电液伺服并联六自由度舰船运动模拟器轨迹跟踪控制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船运动模拟器以其优越的可控性、无破坏性、经济性、可靠性等优点,得到了广泛的应用。电液伺服并联六自由度机构作为舰船运动模拟器的驱动机构,具有位置精度高、承载能力强等优点。轨迹跟踪性能是并联六自由度机构的重要性能指标之一,随着应用的需要,人们对轨迹跟踪性能的要求越来越高。然而,并联六自由度机构本身是一个多输入多输出强耦合非线性系统,且与电液伺服系统的非线性因素互相耦合,这对电液伺服并联六自由度机构的高精度控制提出了挑战。另一方面,在舰船运动模拟器运行时,常常会受到来自外界的不确定干扰,这也给系统的控制带来了难度。本论文以电液伺服并联六自由度机构作为研究对象,采取理论分析、建模仿真与实验相结合的方法,系统地研究了不确定干扰下电液伺服并联六自由度机构的轨迹跟踪控制方法,并将其应用到舰船装备动态环境模拟研究中。主要研究内容如下:
     第一章,介绍了课题来源及背景,在查阅国内外文献的基础上,介绍了舰船运动模拟器的研究情况。对并联六自由度机构的研究情况特别是并联六自由度机构控制技术的研究现状和发展趋势进行了综述,并提出了目前并联六自由度机构控制需要解决的几个问题。根据课题的研究目标,提出了本课题的主要研究内容。
     第二章,对并联六自由度机构进行了数学建模,给出了并联六自由度机构的运动学和动力学模型。在此基础上,提出一种基于关节力传感器的并联六自由度机构结构参数标定方法。仿真和实验均证明,该方法对并联六自由度机构的精度有明显的改进,为实现系统的高精度控制提供了条件。
     第三章,对并联六自由度机构存在的不确定干扰进行分析,提出一种利用关节力传感器获取不确定干扰信息的方法,从而将并联六自由度机构分解成各自独立的关节进行控制。给出了关节电液伺服系统的数学模型,并推导了关节鲁棒自适应控制器。仿真和实验证明该方法对不确定外干扰具有明显的抑制作用。
     第四章,提出了基于关节空间干扰观测器的并联六自由度机构级联控制方法,将非线性干扰观测器、滑模控制器和级联控制方法相结合用于电液伺服并联六自由度机构的控制。通过利用关节干扰观测器代替关节力传感器以获取不确定干扰信息,减少了成本。采用级联控制方法将液压驱动器非线性动态引入控制器设计。控制器为内环和外环级联结构,内环采用反馈线性化理论进行设计,外环采用滑模控制方法。仿真和实验表明,在不额外增加传感器的情况下,该方法能有效克服外干扰的影响。
     第五章,对基于关节空间干扰观测器的并联六自由度机构协同控制方法进行了研究。定义了并联六自由度机构同步误差,并设计协同控制器使得关节误差与同步误差均渐进收敛,从而使得整个系统各关节协同运动。该方法解决了并联六自由度机构基于关节空间控制方法各关节控制器无法协同工作的问题。仿真和实验表明,该方法在保证各关节控制性能的同时,能有效提高系统协同性。
     第六章,对并联六自由度机构基于工作空间的控制方法进行了研究。利用并联六自由度机构的运动学正解作为工作空间的反馈信号设计控制器。考虑到一般滑模控制和自适应控制的不足,定义综合干扰概念,并通过设计自适应干扰观测器消除综合干扰。利用反步法(Backstepping)推导出控制器。仿真和实验表明,综合干扰观测器能有效补偿系统不确定干扰,控制性能较好。
     第七章,提出一种频域/时域双环的并联六自由度机构多自由度功率谱复现的方法。此方法分为时域内环和频域外环,其中时域内环采用本论文前述的电液位置伺服控制方法,频域外环将目标功率谱信号转换为时域驱动信号。该方法不需要安装加速度传感器,仅利用舰船运动模拟器本身的关节位移传感器即可进行六自由度的功率谱复现。
     第八章,总结了本课题的研究成果、结论和创新点,并对后续研究工作做出了展望。
Ship motion simulators have been used in various applications, due to their advantages such as superior controllability, non-destructivity, economical efficiency, high reliability, etc. Ship motion simulators are often driven by electro-hydraulic six degree of freedom (6DOF) parallel mechanisms, due to the high precision, high capacity and so on. High trajectory tracking accuracy is an important criterion for the use of 6DOF parallel mechanisms. However, the control of electro-hydraulic 6DOF parallel mechanism is challenging as its dynamics is highly nonlinear. Furthermore, the control of hydraulic actuators is more challenging than that of their electrical counterparts, due to the phenomena such as nonlinear servo valve flow-pressure characteristics, fluid compressibility, and valve overlap. On the other hand, the ship motion simulators often subject to uncertainty disturbances from the external environment. This thesis addresses the study of electro-hydraulic 6DOF parallel mechanism. With the help of theoretical analysis, simulation and experimental research, the trajectory tracking control of the 6DOF parallel mechanism with uncertain disturbance is investigated systemically. Then, the application to the simulation of ship equipment in a dynamic environment is studied.
