正常肾脏与梗阻性肾积水患者患肾功能的64层螺旋CT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肾脏64层螺旋CT灌注成像技术的参数组合、正常灌注表现及其影响因素的研究
     目的:①探讨64层螺旋CT(Spiral CT,SCT)肾脏灌注成像的技术方法;②测定正常肾脏皮质、髓质的各项灌注参数;③分析正常肾脏皮质、髓质灌注值与年龄、性别、左右侧的相关性。
     材料和方法:应用SIEMENS Sensation 64层螺旋CT扫描仪,对30例健康志愿者先行肾脏CT平扫,确定肾门层面为灌注层面,而后以6ml/s速度注射非离子对比剂碘海醇(300mgI/ml)50ml,在肾门层面行同层动态扫描,扫描延时时间为6s。每个病人的扫描分3个序列,每个序列的扫描时间为30s,间隔10s让患者呼吸换气,然后接着下一个序列扫描。每个序列的球管曝光时间为0.5s,间隔时间分别为0.5s、2.5s、4.5s。在西门子工作站上用Body Perfusion软件包中的Kindey分析软件处理数据。测定正常肾脏的各项灌注参数值,应用配对t检验及两样本t检验分别比较左右侧及男女各灌注参数有无显著性差异。根据年龄将其分为三组,应用方差分析分别比较三组间肾脏皮质、髓质灌注参数值有无显著性差异,从而分析年龄是否对各灌注参数产生影响。
     结果:①探讨出理想的64层螺旋CT灌注参数组合。②28例正常肾脏64层CT灌注成像表现为双侧肾脏皮质TDC曲线(time-densitycurve)和双侧肾髓质TDC曲线对称,基本重合。肾皮质BF为301.56±68.79ml/100ml/min,BV为38.86±5.83 ml/100ml,TTP为11.17±1.12s,PS为42.85±10.88ml/100ml/min,PBV为67.53±10.25ml/100ml;肾髓质BF为157.78±34.58 ml/100ml/min,BV为28.53±3.90 ml/100ml,TTP为12.38±1.15s,PS为75.59±22.68ml/100ml/min,PBV为28.24±0.94ml/100ml。③双侧肾脏皮质、髓质灌注值之间无统计学差异(肾皮质BF、BV、TTP、PS、PBV的P值分别为0.55、0.73、0.60、0.16、0.68;肾髓质BF、BV、TTP、PS、PBV的P值分别为0.09、0.72、0.60、0.09、0.65。P值均>0.05);男、女肾脏皮髓质灌注值之间无明显统计学差异(肾皮质BF、BV、TTP、PS、PBV的P值分别为0.29、0.50、0.40、0.72、0.31;肾髓质BF、BV、TTP、PS、PBV的P值分别为0.45、0.38、0.11、0.45、0.75。P值均>0.05);但年龄因素对肾脏皮髓质灌注参数有影响,年龄<40岁组、40—60岁组、>60岁组三组比较肾皮质BF、BV、TTP、PS三组间差别有统计学意义,肾髓质BV、PS三组间差别有统计学意义,组间比较时,P均<0.05。
     结论:①64层螺旋CT灌注成像技术能测量正常肾脏皮质、髓质各灌注值,能定量分析其血流动力学变化。②肾脏皮髓质的灌注值与年龄相关,而与性别、左右侧无关。
     第二部分肾脏64层螺旋CT灌注成像对梗阻性肾积水积水肾脏单肾功能的评价
     目的:①探讨梗阻性肾积水患者积水肾64层螺旋CT灌注成像表现(灌注参数值的变化与灌注图的变化);②探讨64层螺旋CT肾灌注成像对单肾功能损害及其分级的的评估价值;③64层螺旋CT肾脏各灌注参数值与单光子发射计算机体层成像(SPECT)肾动态显像测定的GFR进行比较,分析两者间的相关性。
     材料与方法:36例梗阻性肾积水患者,均对其进行64层螺旋CT灌注扫描和单光子发射计算机体层成像(SPECT)肾动态显像检查。①将积水组(48个肾脏)各灌注参数位与第一部分测定的正常组对照分析;②根据SPECT测定的肾小球滤过率(GFR)把72个肾脏分为正常组、肾功能轻度受损组、肾功能重度受损组,分别测量3组肾皮质和髓质的64层螺旋CT血流灌注参数,比较三者之间的差异;③将各灌注参数与单侧肾脏GFR进行pearson相关性分析。
     结果:①36例梗阻性肾积水患者的CT灌注成像表现为双侧TDC曲线不对称,积水侧肾皮质、髓质的TDC斜率与峰高降低。积水肾的肾皮质BF为203.20±44.93ml/100ml/min,BV为27.61±3.90 ml/100ml,PS为30.68±6.48 ml/100ml/min,PBV为46.49±10.85 ml/100ml;肾髓质BF为99.89±24.08 ml/100ml/min,BV为18.32±4.32ml/100ml,PS为51.80±12.09 ml/100ml/min,PBV为21.3l±2.95ml/100ml。与第一部分正常肾脏各灌注参数值相比均下降(P值均<0.05)。②肾功能受损组肾皮质和肾髓质各血流灌注值均下降,与正常组比较有显著性差异(P<0.05)。正常组、肾功能轻度受损组、肾功能重度受损组3组间肾皮质和肾髓质血流灌注值均有显著性差异(P<0.05)。三组间肾皮质、肾髓质各血流灌注参数组间两两比较,也均有显著性差异,P值<0.05。③肾皮质和髓质的各灌注参数与单侧肾脏肾小球滤过率(GFR)有良好的相关性。其中肾皮质BF相关性最好,相关系数r=0.852。
