银杏达莫对梗阻性肾病大鼠肾间质纤维化作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察转化生长因子β_1(transforming growth factot-beta_1,TGF-β_1)在梗阻性肾病大鼠肾间质纤维化过程中的表达,研究药物银杏达莫对肾间质纤维化的防治作用及其作用机制。
     方法:将45只健康6-8周龄的SD雄性大鼠随机分为三组,每组15只:假手术组即对照组(打开大鼠腹腔只分离左侧输尿管但不结扎);模型组(打开大鼠腹腔结扎左侧输尿管,建立梗阻性肾病动物模型);药物干预组(建立梗阻性肾病动物模型后给予药物银杏达莫注射液12.5ml/kg腹腔注射)。于术后2W、3W、4W分别断颈处死各组中的5只大鼠,处死前用代谢笼收集24小时尿量,做24小时尿蛋白定量检测,并行心脏采血1ml用全自动生化分析仪检测血尿素氮和肌酐水平;肉眼观察肾脏的大体结构改变,行苏木素—伊红(HE)染色和Masson染色光镜观察肾间质的病理学改变,间质纤维化半定量分析借助于Motic Med 6.0迈克奥迪数码医学图象分析系统完成,电子显微镜观察肾间质的超微结构变化;用免疫组织化学半定量分析的方法测定TGF-β_1在各组中的表达情况。
     结果:与假手术组相比,模型组大鼠左侧肾脏明显肿大,颜色苍白,肾皮质变薄,皮髓质分界模糊,肾盂、肾盏极度扩张,其中充满尿液,并随着输尿管梗阻时限的延长而加重,干预组上述变化轻微。HE染色显示:输尿管梗阻后2周肾间质可见有较多炎症细胞浸润,弥漫性肾小管空泡变性,部分小管灶状扩张、萎缩、坏死,轻度间质纤维化,术后3周、4周上述变化逐渐加重;银杏达莫组上述改变有所减轻;假手术组术后2周也可见少量炎症细胞浸润,4周可见间质纤维化改变。Masson染色显示:假手术组可见炎细胞浸润,间质散在黄染;模型组见大量炎症细胞,间质区大面积黄染,并随梗阻时间的延长而加重,银杏达莫干预后黄染区面积明显减小。电子显微镜可见肾小管基膜增厚,小管上皮细胞内大量肿胀的线粒体,小管间质大量炎症细胞浸润和纤维组织形成,模型组最显著,干预组次之。免疫组织化学分析显示,TGF-β1的升高与肾小管间质纤维化的组织学改变相平行,与肾间质损害的评分之间无显著相关性,(β=-0.197,P=0.639);TGF-β_1的表达水平肾小管间质黄染面积成显著正相关(β=0.935,P=0.000)。各组大鼠24小时尿蛋白定量,组间两两比较差异无显著。与假手术组比较,模型组大鼠术后2周时血尿素氮和肌酐水平明显升高,第3周时较第2周略降低,第4周时呈现继续降低趋势,但仍明显高于假手术组。银杏达莫干预组在手术后2周、3周、4周血尿素氮和肌酐水平均升高,但较模型组缓慢。
     结论:大鼠单侧输尿管结扎是肾间质纤维化的理想动物模型;转化生长因子是肾脏间质纤维化的重要致病因子之一,且其表达水平的高低一定程度上反映了肾间质纤维化的严重程度;银杏达莫可以明显延缓肾脏间质纤维化的的进展,其作用机制之一是抑制TGF-β_1的表达。
Objective: To observe the expression of transforming growth factor-betal intubulointerstitial fibrosis of rats with unilateral ureteral obstruction.To research the effectsof drugs Ginkgo leaf extract and diphyridamole injection and mechanism ontubulointerstitial fibrosis.
     Methods: 45 normal male Sprague-Dawley rats with 6-8 weeks old were randomlydivided into sham-operated controls, n=15 the animals were anesthetized with chloralhydrate 30rag per 1kg body, and the left ureter was exposed via an abdominal incision.The ureter was not dissected and liberation. The abdomen was closed with silk suture, Theunilateral ureteral obstruction group i.e. models, n=15: the operation was made in a similarmanner with the ureter was dissected and liberation. Medicine- interventing group, n=15:Ginkgo leaf extract and diphyridamole injection 12.5ml per 1kg was inject into rats'abdominal cavity a time every a day on the 2nd after operation. Six rats of each groupwere sacrificed by neck fracture under chloral hydrate anaesthesia respectively on the2nd,3rd and 4th weeks after surgery. Before they were killed, 24 hours urinary volume ofrats were collected by metabolic cage and 24 hours quantitation of urine protions weredetected just before sacrificing. One ml of blood was harvested from heart and blood ureaand creatinine were detected by automatic biochemistrical analysator. The whole structurewas observe by naked eye and renal interstitial fibrosis was examined by routinehematoxylin and eosin (HE) Masson staining. Semiquantitative analysis of renal interstitialfibrosis were completed by Motic Med 6.0 multimedia medical analytical system of colorgraph and writing.Ultramicrostructure of renal interstitial was observed by electronmicroscope. The expression of TGF-β_1 in every group were detected byimmunohistochemistry.
     Results: In comparison with sham-operated controls, rats' left kidney in the unilateral ureteral obstruction(UUO) group were markly enlarged, pale, renal parenchymal thinning,the bouncary between renal cortical and medulla was indefinite, dilatation of collectingsystem. These changes were severier when time of unilateral ureteral obstruction waslonger. HE staining displayed more infl-cells infiltrate in interstitial, diffusal vacuolardegeneration in renal tubule after unilateral ureteral obstruction. Part of renal tubule focaldistend、atrophy and necrosis, interstitial gently fibrosis. These changes got graduallysevery on 3rd and 4th weeks after operation. But these changes lessened in rats of Ginkgoleaf extract and diphyridamole interwenting group.interstitial infiltration and fibrosis can be seen resectively 2nd and 4th after operation.Masson staining displayed