高压气动比例减压阀的结构优化与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压气体功率密度高、瞬间膨胀性大、,温度适应范围广,在航空航天、武器装备和气动汽车等特殊领域得到应用。高压气动比例减压阀是制约高压气动系统实现自动化及远程控制的关键元件,现有文献缺乏深入的研究报道。本文从结构设计、尺寸优化以及缝隙泄漏特性等方面对高压气动比例减压阀展开研究,主要内容如下:
     第一章,介绍了高压气动元件和系统的发展现状,综述了气动阻容网络、结露结冰特性、结构尺寸优化和缝隙泄漏特性等方面的研究现状,阐述了本课题的研究背景和意义,提出主要研究内容。
     第二章,设计了新型高压气动比例减压阀,并进行了尺寸和结构形式优化。分析了高压气动比例减压阀的工作原理和特点,设计了二通式锥阀以及三通式滑阀先导阀。利用气阻网络方法得出了减压阀静态特性分析的数学模型,结合遗传算法对先导阀尺寸进行了优化。针对减压阀出现的结冰现象,提出减低节流窗口宽度比的方法避免气体结露,结合流场计算对阀芯内部流道进行了优化。
     第三章,对高压气动比例减压阀进行数学建模。利用流场计算得出了不同形式阀口的缩流系数以及壅塞流临界压力比;分析了不同结构减压阀从气源到负载的动态模型;在AMESim中完成了建模,以此作为减压阀理论分析的基础。
     第四章,对高压气动比例减压阀的缝隙泄漏特性进行研究。提出一种同心环形缝隙高度间接测量方法。对减压阀的泄漏特性进行深入研究,分析工作条件和结构尺寸对泄漏流量的影响,研究泄漏对减压阀工作特性的影响,提出减少泄漏的措施。
     第五章,对高压气动比例减压阀的工作特性进行分析。仿真分析减压阀的压力、流量以及频率等工作特性,对结构参数、摩擦力和比例电磁铁等对减压阀性能的影响进行研究,指出提高减压阀工作性能的关键因素。
     第六章,开展高压气动比例减压阀实验研究。搭建实验装置进行同心环形缝隙高度的间接测量实验,结果表明该方法测量准确、简单易行。搭建高压气动比例减压阀实验装置,开展了系统的实验研究;结果表明该减压阀能实现大范围稳定的压力调节,设计方案合理,仿真模型可信。
     第七章,总结本论文的主要工作,阐述研究结论和创新点,对课题的后续研究作出展望。
High pressure gas has some unique characteristics such as high power density, huge instant dispensability, and well thermal adaptability. It has been widely applicated in special fields like aerospace, pneumatic vehicles and so on. High pressure pneumatic proportional pressure reducing valve(PPRV) is one of the key components that restrict the automation and remote control of high pressure pneumatic systems. But there are lack of deep research and report about the PPRV in existing references. This paper focuses on the structure design, dimension optimization and clearance leakage characteristic etc. to investigate the high pressure pneumatic PPRV. The main contents are as follows:
     In chapter one, current research status high pressure components and systems is summarized. The research status of pneumatic resistance and capacitance network, dewing and icing characteristics, structure and dimension optimization, as well as clearance leakage characteristics is introduced. Then the research background and importance of this study are given out. Finally the main research content is proposed.
     In chapter two, new structure type of high pressure pneumatic PPRVs are proposed, the optimization design on both dimension and structure of the PPRV is carried out. Firstly, the principle and characteristic of the high pressure pneumatic PPRV is introduced, the two-way poppet valve and three-way pilot valve as pilot valve are proposed. Secondly, the mathematic model for static characteristics analysis is derived based on resistance network, the dimension optimization of the pilot valve is carried out based on genetic algorithm. Finally, the method of reducing the throttle width ratio is proposed to avoid dewing, the passage area inside the pilot spool is also optimized based on CFD results.