     结论:①64层螺旋CT肾脏灌注成像能对积水肾肾皮质和髓质的血流灌注状态与肾功能损害进行定量评估;②64层螺旋CT灌注成像能对受损肾功能进行分级;③64层螺旋CT肾灌注成像测定的肾皮质、髓质的各灌注参数值与SPECT测定的GFR有良好的相关性。因此64层螺旋CT肾脏灌注成像对评价肾积水时肾血流变化情况及预测单侧肾脏功能有一定的临床价值。
     第三部分肾脏皮髓质分界肾皮髓质对比度及皮髓质CT峰值与单肾功能相关性的64层螺旋CT研究
     目的:观察64层螺旋CT灌注扫描中正常肾与梗阻性肾积水时积水肾肾脏皮髓质分界(CMD)、肾皮髓质对比度(CMC)及皮髓质CT峰值的变化规律,并进一步探讨其与单肾功能的相关性。
     材料与方法:选择36名梗阻性肾积水患者,均对其进行64层螺旋CT灌注扫描和单光子发射计算机体层成像(SPECT)肾动态显像检查,并将患者按SPECT测定的肾小球滤过率(GFR)水平分为正常组(24个)和轻度肾功能降低组(21个)与重度肾功能减退组(27个)。并分别以肾皮髓质分界清晰、模糊、部份可见与消失将CMD分为四种不同程度;分别测量皮质峰值时刻的皮质及髓质CT值,计算皮髓质对比度(CMC),分别测量髓质峰值;探讨正常组、轻度肾功能降低组与重度肾功能减退组之间CMD、CMC与皮髓质CT峰值的差异;分别将上述CMC及肾皮质及髓质CT峰值与GFR进行相关分析。
     结果:(1) CMD:正常组(24个),24个(100%)CMD清晰;轻度肾功能降低组(21个):14个(66.67%)CMD清晰,2个(9.52%)CMD模糊但仍可见,5个(23.81%)CMD部分可见;重度肾功能减退组(27个):7个(25.93%)CMD清晰,5个(18.52%)CMD模糊但仍可见,15个(55.56%)CMD部分可见。(2) CMC值及其与GFR相关性:正常组CMC为0.616±0.203,肾功能轻度受损组CMC为0.517±0.140,肾功能重度受损组CMC为0.367±0.110。CMC与GFR呈正相关(r=0.536,P<0.05)。(3)肾皮质及髓质CT峰值及与GFR相关性:正常组肾皮质CT峰值为132.95±21.99Hu,肾髓质CT峰值104.07±16.15Hu;肾功能轻度受损组肾皮质CT峰值为90.97±29.32Hu,肾髓质CT峰值75.90±24.70 Hu;肾功能重度受损组肾皮质CT峰值为68.45±24.09Hu,肾髓质CT峰值56.90±21.31Hu。肾皮质CT峰值与GFR呈正相关(r=0.672,P<0.05),肾髓质CT峰值与GFR呈正相关(r=0.623,P<0.05)。
     结论:(1)梗阻性肾积水患者积水肾功能减退时CMD半定量化与量化指标CMC及肾皮髓质CT峰值均降低。(2)梗阻性肾积水肾脏CMC、与肾皮质及髓质CT峰值改变与GFR具有正相关关系,因而其对预测单侧肾脏功能有一定的临床价值。
     第四部份肾脏皮质厚度、皮层容积大小与单肾功能相关性的64层SCT研究
     目的:研究肾脏皮质厚度、肾皮质容积大小与单肾功能的关系。
     材料与方法:36例梗阻性肾积水患者,在对其进行64层螺旋CT灌注扫描后进行全肾CT增强扫描,并于2天内行单光子发射计算机体层成像(SPECT)肾动态显像检查。根据SPECT检测的肾小球滤过率(GFR)把72个肾脏分为正常组、肾功能轻度受损组、肾功能重度受损组,分别测量三组病例的肾脏皮质厚度、肾皮质容积大小均值;比较三组间64层SCT测量的肾脏皮质厚度、肾皮质容积大小的差异,分析肾脏皮质厚度、肾皮层容积大小与同侧肾GFR值的相关性,从而探讨64层SCT测量肾脏皮质厚度、肾皮层容积大小对单肾功能的评价价值。
     结果:肾功能正常组、轻度受损组、重度受损组三组间肾脏皮质厚度分别为0.51±0.1、0.37±0.12、0.23±0.80(cm),三组间肾脏皮质容积大小分别为74.26±11.92、55.28±15.19、27.57±7.02(cm~3)。三组之间肾脏皮质厚度及容积大小差异均有统计学意义(F值分别为51.60,77.01,P值均<0.01)。肾脏皮质厚度、皮质容积大小与肾脏GFR均有良好的相关性(相关系数分别为r=0.778与r=0.815,P值均<0.01)。
     结论:64层SCT增强扫描及相关后处理软件测量的肾脏皮质厚度与皮层容积大小能在一定程度上反映单肾功能,可以作为64层SCT评价单肾功能的有用参数。
PartⅠ:The Research of Perfusion Imaging Parameter, normal Perfusion Performance and The Influencing Factors in 64—Slice Spiral CT Kidney Perfusion Imaging
     Objective:①To investigate the methods of MSCT perfusion imaging of the kidney;②To measure all the cortex and medulla perfusion parameters of the nomal kidney;③These perfusion parameters were compared to determine whether there were significant diference between right and left,male and femal.And the correlation between age and perfusion parameters was analyzed.
