基于先导控制的新型截止阀启闭特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于先导控制的截止阀是一种利用介质压差实现启闭的新型阀门,具有结构简单、驱动能耗低、启闭快速等特点。但目前尚缺乏系统的理论研究、数值分析和试验验证,尤其在启闭特性方面缺少相关研究,而启闭特性的优劣关系直接影响阀门整体性能的体现,甚至影响整个管路系统的稳定性和安全性。为此本文采用数值模拟和实验研究相结合的方法,对先导式截止阀的流场特性、阀芯受力和运动特性以及弹簧选型等进行研究。主要研究内容和研究成果如下:
     1、通过先导式截止阀的稳态研究,初步验证了利用压差启闭原理的可行性和阀门结构的合理性;研究了不同条件对稳态流场的影响;分析了稳态压差液动力,为动态模拟奠定了基础。
     2、建立了阀芯受力方程和运动方程,并以此为依据编写了UDF程序,使新型先导式截止阀的动态模拟成为可能,为此类阀门的数值模拟奠定了基础。
     3、描述了先导式截止阀动态启闭过程,通过分析启闭时阀门流场和阀芯受力、位移及速度随时间的变化,对阀门的动态启闭过程有了更加全面和清晰的认识;研究了不同条件对动态启闭流场特性的影响,分别总结了开启和关闭时,不同入口压力、弹簧刚度和先导时间对阀门内部流场变化所产生的规律,为先导式截止阀的应用和设计具有指导作用;揭示了不同条件对阀芯运动特性的影响,分别总结了开启和关闭时,不同入口压力、弹簧刚度和先导时间对阀芯运动过程、阀芯稳定位移和阀芯启闭时间的规律,为先导式截止阀启闭过程的进一步优化奠定了基础。
     4、归纳了弹簧初步选型公式,并针对此公式进行实验研究。一方面通过实验数据得到规律,验证了数值模拟定性分析的正确性;另一方面对比实验数据与模拟数据,也证明了数值模拟定量分析的合理性。修正后的选型公式减少了设计时的盲目性,提高了设计的效率。
     本文研究成果对基于先导控制的新型截止阀的优化、设计以及工程应用具有重要的学术意义和工程应用价值。
The pilot-operated globe valve, utilizing differential pressure to achieve the action of the valve core, is a new kind of valve with a simple structure, prompt opening and closing action and lower driving energy consumption. However, systemic theoretical research, numerical analysis and experimental verification are deficient at present, especially about the opening and closing characteristics. The relationship between opening and closing characteristics directly affects the performance of the valve even affects the stability and security of the entire pipeline system. Thus in this paper, the flow field of the pilot-operated globe valve, the characteristics of the force on valve core and the valve core motion, and the formula for selection of spring were studied via numerical simulation and experiment research. Main contents and results of this research are as follow:
     1. The feasibility of utilizing differential pressure to control valve opening and closing and the rationality of valve structure were initially verified; the steady flow field under different conditions was researched; the pressure force in steady state was analyzed which would lay the foundation for dynamic simulation.
     2. The differential equation of the force on valve core and the difference equation of the valve core motion were not only built, but also as a basis for the preparation of the UDF program, which made dynamic simulation of the new pilot-operated globe valve become possible and laid the foundation for it.
     3. The opening and closing processes and characteristics of the pilot-operated globe valve were studied, which were understood with a more comprehensive view through analyzing the flow field, the force on valve core, and the changes of the displacement and velocity with time. It was researched that how the flow field of the opening and closing characteristics in dynamic state would be influenced under different conditions. It was summed up that how the flow field respectively changes with inlet pressure, spring stiffness and the pilot time during the valve opening and closing process which would guide the application and the design of the pilot-operated globe valve. It is revealed that how the movement characteristics of valve core would be influenced under different conditions including the laws of the movement, the displacement and the opening and closing time of valve core changing with inlet pressure, spring stiffness and the pilot time, which provided the most basic, the most critical and the most valuable conclusions for further optimization of the valve.
     4. The formula for preliminary selection of spring has been summarized and tested in the experiment. On the one hand, the law was obtained from experimental data to verify the accuracy of qualitative analysis on simulation; on the other hand, comparing the experimental data and simulation data, quantitative analysis on the simulation was proved reasonably. Modified selection formula would improve the design efficiency and reduce the blindness on the design process.
     All in all, these results have important academic significance and value for the optimization and engineering applications of the new pilot-operated globe valve.