     This doctoral dissertation consists of eight chapters. The main contents are as follows:
     In Chapter 1, the support and background of the research is introduced. On the basis of referring to domestic and international associated documents, the overview of ship motion simulators is summarized. Then, the present research situation and trends of 6DOF parallel mechanism and control of 6DOF parallel mechanism are reviewed, and several issues to be resolved are proposed. Finally, the research object and main research content of the subject are illustrated.
     In Chapter 2, the mathematic model of 6DOF parallel mechanism is derived. Then, based on joint force sensors, a structure parameter calibration method of 6DOF parallel mechanism is proposed. Simulation and experimental results show that this method significantly improves the accuracy of 6DOF parallel mechanism. This chapter provides a basis for high precise control of 6DOF parallel mechanism.
     In Chapter 3, according to analysis the uncertain disturbances of 6DOF parallel mechanism, the method which uses force sensors to measure load forces is proposed. Through using force sensors, the 6DOF parallel mechanism has been decoupled into six independent legs. Then, the mathematical model of hydraulic system is given, and the adaptive robust controller is derived. Simulation and experimental results show that the proposed controller gives a good performance for the specified tracking task in the presence of uncertain load disturbances.
     In Chapter 4, observer-based cascade control of 6DOF parallel hydraulic mechanism in joint space coordinate is proposed. Cascade control, nonlinear disturbance observer technique and sliding mode control are integrated to design the controller for 6DOF parallel hydraulic mechanism. In order to reduce costs, disturbance observer, instead of force sensor, is used to obtain disturbance information. Hydraulic actuator dynamics models are incorporated in the controller design by using cascade control algorithm. This algorithm is applied to separate the hydraulic dynamics from the mechanical part, which can mask the hydraulic dynamics with an inner loop. The inner loop controller is designed based on the feedback linearization, and the outer loop is derived by using sliding mode control. Simulation and experimental results confirm the effectiveness of the method.
     In Chapter 5, observer-based synchronous tracking control of 6DOF parallel mechanism in joint coordinate is studied. The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent one based on the synchronous goal. Then the controller is designed with feedback of both position error and synchronization error. The proposed controller is proven to guarantee asymptotic to convergence to zero of both the position errors and synchronization errors. This method solves the problem that joint space control scheme cannot guarantee 6DOF parallel mechanism to work in a synchronous manner. Simulation and experimental results confirm that this method guarantees the tacking accuracy in joint space and can effectively improve system interoperability at the same time.
     In Chapter 6, the task space control of 6DOF parallel mechanism is developed. The direct kinematics of 6DOF parallel mechanism is used as feedback signal to design controller. Considering the drawbacks of conventional sliding mode control and adaptive control, a lumped disturbance which synthesizes both parametric uncertainties, uncertain external disturbance and un-modeled dynamics is first defined. An adaptive disturbance observer is then constructed to estimate and compensate the lumped disturbance. The backstepping design method is adopted to derive the controller. Simulation and experimental results confirm the effectiveness of the method.