     Methods:28 healthy volunteers were studied in this group with SIEMENS Sensation 64-slice spiral CT.A conventional kidney CT plain scan was obtained as a routine to locate the renal hili.Dynamic scans were performed at the location of the renal hili with 50ml nonionic contrast administration(300 mgI/ml) at the speed of 6 ml/s.There are three separate scan sequences for each patient with 30 seconds scan duration respectively.The patient was asked to breathe in and out during the 10s interval of each scan sequence.For each scan sequence,the rotation time is 0.5s,and scan interval is 0.5s、2.5s and 4.5s, respectively.Data postprocessing was performed on Siemens workstation using kidney analyzing software in the package of Body Perfusion.To measure all the cortex and medulla perfusion parameters of the nomal kidney.The perfusion parameters were then compared using the paired t-test and two-sample t-test,to determine whether there were significant diference between right and left,male and femal.And the correlation between age and perfusion parameters was analyzed.
     Result:①To explore the ideal 64-slice spiral CT kidney perfusion parameter combination.②The time-density curves of 28 bilateral normal renal cortex and medulla are symmetric,even coincident.The mean BF、BV、TTP、PS、PBV of renal cortex were 301.56±68.79ml/100ml/min、38.86±5.83 ml/100ml、11.17±1.12s、42.85±10.88ml/100ml/min、67.53±10.25 ml/100ml respectively.and the mean BF、BV、TTP、PM、PBV of renal medulla were 157.78±34.58 ml/100ml/min、28.53±3.90 ml/100ml、12.38±1.15s、75.59±22.68 ml/100ml/min、28.24±0.94 ml/100ml.③Using analysis of variance,there were no gender and right or left differences in the perfusion parameters(The P value of the BF、BV、TTP、PS、PBV of renal cortex were 0.55、0.73、0.60、0.16、0.68; The P value of the BF、BV、TTP、PS、PBV were 0.09、0.72、0.60、0.09、0.65.P>0.05),but the perfusion parameters of cortex and medulla was lower in the elder(P<0.05).
     Conclusion:①It can measure the cortex and medulla perfusion parameters of the nomal kidney with 64—slice spiral CT perfusion imaging.It can quantitatively evaluate the haemodynamics change in the normal renal tissue..②There were no gender and right or left differences in all the perfusion parameters of the normal kidney,but there were relationship between age with all the perfusion parameters.