     In chapter three, mathematical models of the PPRVs are built up. Firstly, contract coefficients and critical pressure ratios of choking flow of different valve ports are derived based on the CFD tools. Then, the dynamic models from gas supply to laod for different PPRVs are analyzed. Finally, the simulation models are built up in AEMSim, and these models will be used as the foundation of characteristics analysis of these PPRVs.
     In chapter four, the leakage characteristics of annular clearances of the PPRVs are analyzed. An indirect measuring method is proposed to measure concentric annular clearance. Then the leakge characteristics of PPRVs are carefully investigated:the influence of operation conditions and structure paramters are analyzed, the influence of leakage on the PPRV's performance is also researched, the suggetions for reducing leakage are given out.
     In chapter five, the operating characteristics of these PPRVs are analyzed. The pressure, flow rate and frequency characteristics etc. of PPRVs are simulated. The influences of structural parameters, friction force, and proportional electro-magnet etc. on the performance of PPRVs are also researched. Finally, the key factors that could improve the PPRV's performance are pointed out.
     In chapter six, the experiments are carried out to test the PPRV. The clearcance indirectly measuring set-up is built up, and the expriments are carried out. The results show that the measument is accurate and the indirect method is simple and practicable. The high pressure pneumatic PPRV test set-up is also built up, and systematic experiments are carried out. The test results verified that the PPRV could achieve steady pressure adjusting within a wide pressure range, the design scheme is reasonable and the simulation model is trustable.
     In chapter seven, main work of the paper is summarized, then the research conclusions and innovations are introduced, the succeeding research on the PPRV is also prospected at last.
引文
[1]Barber A. Pneumatic Handbook (8th ed.)[M]. Oxford:Elsevier Advanced Technology,1997.
    [2]郑洪生.气压传动及控制[M].北京:机械工业出版社,1988.
    [3]裘华徕.气动技术的近期发展及其影响因素[J].液压气动与密封.2002(3):1-3.
    [4]路甬祥,阮健,陈行.气动技术的发展方向[J].液压与气动.1991(3):2-3.
    [5]Shearer L J. Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-Ⅰ[J]. Transactions of the ASME.1956(2):233-242.
    [6]Shearer L J. Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-Ⅱ[J]. Transctions of the ASME.1956(2):243-249.
    [7]Burrows C R, Webb C R. Simulation of an On-Off Pneumatic Servomechanism[J]. Pro. Inst. Mech. Engrs.1967,182(1):29.
    [8]Burrows C R, Webb C R. Further Study of a Low-Pressure On-Off Pneumatic Servomechanism[J]. Pro. Inst. Mech. Engrs.1970,184(45):849-858.
    [9]贾光政.高压气动减压理论及其在气动汽车上应用的关键技术研究[D].浙江大学博士学位论文,2003.
    [10]许宏.气液连控位置伺服系统理论分析及其控制策略的研究[D].哈尔滨工业大学博士学位论文,2001.
    [11]陶国良.电-气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究[D].浙江大学博士学位论文,2000.
    [12]陶国良,王宣银,路甬祥.3自由度气动比例/伺服机械手连续轨迹控制的研究[J].机械工程学报.2001,37(3):65-69.
    [13]荒木献次.压缩气体的高压化[J].液压与气动.1990(2):53-55.
    [14]姜继海,李尚义.超高压技术的应用与发展[J].机床与液压.1998(5):3-4.
    [15]郭绪强,陈光进,孙长宇.高压流体气-液相导热系数模型的建立[J].石油大学学报(自然科学版).1999,23(3):75-79.
    [16]郭绪强,王峰,陈光进.特高压天然气压缩因子的实验测定[J].石油勘探与开发.1999,26(6):84-85.
    [17]陈汉超.气动舵机高压减压阀的分析与设计[J].北京理工大学学报.1989(2):56-62.
    [18]郭浩,杨钢,李宝仁.新型高压电-气比例阀设计及性能分析[J].液压与气动.2008(1):62-65.
    [19]贾光政,王宣银,吴根茂.超高压大流量气动开关阀的原理和动态特性研究[J].机械工程学报.2004,40(5):77-81.