interstitial infiltration and areas of stained yellow were more inrats of the unilateral ureteral obstruction group than rats of sham-operated controls. Andinterstitial infiltration and areas of stained yellow in rats of Ginkgo leaf extract anddiphyridamole interventing group were less than rats UUO group. Basal membrane ofnephric tubule thicking, many chondriosomes swelling in cellula epithelialis of renal tubule,inflammatory cell infiltrating and forming of fibrosis in tubulointerstitiam can be seen byelectron microscope in the UUO group. However, these changes were gentler Ginkgo leafextract and diphyridamole interventing group than they in the UUO group.Immunohistochemistry analysis displayed that the levels of TGF-β_1 paralleled thehistological changes of tubulointerstitial fibrosis and didn't correlated to the scores oftubulointerstitial damage (β=-0.197, P=0.639). But the levels of TGF-β_1 remarkablycorrelated to the areas of tubulointerstitial color stain(β=0.935, P=0.000). 24 hoursquantitations of urine protions of rats were not remarkably different in each groups. Incomparison with control groups, level of blood urea and creatinine of rats weresignificantly higher on the 2nd week in the UUO groups. On the 3rd week the level of themdecreased and kept on decreasing on the 4th week. On the 2nd week level of blood ureaand creatinine of rats slowly increased in the Ginkgo leaf extract and diphyridamoleinterventing groups.And on the 3rd and 4th week the level of them remarkably decreased.
     Conclusions: Unilateral ureteral obstruction of rats is animal models of renal interstistitialfibrosis. TGF-β_1 is a important factor in renal interstistitial fibrosis and its level representthe degree of interstistitial fibrosis. Ginkgo leaf extract and diphyridamole significantlydelays progress of renal interstistitial fibrosis and inhibits the expression of TGF-β_1 is one of mechanisms.
引文
1. Masayuki Lwano and Eric G. Neilson. Mechanism of tubulointestitial fibrosis Current Opinion in Nephrology and Hypertension, 2004,13:279-284.
    2. Gupta S, Clarkson MR, Duggan J, et al. Connective tissue Growth factor: Potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int,2000,58(4): 1389-1391.
    3. William H Schnaper, Tomoko Hsysshida, Susan C,et al. TGF-β_1 signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol,2003,284:243-252.
    4. Robert L. Chevalier. Pathogeesis of renal injury in obstructive uropathy. Current Opinion in Pediatrics,2006,18:153-160.
    5. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. New Engl J Med, 2000, 342:1350-1358.
    6. Eddy A. Molecular basis of renal fibrosis. Pediatr Nephrol,2000,15:290-301.
    7. Sun, Bao-Liang. Xia, Zuo-Li. Hu, Dong-Mei, et al. Expression of the receptors of VEGF and the influence of extract of Ginkgo biloba after cistemal injection of autologus arterial hemolysate in rats. Clinical Hemorheology & Microcirculation, 2006, 34(1-2): 117-124.
    8. Maarten W, Kambiz Z, et al. Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int, 2000, 58: 164-167.
    9.田少江,贾香美,师锁柱等.金属蛋白酶组织抑制剂1在大鼠肾小管间质损害中的表达及意义.中华肾脏病杂志,2002,18(4):275-279.
    10. Koo JW, Kim Y, Rozen S, et al. Enalapril accelerates remodeling of renal interstitium after release of unilateral ureteral obstruction in rats. J Nephrol, 2003,16:203-209.
    11. Eitner, Frank, Floege, et al. Novel insights into renal fibrosis. Current Opinion in Nephrology and Hypertension, 2003, 12(3):227-232.
    12. Sunil Gupta, Michael R. Clarkson, Joseph Duggan, et al. Connective tissue growth factor: Potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int. Vol, 2000, 58: 1389-1399.
    13. Kanno Y, Okand H, Yamaji Y, et al. Angiotensi-converting-enzyme inhibitors slow renal decline in IgA nephropathy, independent of tubulointerstitial fibrosis at presentation. Q J Med, 2005, 98: 199-203.
    14. Patrick A. Palmieri. Obstructive nepliropathy: Pathophysiology, Diagnosis and Collaborative Management. Nephrology Nursing J, 2002,29( 1): 15-21.
    