     In Chapter 7, the method which uses ship motion simulator to reproduce the power spectrum with frequency domain loop and time domain loop is proposed. This method is divided into time domain inner loop and frequency domain outer loop. The aforementioned electro-hydraulic servo control method can be used in the time domain loop. The target power spectrum signal is converted into time domain drive signal in the frequency domain loop. This method does not require additional acceleration sensors, and can be used in ordinary shaking table.
     In Chapter 8, the main research work, conclusions and innovation points of this thesis are summarized. Then, future development is predicted in order to provide references for the further research on this project.
引文
[1]程佳.并联4TPS-1PS型电动稳定跟踪平台的特性及控制研究.杭州:浙江大学博士论文,2008.
    [2]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999.
    [3]陈浩锋.船舶运动模拟平台电液伺服控制系统研究.长沙:国防科技大学硕士论文,2005.
    [4]韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯,2001,11(3):88-90.
    [5]陈晓江.六自由度舰船模拟摇摆平台运动系统的分析与研究.南京:南京理工大学硕士学位论文,2006.
    [6]K Jonathan A, S Edward C. Analysis and control of the transient shipboard engagement behavior rotor systems; Proceedings of the 55th AHS Annual Forum, 1999.
    [7]M Liu J, L Lyle N. Higher order accurate ship airwake predictions for the helicopter/ship interface problem; Proceedings of the 54th AHS Annual Forum,1998.
    [8]胡国才,石舫,姜军.直升机在舰上的稳定性.海军航空工程学院学报,1996,11(1):45-48.
    [9]贾忠湖,王素华,郭卫刚.舰船摇摆对直升机稳定性影响的分析.海军航空工程学院学报,2002,17(3):339-341.
    [10]胡国才,侯志强,应朝龙.六自由度舰面模拟平台的数学建模与仿真.海军航空工程学院学报,2006,21(3):307-310.
    [11]www.tno.nl.
    [12]www.army.mil.
    [13]www.august-design.com.
    [14]www.mi.mun.ca/cms.
    [15]www.km.kongsberg.com.
    [16]www.nbdl.org.
    [17]Rekdalsbakken W. Design and Application of a Motion Platform for a High-Speed Craft Simulator; IEEE International Conference on Mechatronics,2006.
    [18]石德新,万磊,江世媛,曹正泉,刘悦.6自由度船舶运动模拟系统.船舶工程,1997,2:4-14.
    [19]赵新华,孙尧,卢志忠.虚拟海洋环境中潜艇六自由度运动的视景仿真.系统仿真学报,2006,18(z1):226-229.
    [20]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [21]李麓,李维嘉.潜艇水下六自由度运动仿真数学模型.计算机仿真,2001,18(5):33-38.
    [22]吴江宁.并联式六自由度平台及其控制研究.杭州:浙江大学博士学位论文,1996.
    [23]施朝健,胡甚平.船舶操纵模拟器技术性能标准研究.上海海事大学学报,2005,26(2):4-8.
    [24]Merlet Jp. Parallel robots. Kluwer Academic Publishers,2006.
    [25]Gough V. E., Whitehall S. G. Universal tyre testing machine; Proceedings of the FISITA Ninth International Technical Congress, May,1962.
    [26]Stewart D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1965,180(15): 371-385.
    [27]Hunt K. H. Kinematic Geometry of Mechanisms. Oxford:Oxford Clarendon Press, 1978.
    [28]Hunter I. W., Lafontaine S., Nielsen P. M.F., Hunter P. J., Hollerbach J. M. Manipulation and dynamic mechanical testing of microscopic objects using a tele-micro-robot system. Control Systems Magazine, IEEE,1990,10(2):3-9.
    [29]Dasgupta Bhaskar, Mruthyunjaya T. S. The Stewart platform manipulator:a review. Mechanism and Machine Theory,2000,35(1):15-40.
    [30]Murthy V., Waldron K. J. Position kinematics of the generalized lobster arm and its series-parallel dual. Journal of Mechanical Design,1992,114:406-413.
    [31]汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107.
    [32]Merlet J. P. Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. International journal of robotics research,2004,23(3):221-235.