    [20]王宣银,陈奕泽,刘荣,等.超高压气动比例减压阀的设计与仿真研究[J].浙江大学学报:工学版.2005,39(5):614-617.
    [21]魏东,孙启顺,谢华.一种新型小流量、高压差减压阀的研制[J].液压与气动.2002(11):51.
    [22]中华人民共和国国家质量监督检验检疫总局.固定式压力容器安全技术监察规程[S].2009.
    [23]朱树文.船舶动力装置原理与设计[M].北京:国防工业出版社,1980.
    [24]高光荣,编译.飞机维修技术[M].澳门:实用出版社,1979.
    [25]陈奕泽.超高压气动比例减压阀的仿真与实验研究[D].浙江大学硕士学位论文,2005.
    [26]徐颖.高压气体爆破采煤技术的发展及其在我国的应用[J].爆破.1998,15(1):67-69,82.
    [27]Makoto M.等,钱光宙译.无冲头冲裁--用超高压气体在金属薄板上冲圆形孔[J].国外金属加工.1995(5):22-26.
    [28]Briscoe B J, Kelly C T. The Plasticization of a Polyurethane by Carbon Dioxide at High Pneumatic Stresses [J]. Polymer.1995,36(16):3099-3102.
    [29]贾光政,王宣银,吴根茂.压缩空气动力应用的发展现状及展望[J].中国机械工程.2004,15(13):1]90-]194.
    [30]Juvonen M. Large-scale energy storage systems. http://www.doc.ic.ac.uk/~mpj01/ise2grp/ energystorage_report/node7.html[Z].2003.
    [31]徐新桥,杨春和,李银平.国外压气蓄能发电技术及其在湖北应用的可行性研究[J].岩石力学与工程学报.2006,25(z2):3987-3992.
    [32]Kondoh J, Ishii I, Yamaguchi H, et al. Electrical Energy Storage Systems for Energy Networks[J]. Energy Conversion & Management.2000(41):1863-1874.
    [33]Xu Z P, Wang X Y, Cheng J. High-Pressure Pneumatic Technology:Present, Future[C]. Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing. Guangzhou:2006.
    [34]陈鹰,许宏,陶国良,等.压缩空气动力汽车的研究与发展[J].机械工程学报.2002,38(11):7-11.
    [35]刘昊.空气动力发动机的探索性研究[D].浙江大学博士学位论文,2004.
    [36]刘昊.气动汽车动力系统研究[D].浙江大学博士后研究工作报告,2006.
    [37]http://www.mdi.lu/english/entreprises.php[Z].
    [38]http://www.energine.com/e main.php[Z].
    [39]刘昊,陈鹰,陶国良.压缩空气动力发动机工作过程建模及特性研究[J].自然科学进展.2004,14(3):319-324.
    [40]刘昊,陶国良,陈鹰.压缩空气动力汽车动力系统的设计[J].液压与气动.2004(5):24-26.
    [41]http://www.conoflow.com/products/HighPressureRegulators.html[Z].
    [42]http://www.tescom.com/products/icd/[Z].
    [43]Ruan J, Burton R, Ukrainetz P. An Investigaion Into the Characteristics of a Two Dimensional "2D" Flow Control Valve[J]. Transactions of the ASME.2002,124:214-220.
    [44]贺小锋,张铁华.一种高压大流量气动定差压力阀的研制和可靠性分析[J].液压与气动.1999(3):30-32.
    [45]陈德奎,张志发,陈圣汉.一种新型结构的气动减压阀[J].液压与气动.1991(2):37-39.
    [46]李宝仁,杨钢,杜经民.高压随动压力控制阀动态性能的仿真研究[J].华中理工大学学报.1998,26(7):24-26.
    [47]李宝仁,李壮云.一种气动压力控制阀的仿真与实验[J].机床与液压.1997(2):48-50.
    [48]訚耀保,陈洁萍,罗九阳,等.氢能源汽车车载超高压气动减压阀的机理与特性分析fJ].中国工程机械学报.2008,6(3):310-314,323.