    15. Becker G.J, Hewitson T.D. The role of tubulointerstitial injury in chronic renal failure. Current Opinion in Nephrology and Hypertension, 2000, 9(2):133-138.
    
    16. Huang A., Palmer, L.S. The role of nitric oxide in obstructive nephropathy. The Journal of Urology,2000,163(4):1276-1281.
    
    17. Tanny T,Janet F, Fernando C,et al. Expression of insulin-like growth factor-land transforming factor-Pnephropathy in the rat. Kidney Int,2001,59:96 - 105.
    
    18. Goumenos DS ,Tsakas S ,E1 Nahas AM,et al. Transforming growth factor-P(1) inthe kidney and urine of patients with glomerular disease and proteinuria. Nep hrol Dial Transplant,2002,17(12):2145-2152.
    
    19. Goumenos DS,Tsamandas AC,E1 Nahas AM, et al. Apoptosis and myofibroblast expression in human glomerular disease: a possible link with transforming growth factor-β1. Nephron ,2002,92(2):287-296.
    
    20. Goumenos DS,Tsamandas AC,Oldroyd S,et al. Transforming growth factor-β1 and myofibroblasts :a potential pathway towards renal scarring in human glomerular disease. Nephron,2001,87(3):240-248.
    
    21. Sommer M, Eismann U,Deuther-Conrad W,et al. Time course of cytokine mRNA expression in kidneys of rats with unilateral ureteral obstruction. Nephron,2000,84(1):49 - 57.
    
    22. Tamaki K, Okuda S.Role of in the progression of renal fibrosis.Contrib Nephrol,2003,139:44-65.
    
    23. Bonner JC. Regulation of PDGF and its receptor in fibrosis diseases. Cytokine Growth Factor Rev, 2004,15:255-273.
    
    24. Yoki H, Mukoyama M, Nagae T, et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol,2004,15:1430-1440.
    
    25. Okada H, Kikuta T, Kobayashi T, et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogegesis. J Am Soc Nephrol,2005,16:133-143.
    
    26. Zatz R, Fujihara CK. Mechanisms of progressive renal disease: role of angiotensin II,cyclooxygenase products and nitric oxide. J Hypertens, 2002, Suppl 3:37-43.
    27. Liu W,D.R,Wang Y.L, et al. TGF-β:A Fibrotic Factor in Wound Scarring and a Potential Target for Antiscrring Gene Therapy. Current Gene Therapy,2004,4:123-136.
    
    28. Aksoy, M.H., Vargel, I, et al. A new experimental hypertrophic scar model in guinea pigs. Aesthetic Plast,Surg, 2002,26:388-396.
    
    29. Chen, S.J., Yuan, W, et al. Interaction of smad 3 with a proximal smad-binding element of the human alpha2(I) procollagen gene promoter required for transcriptional activation by TGF -beta. J Cell Physiol,2000,183:381-392.
    
    30. Flanders, K.C., Sullivan, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation,2002,160:1057-1068.
    
    31. Fransson, L.A., Belting, et al. Biosynthesis of decorin and glypican. Matrix Biol,2000,19:376-379.
    
    32. Liu, W, Cao, et al. Blocking transforming growth factor-beta receptor signaling down-regulates transforming growth factor-beta autoproduction in keloid fibroblasts.Chin J. Tranmatol,2002, 5:77-81.
    