    [33]高征,高峰,苏锐.一种六自由度3_U_rPS并联机构的正解研究.中国机械工程,2007,18(7):846-850.
    [34]陈学生.并联机器人位置正解工作空间及尺度综合问题的研究.哈尔滨:哈尔滨工业大学博士学位论文,2002.
    [35]Nguyen C. C, Zhou Z. L., Antrazi S. S., Campbell Jr C. E. Efficient computation of forward kinematics and Jacobian matrix of a Stewart platform-based manipulator; NASA IEEE Proc of the Southeast Conf,1991.
    [36]李强.并联电液伺服六自由度平台系统低速运动研究.杭州:浙江大学博士学位论文,2008.
    [37]傅绍文,姚郁.基于动态控制方法的六自由度仿真平台位置正解研究.系统仿真学报,2006,18(z2):207-209.
    [38]贺利乐,刘宏昭.一种六自由度混合驱动并联机构的位置正解分析研究.中国机械工程,2007,18(8):920-923,970.
    [39]Geng Z., Haynes L., Inc I. A., Rockville M. D. Neural network solution for the forward kinematics problem of aStewart platform; IEEE International Conference on Robotics and Automation,1991.
    [40]Zhao J. S., Yun Y, Wang L. P., Wang J. S., Dong J. X. Investigation of the forward kinematics of the Gough-Stewart manipulator with natural coordinates. International journal of advanced manufacturing technology,2006,30(7-8):700-716.
    [41]Parikh P. J., Lam S. S. Y. A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Transactions on Robotics,2005,21(1):18-25.
    [42]Dasgupta B., Mruthyunjaya T. S. Closed-Form Dynamic Equations of the General Stewart Platform through the Newton-Euler Approach. Mechanism and Machine Theory,1998,33:993-1012.
    [43]Dasgupta B., Mruthyunjaya T. S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory,1998, 33(8):1135-1152.
    [44]孔令富,张世辉,肖文辉,李成元,黄真.基于牛顿—欧拉方法的6--PUS并联机构刚体动力学模型.机器人,2004,26(5):395-399.
    [45]Pang H., Shahinpoor M. Inverse dynamics of a parallel manipulator. Journal of Robotic Systems,1994,11(8):693-702.
    [46]Tsai L. W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. Journal of Mechanical Design,2000,122:3-9.
    [47]Lebret G, Liu K., Lewis F. L. Dynamic Analysis and Control of a Stewart Platform Manipulator. Journal of robotic systems,1993,10(5):629-655.
    [48]黄真.高等空间机构学.北京:高等教育出版社,2006.
    [49]Merlet J-P. A formal-numerical approach for robust in-workspace singularity detection. IEEE Trans on Robotics and Automation,2007,23(3):393-402.
    [50]高征.六自由度少支链并联机构的运动学与奇异位形研究.天津:河北工业大学博士学位论文,2006.
    [51]Merlet Jean-Pierre. Trajectery Verification in the Workspace for Parallel Manipulators. The International Journal of Robotics Research,1994,13(4):326-333.
    [52]傅绍文,姚郁.六自由度Stewart平台四维工作空间搜索方法.哈尔滨工业大学学报,2007,39(1):11-13.
    [53]王奇志,徐心和.一类具有对称结构并联机器人的工作空间.机器人,2001,23(4):322-325.
    [54]Gosselin C. Determination of the workspace of 6-dof parallel manipulators. ASME Journal of Mechanical Design,1990,112(3):331-336.
    [55]Merlet J. P. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots. Journal of Mechanical Design,2006,128:199.
    [56]于大泳.六自由度运动模拟器精度分析及其标定.哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [57]黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析.机械工程学报,1999,35(5):41-46.
    [58]王伟.运动模拟器结构参数优化与数字样机研究.杭州:浙江大学博士学位论文,2009.
    [59]谭民,徐德,侯增广,等.先进机器人控制.北京:高等教育出版社,2007.
    [60]丁学恭.机器人控制研究.杭州:浙江大学出版社,2006.