    [49]贾光政,王宣银,吴根茂.高压气动容积减压系统研制[J].液压与气动.2003(8):14-16.
    [50]贾光政,王宣银,吴根茂,等.高压气动容积减压分级控制原理与特性[J].机械工程学报.2005,41(10):210-214.
    [51]王宣银,皮阳军,徐志鹏,等.开关先导型超高压气动减压阀原理与特性研究[J].浙江大学学报:工学版.2008,42(6):1027-1030.
    [52]杨钢,郭浩,李宝仁.新型高压气动比例控制阀动态性能的仿真研究[J].中国机械工程.2007,18(12):1418-1420.
    [53]李宝仁,吴金波,杜经民.高压气动位置伺服系统的控制策略研究[J].液压气动与密封.2002(2):5-7.
    [54]郑志,王树立,松气,等.天然气调压装置不可逆损失的比较与分析[J].低温与特气.2009,27(1):18-21.
    [55]甑志,崔晓钢,陈鸿伟,等.(?)分析方法在工程领域中的应用[J].电力科学与工程.2003(1):62-65.
    [56]Jaroslav P. Use of Expansion Turbines in Natural Gas Presure Reduction Stations[J]. Acta Montanistica Slovaca.2004,9(3):258-260.
    [57]Mahmood F G, Shahram H, Meisam S. Energy Destuction in Iran's Natural Gas Pipe Line Network[J]. Energy Exploration & Exploitation.2007,25(6):393-406.
    [58]Hill P G. Condensation of Water Vapour During Supersonic Expansion in Nozzles[J]. Journal Of Fluid Mechanics.1966,25(3):593-620.
    [59]郭旭强,陈光进,孙长宇.高压流体气-液相导热系数模型的建立[J].石油大学学报(自然科学版).1999,23(3):75-79.
    [60]Cristensen P L, Fredenslund A. A Corresponding States Model for Thermal Conductivity of Gases and Liquids[J]. Chemical Engineering Science.1980(35):871-875.
    [61]Peng D Y, Robinson D B. A New Two-constant Equation of State[J]. Industry Engineering and Chemistry Fundamation.1976,15(1):59-63.
    [62]Idelchik I E, Fried E. Handbook of Hydraulic Resistance:Second Edition[M]. New York: Hemishpere Publishing,1986.
    [63]胡燕平,彭佑多,吴根茂.液阻网络系统学[M].北京:机械工业出版社,2003.
    [64]Lu Y X. Historical Progress and Prospects of Fluid Power Transimission and Control [C]. Proceeding of the 5th International Conference on Fluid Power Transimission and Control. Beijing:International Academic Publishers,2001.
    [65]赵应樾.液压控制阀及其修理[M].上海:上海交通大学出版社,1999.
    [66]Bache W.液压阻力回路系统学(周文译)[M].北京:机械工业出版社,1980.
    [67]Wu G. Vorgesteuertes Druckbegrenzungsventil DB10 Serie 30 Versuchsbericht V932[M]. Mannesmann Rexroth,1984.
    [68]路甬祥,胡大宏.电液比例控制技术[M].北京:机械工业出版社,1988.
    [69]Hu Y P, Huang Z C, Liu D S. Design Theory for G-π Bridge Relief Valve with Zero Override[J]. Chinese Journal of Mechanical Engineering.2004,17(3):463-465.
    [70]Hu Y P, Wei J H, Guo Y F. The Theory and Application of Bridge Hydraulic Resistance Networks[J]. Transaction of Nonferrous Metals Society of China.1999,9(1):202-206.
    [71]康煜华,胡燕平,彭佑多,等.G型π桥溢流阀动态特性研究[J].湘潭矿业学院学报.2000,15(3):46-51.
    [72]胡燕平,康煜华,刘德顺,等.G型π桥溢流阀稳定性理论和试验研究[J].湘潭矿业学院学报.2001,16(1):33-36.
    [73]李良,陈奎生,李明.电液伺服阀的液压桥路设计与抗污染特性研究[J].机床与液压.2006(4):140-141.