    33. Liu, W, Chao, et al. Gene therapy of scarring: a lesson learned from fetal scarless wound healing. Yonsei Med. J,2001,42:543-551.
    
    34. Hsu, M, Peled, et al. Ontogeny of expression of transforming growth factor-betal,TGF- beta 3 and TGF- beta receptors I and II in fetal rat fibroblasts and skin. Plast.Reconstr. Surg, 2001,107:1787-1794.
    
    35. Welt K, Weiss J, Martin R, et al. Ginkgo biloba extract protects rat kidney from diabetic and hypoxic damage. Phytomedicine, 2007,14(2-3): 196-203.
    
    36. Wang GX, Cao FL, Chen J. Progress in researches on the pharmaceutical mechanism and clinical application of Ginkgo Biloba extract on various kinds of diseases. Chinese Journal of Integrative Medicine,2006,12(3):234-239.
    
    37. Eckert A, Keil U, Scherping I, et al. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Annals of the New York Academy of Sciences,2005,1056:474 -485.
    
    38. Yamamoto Y, Adachi Y, Fujii Y, et al. Ginkgo biloba extract improves spatial memory in rats mainly but not exclusively via a histaminergic mechanism. Brain Research.2007,1129(1):161-165.
    
    39. Chen J, He B, Liu. Experimental study on effect of folium Ginkgo biloba in treating pulmonary interstitial fibrosis in rats.Chinese Journal of Integrated Traditional & Western Medicine, 2000,20(6):441-443.
    
    40. Daba MH, Abdel-Aziz AA, Moustafa AM, et al. Effects of L-carnitine and ginkgo biloba extract (EGb 761) in experimental bleomycin-induced lung fibrosis.Pharmacological Research, 2002,45(6):461-467.
    
    41. Iraz M, Erdogan H, Kotuk M, et al. Ginkgo biloba inhibits bleomycin-induced lung fibrosis in rats. Pharmacological Research, 2006,53(3):310-316.
    
    42. Luo YJ. Yu JP. Shi ZH. Wang L. Ginkgo biloba extract reverses CC14-induced liver fibrosis in rats. World Journal of Gastroenterology, 2004,10(7):1037-1042.
    
    43. Ding J. Yu J. Wang C. Hu W. Li D. Luo Y. Luo H. Yu H. Ginkgo biloba extract alleviates liver fibrosis induced by CC1 in rats. Liver International,2005,25(6): 1224-1232.
    
    44. Liu SQ, Yu JP, Chen HL, et al. Therapeutic effects and molecular mechanisms of Ginkgo biloba extract on liver fibrosis in rats. American Journal of Chinese Medicine,2006,34(1):99-114.
    
    45. Mazza M, Capuano A, Bria P, et al. Effects of Ginkgo biloba extract on cell proliferation, cytokines and extracellular matrix of hepatic stellate cells. Live.International,2006,26(10):1283-1290.
    
    46. Dong XX, Hui ZJ, Xiang WX, et al. Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. Journal of Cardiovascular Pharmacology, 2007,49(2): 111-115.
    
    47. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol,2002,283(5):861-875.
    1. Masayuki Lwano and Eric G. Neilson. Mechanism of tubulointestitial fibrosis. Current Opinion in Nephrology and Hypertension, 2004,13:279-284.
    2. Robert L. Chevalier. Pathogeesis of renal injury in obstructive uropathy. Current Opinion in Pediatrics,2006,18:153-160.
    3. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor block tubular epithelial to mesenchymal transition. J Am Soc.Nephrol,2005,16: 68-78.
    4. W. Liu, D.R. Wang and Y.L. Cao. TGF-β: A Fibrotic Factor in Wound Scarring and a Potential Target for Anti-Scarring Gene Therapy. Gurrent Gene Therapy, 2004, 4: 123-136.
    5. Sergio A, Mezzano M, Alejandra D,et al. Overpexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int, 2000, 147-158.
    6. Tanny T, Janet F, Fernando C, et al. Expression of insulin-like growth factor-land transforming factor-βnephropathy in the rat. Kidney Int, 2001, 59: 96-105.
    7. Goumenos DS, Tsakas S, El Nahas AM, et al. Transforming growth factor-β(1) in the kidney and urine of patients with glomemlar disease and proteinuria. Nephrol Dial Transplant,2002,17(12):2145-2152.
    8. Goumenos DS,Tsamandas AC, El Nahas AM, et al. Apoptosis and myofibroblast expression in human glomerular disease: a possible link with transforming growth factor-β1. Nephron, 2002, 92(2): 287-296.
    9. Goumenos DS,Tsamandas AC,Oldroyd S,et al. Transforming growth factor-β1 and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease. Nephron,2001,87(3):240-248.
    