    [61]Markiewicz B. R. Analysis of the computed torque drive method and comparison with conventional position servo for a computer-controlled manipulator, memo. TM 33-601, JPL, Pasadena, CA,1973.
    [62]Codourey A. Dynamic modeling of parallel robots for computed-torque control implementation. International journal of robotics research,1998,17(12):1325-1336.
    [63]Lee S. H., Song J. B., Choi W. C, Hong D. H. Position control of a Stewart platform using inverse dynamics control with approximate dynamics. Mechatronics, 2003,13(6):605-619.
    [64]Fumagalli A., Masarati P. Real-time computed torque control using general-purpose multibody software. Multibody System Dynamics,2009,22(1): 47-68.
    [65]Ghobakhloo A., Eghtesad M., Azadi M. Position control of a Stewart-Gough platform using inverse dynamics method with full dynamics; 9th IEEE International Workshop on Advanced Motion Control, Istanbul, Turkey,2006.
    [66]吴军,李铁民,关立文.飞行模拟器运动平台的计算力矩控制.清华大学学报:自然科学版,2006,46(008):1405-1408.
    [67]Emelyanov S. V. Variable structure control systems. Moscow Nauka,1967.
    [68]Utkin V. I. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control,1977,22(2):212-222.
    [69]刘金琨.滑模变结构控制Matlab仿真.北京:清华大学出版社,2005.
    [70]Young K. D., Utkin V. I., Ozguner U. A control engineer's guide to sliding mode control. IEEE transactions on control systems technology,1999,7(3):328-342.
    [71]Slotine J. J., Sastry S. S. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. International Journal of Control,1983, 38(2):465-492.
    [72]高为炳.变结构控制理论及设计方法.北京:科学出版社,1996.
    [73]Lu Y. S., Chen J. S. Design of a global sliding-mode controller for a motor drive with bounded control. International Journal of Control,1995,62(5):1001-1019.
    [74]Choi H. S., Park Y. H., Cho Y. S., Lee M. H. Global sliding-mode control-Improved design for a brushless DC motor. IEEE control systems magazine,2001, 21(3):27-35.
    [75]肖雁鸿,葛召炎.全滑模变结构控制系统.电机与控制学报,2002,6(3):233-236.
    [76]Pi Y. J., Wang X. Y. Global sliding mode control of electro-hydraulic 6-DOF parallel robots; Proceedings of the Seventh International Conference on Fluid Power Transmission and Control, Hangzhou,2009.
    [77]Slotine Jje, Li W. Applied nonlinear control. Prentice Hall,1991.
    [78]Singh S. Adaptive model following control of nonlinear robotic systems. IEEE Transactions on Automatic Control,1985,30(11):1099-1100.
    [79]Zeinali M., Notash L. Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mechanism and machine theory,2010,45(1):80-90.
    [80]Zheng Y., Fattah H. A. A., Loparo K. A. Non-linear adaptive sliding mode observer-controller scheme for induction motors. International Journal of Adaptive Control and Signal Processing,2000,14(2-3):245-273.
    [81]Lo J.C., Kuo Y. H. Decoupled fuzzy sliding-mode control. IEEE Transactions on Fuzzy Systems,1998,6(3):426-435.
    [82]Palm R. Robust control by fuzzy sliding mode. Automatica,1994,30(9): 1429-1437.
    [83]Yoo B., Ham W. Adaptive fuzzy sliding mode control of nonlinear system. IEEE Transactions on Fuzzy Systems,1998,6(2):315-321.
    [84]Parma G.G., Menezes B. R., Braga A. P., Costa M. A. Sliding mode neural network control of an induction motor drive. International Journal of Adaptive Control and Signal Processing,2003,17(6):501-508.
    [85]Lin S.C., Chen Y.Y. RBF network based sliding mode control; IEEE International Conference on Systems, Man, and Cybernetics,1994.
    [86]董宁.自适应控制.北京:北京理工大学出版社,2009.
    [87]Dubowsky S., Desforges D. T. The application of model-referenced adaptive control to robotic manipulators. ASME Journal of Dynamic Systems, Measurement, and Control,1979,101:193-200.