    [74]Andersen B W. The Analysis and Design of Pneumatic Systems[M]. Melbourne:Krieger Publishing Company,2001.
    [75]朴龙奎.气体导管的通用流量公式和气路理论概述[M].北京:航天部教育司,航天部高科人员脱产进修成果汇编,1988.
    [76]朴龙奎.气路定律和气阻的串联特性[J].自动化仪表.1989(6):9-13.
    [77]薛智.气动阻容环节及其应用[J].太锅科技.1991(2):47-49,57.
    [78]刘明伟,张亮峰,宋京其,等.气动剥离的气容气感气阻的应用研究[J].液压与气动.2006(6):14-15.
    [79]刘明伟,张亮峰,王先安,等.气动剥离的气压场遇离散性障碍物机理分析[J].液压与气动.2006(11):25-27.
    [80]张百海,程海峰,彭光正.气动系统键图建模方法与实现[J].机床与液压.2004(10):97-98.
    [81]林知微,张百海.串联气容充放气特性键图建模与仿真[J].机床与液压.2009,37(3):81-82.
    [82]Xu Z P, Wang X Y, Pi Y J. Numerical Simulation of PPRV Based on Pneumatic Bridge Networks[C]. Proceeding of the Fifth Fluid Power Transmission and Control. Qinhuangdao: International Academic Publishers Ltd.,2007.
    [83]Zhang H P, Ikeo S, Takahashi K, et al. Study on the Condensation of Water in a Pneumatic System[C]. Proceedings of the Second JHPS International Symposium on Fluid Power. Tokyo: 1993.
    [89]李军,杨庆俊,王祖温.气动系统内部结露机理及试验[J].机械工程学报.2007,43(9):7-11.
    [90]金英子,杨庆俊.气动系统元件结构参数对系统结露的影响的研究[J].机械工程学报.2004,40(4):40-43,49.
    [91]Jin Y Z, Wang Z W, Bao G. Condensation During Discharging of Pneumatic System[J]. Journal of Fluids Engineering.2004(126):430-435.
    [92]李玉军.气动系统内部结露机理研究及判别软件的开发[D].哈尔滨工业大学博士学位论文,2001.
    [93]王景军,梁丽荣,宗铭.阀体内腔结冰导致阀门驱动装置损坏的事故分析处理[J].石油工程建设.1997(1):53-55.
    [94]范洁川,于涛.飞机结冰风洞试验模拟研究[J].气动研究与实验.2006,23(2):15-17.
    [95]王宗衍.冰风洞和结冰动力学[J].制冷学报.1995(4):15-17.
    [96]Gan C J, Wang W C, Zhang L N. Influence of Tube's Diameter on Boling Heat Transfer Performance in Small Diameter Tubes[J]. Journal of Thermal Science.1998,7(1):49-53.
    [97]Lee K Y, Kim M H. Experimental and Empirical Study of Steam Condensation Heat Transfer with a Noncondensable Gas in a Small-Diameter Vertical Tube[J]. Nuclear Engineering And Design.2008,238:207-216.
    [98]Huang D P, Ding G L, Hans Q. Theoretical Analysis of Deposition and Melting Process During Throttling High Pressure CO2 into Atmosphere[J]. Applied Thermal Engineering.2007,27: 1295-1302.
    [99]裘亦纲.NASA结冰研究和防冰技术发展[J].安全与事故.1993(4):60-62.
    [100]孙靖民.机械优化设计[M].北京:机械工业出版社,1999.
    [101]王鹤翔,王勇明,潘家祯.用ANSYS软件对气动脉冲阀阀片的优化设计[J].机械研究与应用.2009(3):63-64.
    [102]王幼民.溢流阀结构参数的优化设计[J].农业机械学报.2003,34(1):67-69.
    [103]向忠,刘昊,陶国良.高频电气喷射阀优化设计与试验[J].农业机械学报.2009,40(4):210-214,220.