引文
[1]陆培文.阀门设计入门与精通[M].北京:机械工业出版社,2009
    [2]杨源泉.阀门设计手册[M].北京:机械工业出版社,2004
    [3]本书编委会.最新阀门设计制造技术与产品质量检测标准规范全书[M].安徽:安徽文化出版社,2003,6
    [4]陆培文.实用阀门设计手册[M].北京:机械工业出版社,2004
    [5]Laurence, V.B., Frank, A.F., Vincent, C. Proportional pilot acting valve [P].US:2010/0276 615A1,2010-11-04
    [6]Markus B, Peter B. Pilot valve, particularly proportional throttle valve [P]. US:2010/0294 962A 1,2010-11-25
    [7]张龙涛,向虎.一种大流量先导式平面截止阀[J].煤矿机械,2007,28(1):119-120
    [8]贺小峰,李壮云,朱玉泉等.先导式水压溢流阀[P].中国专利:200410013070.7,2008-2-6
    [9]王禁非,黄晓云.先导式高压清水截止阀的设计[J].阀门,2006,2:13-14
    [10]袁新明,贺治国,陈华,毛根海.弯型截止阀流场的PIV显示和数值模拟[J].水科学进展,2003,14(2):231-235
    [11]袁新明,贺治国,毛根海.用RNGκ-ε紊流模型对截止阀三维紊流流动的数值模拟[J].流体机械,2006,34(2):34-38
    [12]He, Z.G., Mao,G.H. Numerical simulation of 3-D turbulent flows in a cut-off valve and analysis of flow characteristics in pipe[J] Journal of Hydrodynamics.Ser.B,2003,(4):86-91
    [13]巴鹏,邹长星,张秀绗.基于CFD技术的截止阀启闭时流场动态模拟[J].润滑与密封,2010,35(7):80-85
    [14]Yoon, J. Y., Byun, S. J., Yang, J. M.and Lee, D. H. Numerical analysis of the 3-D flow field in a globe valve trim under high pressure drop, Journal of Fluid Machinery. 2001,4:14-20
    [15]Davis, J.A., Stewart, M. Predicting globe control valve performance-Part I:CFD Modeling[J]Journal of Fluids Engineering-Transactions of The Asme,2002,124(3): 772-777
    [16]Davis, J.A., Stewart, M. StewartPredicting globe control valve performance-Part II:Experimental verification[J]Journal of Fluids Engineering-Transactions of The Asme,2002,124(3):778-783
    [17]石娟,姚征,马明轩.调节阀内三维流动与启闭过程的数值模拟及分析[J].上海理工大学学报,2005,27(6):498-502
    [18]马玉山,相海军,傅卫平等.调节阀阀芯变开度振动分析[J].仪器仪表学报,2007,28(6):1087-1092
    [19]马玉山,傅卫平,相海军等.调节阀运动阀芯动态不平衡力分析[J].西安理工大学学报,2009,25(2):212-216
    [20]张伟政,俞树荣,张希恒等.调节阀内部流场的数值模拟与试验分析[J].兰州理工大学学报,2008,34(3):65-68
    [21]An, Y.J., Kim, B.J., Shin, B.R. Numerical Analysis of 3-D Flow Through LNG Marine Control Valves for Their Advanced Design[J].9th Asian International Confe-rence on Fluid Machinery Cheju,SOUTH KOREA,2008-.1998-2005
    [22]Cho, T.D., Yang, S.M., Lee, H.Y., Ko, S.H. A study on the force balance of an unbalanced globe valve[J].Journal of Mechanical Science and Technology,2007,21(5): 814-820
    [23]冯进,张慢来,黄天成.安全阀水动力特性的CFD模拟和研究[J].核动力工程,2007,28(5):31-35
    [24]陈殿京,刘殿坤,董海波等.安全阀流场数值模拟研究[J].流体机械,2008,36(10):24-27
    [25]骆辉,于新海,王正东.安全阀升力系数试验研究和数值模拟[J].中国科技论文在线,2008,3(8):587-591
    [26]Borghi, M., Milani, M., Paoluzzi,R. Transient flow force estimation on the pilot stage of a hydraulic valve[J].Proceedings of the ASME-IMECE FPST-Fluid Power Systems & Tech,1998,5:157-162
    [27]弓永军,周华,杨华勇.结构参数对先导式纯水溢流阀性能的影响[J].浙江大学学报(工学版),2006,40(5):869-873
    [28]张慢来,冯进,黄天成等.膜片稳压溢流阀的瞬态数值模拟方法研究[J].阀门,2007,2:23-25
    [29]BAO, M., FU, X., CHEN, Y. Computational fluid dynamic approach to pressure loss analysis of hydraulic spool valve [J]. Proceedings of the 5th International Conference of Fluid Power Transmission and Control, Hangzhou, China, April 3-5,2001:467-471
    [30]王国志,王艳珍,邓斌等.水压滑阀流动特性可视化分析[J].机床与液压,2003,(1):95-96
    [31]赵蕾,陈青,权龙.阀芯运动状态滑阀内部流场的可视化分析[J].农业机械学报,2008,39(11):142-145,155
    [32]GAO, D.R., QIAO, H.J., LU, X.H. Finite Element Numerical Simulation and PIV Measurement of Flow Field inside Metering-in Spool Valve[J]. Chinese Journal of Mechanical Engineering,2009,22(1):102-108
    [33]Borghi, M., Milani, M., Paoluzzi, R. Stationary axial flow forces analysis on compensated spool valves [J].International Journal of Fluid Power,2000,l (1):13-22
    [34]Yang, R.CFD Simulation of Oil Flow and Flow Induced Forces Inside Hydraulic Valves[J].National Fluid Power Association and Society of Automotive Engineers,2002, 201-207