    10. Sommer M, Eismann U,Deuther-Conrad W,et al. Time course of cytokine mRNA expression in kidneys of rats with unilateral ureteral obstruction Nephron,2000,84(1):49 - 57.
    
    11.Donnell MP. Renal tubulointerstitial fibrosis: new thoughs on its development and progression. Postgrad Med,2000,108:159-172.
    
    12. William Schnaper H, Tomoko Hayashida, Susan C et al. TGF-P signal transduction and mesangial cell fibrogesis. Am J PhysialRenalPhysial,2003,284: 243-252.
    
    13. Ludat K, Sommerburg O, Grune T, et al. Oxidation parameters in complete correction of renal anemia. Clin Nephrol,2000,53: 30-35.
    
    14. Misseri R, Rink RC, Meldrum DR, Meldrum KK. Inflammatory mediators and growth factors in obstructive renal injury. J Surg Res, 2004,119:149-159.
    
    15. Kluth DC, Erwig LP, Rees AJ. Multiple facets of macrophages in renal injury,Kidney Int 2004,66:542-557.
    
    16. Eardley KS, Cockwell P. Macrophages and progressive tubulointerstitial disease.Kidney Int, 2005,68:437-455.
    
    17. Esteban V, Lorenzo O, Rupe' rez M, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol, 2004,15:1514-1529.
    
    18. Tashiro K, Tamada S, Kuwabara N, et al. Attenuation of renal fibrosis by proteasome inhibition in rat obstructive nephropathy: possible role of nuclear factor kappaB. Int J MolMed,2003,12:587-589.
    
    19. Chevalier RL,.Cachat F. Role of angiotensin II in chronic ureteral obstruction.In: Wolf G, editor. The Renin-Angiotensin System and Progression of Renal Diseases, edn 1.Basel: Karger,2001,250-260.
    
    20. Inazaki K, Kanamaru Y, Kojima Y, et al. Smad3 deficiency attenuates renal fibrosis,inflammation, and apoptosis after unilateral ureteral obstruction.Kidney Int,2004,66:597-604.
    
    21. Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest, 2002,110:341-350.
    22. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol,2004,15:1-12.
    
    23. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol,2005, 16:68-78.
    
    24. Strutz F,ZeisbergM, Renziehausen A,et al.TGF-β1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growthfactor (FGF-2) . Kidney Int,2001,59(2):579-592.
    
    25. Isaka Y,Tsujie M,Ando Y,et al.Transforming growth factor-β1antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction.Kidney Int.2000;58:1885-1892.
    
    26. Li JH,Zhu HJ,Huang XR,et al. Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad2 activation. J AM Soc Nephrol,2002,13:1464-1472.
    
    27.Lan HY,Mu W,Tomita N ,et al.Inhibition of renal fibrosis by gene transfer of inducrible Smad7 using Ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol,2003,14:1535-1548.
    
    28. Zeisberg M,Hanai J,Sugimoto H,et al.BMP7 counteracts TGF-batal induced epithelial-to-mesenchymal transition and reverse chronic injury.Net Med,2003,9:964-968.
    
    29. Kitamura S,Maeshima Y,Sugaya T,et al. Transforming growth factor-β1 induces vascular endothelial growth factor expression in murine proximal tubular epithelial cells. Nephron Exp Nephrol,2003,95 (2):79-86.
    
    30. Epstein M. Aldosterone and the hypertensive kidney:its emerging role as a mediator of progressive renal dysfunction:aparadigm shift. J Hyperten, 2001,19(5):829-842.
    
    31. Poncelet AC ,Schnaper HW. Spl and Smad proteins cooperate to mediate transforming growth factor-β1-induced alpha 2(1) collagen expression in human glomerular mesangial cells.JBiolChem,2001,276(10):6983-6992.
    
    32. Chin BY,Mohsenin A,Li SX,et al. Stimulation of pro-alpha (1)I-collagen by TGF-p(1) in mesangial cells:role of the p38 MAPKpathway. AmJ Physiol Renal Physiol,2001,280(3):495-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700