    [88]Canudas De Wit C, Siciliano B., Bastin G. Theory of robot control. Springer, 1996.
    [89]Nicosia S., Tomei P. Model-reference adaptive-control algorithms for industrial robots. Automatica,1984,20(5):635-644.
    [90]Yu X. H., Man Z. H. Model reference adaptive control systems with terminal sliding modes. International Journal of Control,1996,64(6):1165-1176.
    [91]Kreisselmeier G, Anderson B. D. O. Robust model reference adaptive control. IEEE Transactions on Automatic Control,1986,31(2):127-133.
    [92]Astrom K. J. Theory and applications of adaptive control:A survey. Automatica, 1983,19(5):471-486.
    [93]Astrom K. J., Wittenmark B. Adaptive control. Addison-Wesley,1989.
    [94]Bondi P., Casalino G, Gambardella L. On the iterative learning control theory for robotic manipulators. IEEE Journal of Robotics and Automation,1988,4(1):14-22.
    [95]Bristow D. A., Tharayil M., Alleyne A. G A survey of iterative learning control. IEEE control systems magazine,2006,26(3):96-114.
    [96]刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究.杭州:浙江大学博士学位论文,2009.
    [97]Vivas A., Poignet P. Predictive functional control of a parallel robot. Control engineering practice,2005,13(7):863-874.
    [98]夏泽中,张光明.预测函数控制及其在伺服系统中的仿真研究.中国电机工程学报,2005,25(14):130-134.
    [99]Yao B., Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms* 1. Automatica,2001,37(9):1305-1321.
    [100]Yao B., Bu F. P., Reedy J., Chiu G. T. C. Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments. IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91.
    [101]朱笑丛.气动肌肉并联关节高精度位姿控制研究[博士学位论文].杭州;浙江大学,2007.
    [102]Kanellakopoulos I., Kokotovic V. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control,1991, 36(11):1241.
    [103]Krstic M., Kanellakopoulos I., Kokotovic P. V. Nonlinear and adaptive control design. New York:Wiley,1995.
    [104]Pan Z., Basar T. Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems. IEEE Transactions on Automatic Control,1998,43(8):1066-1083.
    [105]Shieh H. J., Shyu K. K. Nonlinear sliding-mode torque control with adaptive backsteppingapproach for induction motor drive. IEEE Transactions on Industrial Electronics,1999,46(2):380-389.
    [106]管成.非线性系统的滑模自适应控制及其在电液控制系统中的应用.杭州:浙江大学博士学位论文,2005.
    [107]Guo H. B., Liu Y. G, Liu G. R., Li H. R. Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode. Control engineering practice,2008,16(9):1055-1068.
    [108]Kim D. H., Kang J. Y, Lee K. I. Robust tracking control design for a 6 DOF parallel manipulator. Journal of Robotic Systems,2000,17(10):527-547.
    [109]Su Y. X., Duan B. Y, Zheng C. H. Nonlinear PID control of a six-DOF parallel manipulator. IEE Proc-Control Theory Appl,2004,151(1):95.
    [110]Pi Yangjun., Wang Xuanyin. Observer-based cascade control of a 6-DOF parallel hydraulic manipulator in joint space coordinate. Mechatronics,2010,20: 648-655.
    [111]Davliakos I., Papadopoulos E. Model-based control of a 6-dof electrohydraulic Stewart-Gough platform. Mechanism and machine theory,2008, 43(11):1385-1400.
    [112]Kim H. S., Cho Y M., Lee K. I. Robust nonlinear task space control for 6 DOF parallel manipulator. Automatica,2005,41(9):1591-1600.
    [113]王宣银,李强,程佳.液压Stewart平台基于工作空间综合偏差的同步控制.航空学报,2009,30(4):719-725.
    [114]王占林.近代电气液压伺服控制.北京:北京航空航天大学出版社,2005.
    [115]刘长年.液压伺服系统的分析与设计.北京:科学出版社,1985.
    [116]Sohl G. A., Bobrow J. E. Experiments and simulations on the nonlinear control of a hydraulic servosystem. IEEE transactions on control systems technology, 1999,7(2):238-247.
