文君,何江,米慧等.6种新型药剂防治马铃薯甲虫田间药效初探.新疆农业科学,2013,50(8):1482-1487.
    [192]Aboul-Soud MA, Al-Othman AM, El-Desoky GE, et al. Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats. J Toxicol Sci,2011,36(3):285-296.
    [193]Sharma HC, Pampapathy G, Wadaskar RM, et al. Impact of Bt transgenic cottons and insecticides on target and non-target insect pests, natural enemies and seedcotton yield in India. Indian Journal of Agricultural Sciences,2012,82(3):248-254.
    [194]Blacquiere T, Smagghe G, van Gestel CAM, et al. Neonicotinoids in bees:a review on concentrations, side-effects and risk assessment. Ecotoxicology,2012,21(4):973-992.
    [195]Naqvi SM, Vaishnavi C. Bioaccumulative potential and toxicity of endosulfan insecticide to non-target animals. Comp Biochem Physiol C,1993,105(3):347-361.
    [196]Goncalves MF, Santos AP, Torres LM. Efficacy of spinosad bait sprays to control Bactrocera oleae and impact on non-target arthropods. Phytoparassitica,2012,40:17-28.
    [197]Gradish AE, Scott-Dupree CD, Shipp L, et al. Effect of reduced risk pesticides on greenhouse vegetable arthropod biological control agents. Pest Manag Sci,2011,67(1):82-86.
    [198]Jiang Y, Swale D, Carlier PR, et al. Evaluation of novel carbamate insecticides for neurotoxicity to non-target species. Pesticide Biochemistry and Physiology,2013,106:156-161.
    [199]Tirello P, Pozzebon A, Duso C. The effect of insecticides on the non-target predatory mite Kampimodromus aberrans:laboratory studies. Chemosphere,2013,93(6):1139-1144.
    [200]Raybould A, Vlachos D. Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Research,2011, 20(3):599-611.
    [201]Romeis J, Hellmich RL, Candolfi MP, et al. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Research,2011,20(1):1-22.
    [202]Carstens K, Anderson J, Bachman P, et al. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing. Transgenic Research,2012,21(4):813-842.
    [203]Li YH, Romeis J, Wu KM, et al. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods. Insect Science,2014, 21(2):125-134.
    [204]Haynes KF. Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol, 1988,33:149-168.
    [205]王东:棉铃虫(Helicoverpa armigera)对多杀菌素的抗性机理及多杀菌素对其胁迫效应研究.山东农业大学;2010.
    [206]Stark JD, Rangus TM. Lethal and sublethal effects of the neem insecticide formulation, 'Margosan-O', on the pea aphid. Pest Manag Sci,1994,41(2):155-160.
    [207]王建军,董红刚,袁林泽.亚致死浓度茚虫威对斜纹夜蛾生长发育及解毒酶活性的影响.扬州大学学报(农业与生命科学版),2009,30(4):85-89.
    [208]冯从经,陆剑锋,董秋安等.亚致死剂量双氧威和虫酰肼对亚洲玉米螟幼虫生长发育的影响.植物保护学报,2008,35(2):175-180.
    [209]李国平,封洪强,梁双双等.四种杀虫刹亚致死剂量对中黑盲蝽发育和繁殖的影响.昆虫学戒2008,51(12):1260-1264.
    [210]董利霞,谭晓伟,芮昌辉.甲氨基阿维菌素苯甲酸盐亚致死剂量对不同敏感性棉铃虫解毒酶活性的影响.植物保护,2011(05):164-168.
    [211]Zhang RM, Dung JF, Chen JH, et al. The Sublethal Effects of Chlorantraniliprole on Helicoverpa armigera (Lepidoptera:Noctuidae). Journal of Integrative Agriculture,2013, 12(3):457-466.
    [212]Rodriguez MM, Bisset J, Ruiz M, et al. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera:Culicidae) from Cuba. JMed Entomol,2002,39(6):882-888.
    [213]Kim YJ, Lee SH, Lee SW, et al. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae):cross-resistance and biochemical resistance mechanisms. Pest Manag Sci,2004, 60(10):1001-1006.
    [214]Lumjuan N, McCarroll L, Prapanthadara LA, et al. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol,2005,35(8):861-871.
    [215]梁沛,夏冰,石泰等.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽S-转移酶的影响.中国农业大学学报,2003,8(3):65-68.
    [216]Han ZJ, Moores GD, Denholm I, et al. Association between Biochemical Markers and Insecticide Resistance in the Cotton Aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology,1998,62(3):164-171.
    [217]Oppenoorth FJ, van der Pas LJT, Houx NWH. Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pesticide Biochemistry and Physiology,1979,11(1):176-188.
    [218]Li F, Han Z. Purification and characterization of acetylcholinesterase from cotton aphid (Aphis gossypii Glover). Arch Insect Biochem Physiol,2002,51(1):37-45.
    [219]Hansen LG, Hodgson E. Biochemical characteristics of insect microsomes. N-and O-demethylation. Biochem Pharmacol,1971,20(7):1569-1578.
    [220]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254.
    [221]Sial AA, Brunner JF, Garczynski SF. Biochemical characterization of chlorantraniliprole and spinetoram resistance in laboratory-selected oblique banded leaf roller, Choristoneura rosaceana (Harris) (Lepidoptera:Tortricidae). Pesticide Biochemistry and Physiology,2011,99(3):274-279.
    [222]Sial AA, Brunner JF. Selection for resistance, reversion towards susceptibility and synergism of chlorantraniliprole and spinetoram in obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera:Tortricidae). Pest Manag Sci,2012,68(3):462-468.
    [223]Cirulli ET, Singh A, Shianna KV, et al. Screening the human exome:a comparison of whole genome and whole transcriptome sequencing. Genome Biol,2010,11(5):57-62.
    [224]Huang X, Madan A. CAP3:A DNA sequence assembly program. Genome Res,1999, 9(9):868-877.
    [225]Chou HH, Holmes MH. DNA sequence quality trimming and vector removal. Bioinformatics, 2001,17(12):1093-1104.
    [226]Chevreux B, Pfisterer T, Drescher B, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res,2004, 14(6):1147-1159.
    [227]Chen YA, Lin CC, Wang CD, et al. An optimized procedure greatly improves EST vector contamination removal. BMC Genomics,2007,8:416.
    [228]Lassmann T, Hayashizaki Y, Daub CO. TagDust-a program to eliminate artifacts from next generation sequencing data. Bioinformatics,2009,25(21):2839-2840.
    [229]Meyer E, Aglyamova GV, Wang S, et al. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSF1x. BMC Genomics,2009,10:219-237.
    [230]Conesa A, Gotz S, Garcia-Gomez JM, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005, 21(18):3674-3676.
    [231]Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25(17):3389-3402.
    [232]Anderson I, Brass A. Searching DNA databases for similarities to DNA sequences:when is a match significant? Bioinformatics,1998,14(4):349-356.
    [233]Ye J, Fang L, Zheng H, et al. WEGO:a web tool for plotting GO annotations. Nucleic Acids Res,2006,34293-297.
    [234]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods,2001,25(4):402-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700