    [104]Holland J H. Adaption in Natural and Rrtificial Systems (2nd ed.)[M]. Cambridge:MIT Press, 1992.
    [105]王春香,秦智渊.遗传算法在机械优化设计中的应用[J].机械.2009,36(3):4-6,55.
    [106]王祖温,叶骞,李军.遗传算法在气动系统优化中的应用[J].机械工程学报.2002,38(5):36-40.
    [107]李松晶,鲍文,王莹,等.采用遗传算法的新型节能电磁换向阀的优化设计[J].机械工程学报.2001,37(7):79-81.
    [108]李强,周济,钟毅芳.机械系统动态优化设计的复合遗传算法[J].机械工程学报.1999,35(5):30-37.
    [109]陈晓琴.气体减压阀可靠性设计[J].导弹与航天运载技术.2005(3):13-18.
    [110]曹秉刚.液压控制锥阀液动力及其补偿方法的研究[D].西安交通大学,1991.
    [111]胡国清.液压阀流道能耗研究[D].成都科技大学,1993.
    [112]高殿荣.液压技术中复杂流道流场的数值模拟与可视化研究[D].燕山大学,2001.
    [113]张廷芳.计算流体力学[M].大连:大连理工大学出版社,1992.
    [114]忻孝康,刘儒勋,蒋伯诚.计算流体力学[M].长沙:国防科技大学出版社,1989.
    [115]Vaughan N D, Johnston D N, Burnell L R, et al. The Use of Computational Fluid Dynamics in Hydraulic Valve Design.[C]. Bath International Fluid Power Workshop. Taunton:Research Studies Press Ltd,1992.
    [116]Tukiji T, Takahashi K. Numerical Analysis of an Axisymmetric Jet Using a Streamline Coordinate System[J]. JSME International Journal.1987,30(9):1406-1413.
    [117]Guo M Y, Nakano K. Numerical Analysis for the Flow in Spool Valve by a Boundary Element Method[J]. The Japan Hydraulics and Pneumatics Society (in Japanese).1989,20(6):538-545.
    [118]曹秉刚,郭卯应,中野和夫,等.锥阀流场的边界元法解析[J].机床与液压.1991(2).
    [119]Allenborn N, Nandakumar K, Raszillier H, et al. Further Contributions on the Two-dimensional Flow in a Sudden Expansion[J]. Journal Of Fluid Mechanics.1997,330(97):169-188.
    [120]弓永军,周华,杨华勇.阀芯结构对纯水溢流阀抗汽蚀特性的影响研究[J].农业机械学报. 2005,36(8):50-54.
    [121]弓永军,周华,杨华勇.结构参数对先导式纯水溢流阀性能的影响[J].浙江大学学报:工学版.2006,40(5):869-873.
    [122]王祖温,郭晓晨,包钢,等.基于流场的气动换向阀流量特性研究[J].机械工程学报.2004,40(2):1-4.
    [123]Gan G H, Saffa B R. Pressure Loss Characteristics of Orifice and Perforated Plates[J]. Experimental Thermal And Fluid Science.1997(14):160-165.
    [124]李军,李玉军,王祖温.气动充放气系统的流场计算[J].机床与液压.1999(2):24-26.
    [125]季增连.气体泄漏检测系统的研究与设计[D].大连交通大学硕士学位论文,2008.
    [126]薛晓虎.液压系统缝隙内流体泄漏特性的分析[J].机械工程学报.2004,40(6):75-80.
    [127]刘冀民.溢流阀泄漏量对其静动态特性影响的试验研究[J].机床与液压.1998(4):67-70.
    [128]刘胜吉,王建,高宗英.柴油机针阀偶件高压泄漏量的试验与计算分析[J].农机化研究.2006(12):218-219,222.
    [129]廖建勇.高压圆缝泄漏数学模型及其计算机仿真[J].机床与液压.1994(2):83-86.
    [130]谭书华,胡国新.高速转轴微细间隙气体泄露的实验研究[J].上海交通大学学报.2006,40(2):342-345.