    [117]Eryilmaz B., Wilson B. H. Improved tracking control of hydraulic systems. Journal of dynamic systems measurement and control-transactions of the ASME,2001, 123(3):457-462.
    [118]Mohanty A., Yao B. Integrated direct/indirect adaptive robust control of multi-dof hydraulic robotic arms; ASME International Mechanical Engineering Congress and Exposition, Seattle,2007.
    [119]Chen H. M., Renn J. C, Su J. P. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system. International journal of advanced manufacturing technology,2005,26(1-2):117-123.
    [120]Guan C, Pan S. X. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control engineering practice,2008,16(11): 1275-1284.
    [121]唐国宝,黄田.Delta并联机构精度标定方法研究.机械工程学报,2003,39(8):55-60.
    [122]高建设.新型五自由度并联机床驱动输入选择与运动学标定研究.秦皇岛:燕山大学博士学位论文,2006.
    [123]Daney D. Kinematic calibration of the gough platform. Robotica,2003,21(6): 677-690.
    [124]张曙,Heisel U.并联运动机床.北京:机械工业出版社,2003.
    [125]Zhuang H., Masory O., Yan J. Kinematic calibration of a Stewart platform using pose measurements obtained by a single theodolite. IEEE/RSJ Intelligent Robots and Systems,1995:329-334.
    [126]Besnard S., Khalil W. Calibration of parallel robots using two inclinometers. IEEE International Conference on Robotics and Automation,1999:1758-1763.
    [127]Huang T., Chetwynd D. G, Whitehouse D. J., Wang J. A general and novel approach for parameter identification of 6-dof parallel kinematic machines. Mechanism and Machine Theory,2005,40(2):219-239.
    [128]魏世民,周晓光,廖启征.六轴并联机床运动精度的标定研究.中国机械工程,2003,14(23):1981-1985.
    [129]Everett L. J. Forward calibration of closed-loop jointed manipulators. The International Journal of Robotics Research,1989,8(4):85.
    [130]Bennett D. J., Hollerbach J. M. Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive endpoint constraints. IEEE Transactions on Robotics and Automation,1991,7(5):597-606.
    [131]Nahvi A., Hollerbach J. M., Hayward V. Calibration of a parallel robot using multiple kinematic closed loops; IEEE ICRA, San Diego,1994.
    [132]Wampler C. W., Hollerbach J. M., Arai T. An implicit loop method for kinematic calibration and itsapplication to closed-chain mechanisms. IEEE Transactions on Robotics and Automation,1995,11(5):710-724.
    [133]Ryu J., Rauf A. A new method for fully autonomous calibration of parallel manipulators using a constraint link. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2001:141-146.
    [134]Abtahi M., Pendar H., Alasty A., Vossoughi G. R. Calibration of parallel kinematic machine tools using mobility constraint on the tool center point. The International Journal of Advanced Manufacturing Technology,2009,45(5):531-539.
    [135]Koekebakker Sh. Model based control of a flight simulator motion system. PhD thesis, Delft University of Technology,2001.
    [136]Sirouspour M. R., Salcudean S. E. Nonlinear control of hydraulic robots. IEEE Transactions on Robotics and Automation,2001,17(2):173-182.
    [137]Farhad Aghili, Mehrzad Namvar. Adaptive Control of Manipulators Using Uncalibrated Joint-Torque Sensing; Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005.
    [138]Chen X, Komada S, Fukuda T. Design of a nonlinear disturbance observer. IEEE Transactions on Industrial Electronics,2000,47(2):429-437.
    [139]Nikoobin A, Haghighi R. Lyapunov-Based Nonlinear Disturbance Observer for Serial n-Link Robot Manipulators. Journal of Intelligent and Robotic Systems, 2009,55(2):135-153.
    [140]Sepehri N, Dumont Ga, Lawrence Pd, Sassani F. Cascade Control of Hydraulically Actuated Manipulators. Robotica,1990,8:207-216.
    [141]Heintze J. Design and Control of a Hydraulically Actuated Industrial Brick Laying Robot. PhD-thesis, Delft University of Technology,1997.