    [35]Barman, P. Computational Fluid Dynamics Analysis to Predict and Control the Cavitation Erosion in a Hydraulic Valve[J].E 2002 World Congress,Detroit,Michigan,USA:1-5
    [36]付文智,李明哲等.液压锥阀的数值模拟[J].机床与液压.2004,1(12):44-46
    [37]邓春晓,潘地林.液压锥阀的有限元分析及优化设计[J].煤矿机械,2004(6):1-3
    [38]GAO, H., FU, X., YANG, H.Y. Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system [J]. Journal of Zhejiang University: science,2002,3(4):395-400
    [39]高红,傅新.锥阀阀口气穴流场的数值模拟与试验研究[J].机械工程学报,2002,38(8):27-30
    [40]郑淑娟,权龙,陈青.阀芯运动过程液压锥阀流场的CFD计算与分析[J].农业机械学报,2007,38(1):168-172
    [41]Tsukiji, T. Flow analysis in oil hydraulic valve using vortex method[J].Proceedings of the 3rd International Symposium on Fluid power transmission and control, Harbin, China, 1999:67-72
    [42]Oshima, S., Ichikawa, T. Cavitation phenomena and performance of oil hydraulic poppet valve (2nd report, influence of the chamber length of the seat and the flow performance) Bull. JSME,1985,28(244):2272-2279
    [43]Oshima, S., Leino, T., Linjama, M., Koskinen, K.T., Vilenius, M. J. Effect of cavitation in water hydraulic poppet valves[J]. Int. J. Fluid Power,2001,1(3):5-13
    [44]Oshima, S., Leino, T., Linjama, M. Experimental study on cavitation in water hydraulic poppet valve[J]. 日本机械学会论文集,2002,(3):1-7
    [45]Chen, Q., Stoffel, B. CFD Simulation of a Hydraulic Servo Valve with Turbulent Flow and Cavitation[J].Proceedings of ASME-PVP04 2004 computational technologies for Fluid/ Thermal/Chemical/Stressed Systems with Industrial Applications,2004,(7):1-8
    [46]金志江,匡继勇.一种带有先导阀的截止阀[P].中国专利:200810120906.1,2008
    [47]金志江,匡继勇.带有先导阀的截止阀[P].中国专利:200820164064.5,2008
    [48]黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2001
    [49]王建凯,金志江,匡继勇等.一种带先导球阀的截止阀[J],阀门,2009,(3):10-11
    [50]陈作斌,马明生,贺国宏.计算流体力学及应用[M].北京:国防工业出版社,2003:1-14
    [51]李海东.计算流体力学正在蓬勃发展中[J].科技导报(北京),1992,(12):30-31
    [52]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [53]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(2):115-117,122
    [54]赵学端,廖其奠.粘性流体力学[M].北京:机械工业出版社出版,1993
    [55]Versteeg, H.K., Malalasekera, W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York,1995
    [56]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,1998
    [57]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998:211-299
    [58]陈景仁.湍流模型及有限元分析法[M].上海:上海交通大学出版社,1988
    [59]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1997:127-168
    [60]Yakhot, V., Orzage, S.A. Renormalization group analysis of turbulence:basic theory.J Scient Comput.1:3-11,1986
    [61]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003
    [62]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007
    [63]陈作斌,马明生,贺国宏.计算流体力学及应用[M].北京:国防工业出版社,2003
    [64]Patanker, S.V., Spalding, D.B. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer,15:1787-1806, 1972
    [65]Issa, R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput. Phys.,62:40-65,1986
    [66]郑淑娟.阀芯运动过程液压锥阀内部流程的CFD计算[D].山西:太原理工大学学位论文,2005
    [67]李江莉.一种自动流量平衡阀的数值分析与实验研究[D].浙江:浙江大学学位论文,2006
    [68]FU, L.J., WEI, J.H., QIU M.X. Dynamic Characteristics Of Large Flow Rating Electro-Hydraulic Proportional Cartridge Valve[J]. Chinese Journal Of Mechanical Engineering. 2008,21(6):57-62
    [69]王宣银,陈奕泽,刘荣,梁冬泰.超高压气动比例减压阀的设计与仿真研究[J].浙江大学学报(工学版).2005,39(5):614-617
    [70]王宣银,皮阳军,徐志鹏,余状.开关先导型超高压气动减压阀原理与特性研究[J].浙江大学学报(工学版).2008,42(6):1027-1030,1064
    [71]王建凯,金志江,匡继勇等.基于VB6.0的AutoCAD的先导式截止阀设计软件开发[J].化工机械.2010,37(3):131-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700