    [131]侯煜.基于CFD环形间隙泄漏量及摩擦力的仿真计算[D].太原理工大学硕士学位论文,2007.
    [132]尤明庆,于乃颖,韩中原.圆锥环状缝隙内的流动状态[J].焦作矿业学院学报.1994,13(6):66-70.
    [133]周志鸿,闫建辉,刘连华.间隙泄漏量的分析计算[J].凿岩机械气动工具.2002(4):14-17.
    [134]闫治平,黄淑英.漏率与压力关系的研究[J].中国空间科学技术.1999(2):42-46.
    [135]闫治平,黄淑英.检漏方法的灵敏度估算[J].中国空间科学技术.2002(1):59-64.
    [136]蔡茂林.现代气动技术理论与实践第六讲:压力调节阀[J].液压气动与密封.2008,28(1):53-58.
    [137]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [138]Iso. Compressed Air Standards[S].
    [139]Daniel H, Sylvie S, Rosario D G, et al. Analysis of Flow Behaviour and Characteristics of Pneumatic Components[C]. Proceeding of the 7th JFPS International Symposium on Fluid Power. Toyama:2008.
    [140]Sanville F E. A New Method of Specifying the Flow Capacity of Ppneumatic Fluid Power Valves [C]. Second Fluid Power Symposium. Guildford:Surrey, England,1971.
    [141]Iso. Pneumatic Fluid Power-components Using Compressible Fluids-determination of Flow-rate Characteristics[S].1989.
    [142]蔡茂林.现代气动技术理论与实践第一讲:气动元件的流量特性[J].液压气动与密封.2007,27(2):44-48.
    [143]Dasgupta K, Karmakar R. Modelling and Dynamics of Single-stage Pressure Relief Valve with Directional Damping[J]. Simulation Modelling Practice and Theory.2002(10):51-67.
    [144]Dasgupta K, Karmakar R. Dynamic Analysis of Pilot Operated Pressure Relief Valve[J]. Simulation Modelling Practice and Theory.2002(10):35-49.
    [145]Richer E, Hurmuzlu Y. A High Performance Pneumatic Force Actuator System:Part Ⅰ—Nonlinear Mathematical Model[J]. Journal of Dynamic Systems, Measurement, and Control. 2000,122(3):416-425.
    [146]Richer E, Hurmuzlu Y. A High Performance Pneumatic Force Actuator System:Part Ⅱ—Nonlinear Controller Design[J]. Journal of Dynamic Systems, Measurement, and Control. 2000,122(3):426-434.
    [147]Sorli M, Figliolini G, Pastorelli S. Dynamic Model and Experimental Investigation of a Pneumatic Proportional Pressure Valve[J]. IEEE/ASME Transactions on Mechatronics.2004,9(1):78-85.
    [148]Zhang H X, Zhang T Z, Wang Y S, et al. Dynamics Model and Simulation of Flat Valve System of Internal Combustion Water Pump[J]. Chinese Journal of Mechanical Engineering.2005,18(3): 411-414.
    [149]Szargut J, Morris D R, Steward F R. Exergy Analysis of Thermal, Chemical, And Metallurgical Processes.[M]. New York:Hemisphere Publishing,1998.
    [150]Gaggioli R A. Available Energy and Exergy[J]. Int J Applied Thermodynamics.1998(1):1-8.
    [151]Moran M J. Availability Analysis:Guide to Efficient Energy Use[M]. Prentice Hill:New York, 1989.
    [152]http://en.wikipedia.org/wiki/Compressibility_factor[Z].
    [153]Soave G. Equilibrium Constants From a Modified Redlich-Kwong Equation of State. [J]. Chem. Eng. Sci.1972,27:1197-1203.
    [154]http://www.amesim.com.cn/about.asp[Z].
    [155]付永领,祁晓野.AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [156]雷振山.LabVIEW 7 Express实用技术教程[M].北京:中国铁道出版社,2004.
    [157]杨乐平,李海涛,赵勇,等.LabVIEW高级程序设计[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700