    [142]Heintze J, Van Der Weiden Ajj. Inner-loop design and analysis for hydraulic actuators, with an application to impedance control. Control Engineering Practice, 1995,3(9):1323-1330.
    [143]郭洪波,刘永光,李洪人.六自由度Stewart平台动力学模型的特性分析.北京航空航天大学学报,2007:8.
    [144]郭洪波,李洪人.液压驱动6自由度运动模拟器动力机构控制策略研究.机械工程学报,2005,41(2):199-204.
    [145]Kosuge K., Takeuchi H., Furuta K. Motion control of a robot arm using joint torque sensors. IEEE Transactions on Robotics and Automation,1990,6(2):258-263.
    [146]Merritt He. Hydraulic control systems. Wiley,1967.
    [147]Van Schothorst G. Modelling of long-stroke hydraulic servo-systems for flight simulator motion control and system design. PhD thesis, Delft University of Technology,1997.
    [148]Chen Wh, Ballance Dj, Gawthrop Pj, O'reilly J. A nonlinear disturbance observer for robotic manipulators. IEEE transactions on industrial electronics,2000, 47(4):932-938.
    [149]Heintze J., Peters R. M., Weiden A. J. J. V. D. Cascade △p and sliding mode for hydraulic actuators; Proceedings of the 3rd European Control Conference, Rome, Italy,5-8 September,1995.
    [150]Sun D., Lu R., Mills J. K., Wang C. Synchronous tracking control of parallel manipulators using cross-coupling approach. International Journal of Robotics Research,2006,25(11):1137-1147.
    [151]Koren Y. Cross-coupled biaxial computer control for manufacturing systems. ASME Journal of Dynamic Systems, Measurement, and Control,1980,102(4): 265-272.
    [152]Sun D. Position synchronization of multiple motion axes with adaptive coupling control. Automatica,2003,39(6):997-1005.
    [153]Sun D, Mills Jk. Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Robotics and Automation,2002,18(4):498-510.
    [154]Zhao D., Li S., Gao F., Zhu Q. Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory and Applications,2009,3(1):136-150.
    [155]Zhao D. Y., Li S. Y, Gao F. Fully adaptive feedforward feedback synchronized tracking control for Stewart Platform systems. International Journal of Control Automation and Systems,2008,6(5):689-701.
    [156]Ren L., Mills J. K., Sun D. Trajectory tracking control for a 3-DOF planar parallel manipulator using the convex synchronized control method. IEEE Transactions on Control Systems Technology,2008,16(4):613-623.
    [157]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用.山东大学学报(工学版),2007,37(1):51-55.
    [158]吴乐彬.基于电液伺服并联六自由度机构的广义负载模拟理论和实验研究.杭州:浙江大学博士学位论文,2010.
    [159]王科俊,姚绪梁,金鸿章.海洋运动体控制原理.哈尔滨:哈尔滨工程大学出版社,2007.
    [160]黄祥鹿,范菊.船舶与海洋结构运动的随机理论.北京:北京航空航天大学出版社,2005.
    [161]胡志强,法庆衍,洪宝林.随机振动试验应用技术.北京:中国计量出版社,1996.
    [162]陈虹丽,李爱军,贾红宇.海浪信号的实时仿真和谱估计.电机与控制学报,2007,11(1):93-96.
    [163]蒋瑜,陈循,陶俊勇.基于时域随机化的超高斯真随机驱动信号生成技术研究.振动工程学报,2005,18(4):491-494.
    [164]H.M. Gomes, D. Dos Santos Gaspareto, Ferreira F. De Souza. A Simple Closed-Loop Active Control of Electrodynamic Shakers by Acceleration Power Spectral Density for Environmental Vibration Tests. Experimental Mechanics,2008, 48(5):683-692.
    [165]王述成,陈章位.随机振动试验中时域随机化技术的研究.机械工程学报,2005,41(5):230-233.
    [166]于慧君,陈章位,王庆丰.一种加窗重叠信号平滑连接方法及其在振动信号预处理中的应用.振动与冲击,2007,26(8):39-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700