     PartⅡ:64—Slice Spiral CT Perfusion Imaging in the Single Renal Functional Assessment of Hydronephrotic kidney
     Objective:The purpose of this study was to evaluate the diagnostic value of MSCT perfusion imaging in assessment of single renal function of hydronephrotic kidney,and to compare the results with GFR which were obtained with SPECT
     Methods:64-slice spiral CT perfusion were performed in 36 obstructive nephrohydrosis patients whose split renal glomerular filtration rate(GFR) were measured by SPECT renal dynamic imaging.①To compared the perfusion parameters of the renal cortex and renal medulla of the Hydronephrotic kidney with the normal kidney studied in the primary part.②The 72 kidneys were divided into normal renal function,mild and severe renal impairment groups according to renal function.Differences between the groups respect to all the mean perfusion parameters of the renal cortex and renal medulla were assesses by ANOVA.③Using Pearsons correlation test,the correlation between all the mean perfusion.parameters of the renal cortex and renal medulla and renal GFR were examined.
     Result:①The time-density curves of bilateral normal renal cortex and medulla are not symmetric.The mean BF、BV、PS、PBV of renal cortex were 203.20±44.93ml/100ml/min、27.61±3.90 ml/100ml、30.68±6.48 ml/100ml/min、46.49±10.85 ml/100ml;and the mean BF、BV、PM、PBV of renal medulla were 99.89±24.08 ml/100ml/min、18.32±4.32 ml/100ml、51.80±12.09 ml/100ml/min、21.31±2.95ml/100ml.The mean Perfusion parameters of the cortex and medulla of obstructed kidney were lower compared to that of normal kidney.②There were significant differences of all the perfusion parameters of the renal cortex and medulla between three groups(P<0.05).③The perfusion parameters of the renal cortex and medulla had positive linear corelation with GFR.The best correlatin was the blood flow of the cortex of kidney.The correlation coefficient r=0.852.
     Conclusion:①It can quantitatively evaluate the haemodynamics condition and functional lesion of the kidney using 64—slice spiral CT perfusion imaging;②It can classify the impaired kidney function;③The perfusion parameters of the renal cortex and medulla had positive linear corelation with GFR.So it is of certain value in evaluating the half renal function of hydronephrosis.
     PartⅢ:The 64-slice Spiral CT Study of Relationship between Renal Corticomedullary Differentiation,Contrast Between Renal Cortex and Medulla(CMC),Renal Cortex and Medulla Peak Value with the Single Renal Functional of Hydronephrotic kidney
     Object:To observe 64-slice spiral CT perfusion imaging features about renal corticomednllary differentiation,differentiation contrast between renal cortex and medulla(CMC),renal cortex and medulla CT peak value in normal and hydronephrotic kidney,and to explore the relationgship between them with the single renal functional.
     Material and methods:64-slice spiral CT perfusion were performed in 36 obstructive nephrohydrosis patients whose split renal glomerular filtration rate(GFR) were measured by SPECT renal dynamic imaging. The 72 kidneys were divided into normal renal function,mild and severe renal impairment groups according to GFR.Renal corticomedullary diferentiation on CT images were divided into clear group,obscure group,part clear group and vanish group according to the level of CMD. The CT intensity of cortex and medulla was measured in order to calculate contrast between renal cortex and medulla(CMC),Using Pearsons correlation test,the correlation between them and renal GFR were examined.
     Results:①The 24 kidneys of normal group,24(100%) kidneys showed clear CMD.The 21 kidneys of mild renal impairment group, 14(66.67%)kidneys showed clear CMD,2(9.52%)showed obscure CMD and 5(23.81%) showed part clear of CMD;The 27 kidneys severe renal impairment group,7(25.93%)kidneys showed clear CMD,5(18.52 %)showed obscure CMD and 15(55.56%)showed part clear of CMD;②The normal group CMC was 0.616±0.203,The mild renal impairment group CMC was 0.517±0.140,The severe renal impairment group CMC was 0.367±0.110.The CMC had positive linear corelation with GFR,The correlation coefficient r=0.536.③The renal cortex and medulla CT peak value of normal group were 132.95±21.99Hu and 104.07±16.15Hu;The renal cortex and medulla CT peak value of mild renal impairment group were 90.97±29.32Hu and 75.90±24.70Hu;The renal cortex and medulla CT peak value of severe renal impairment group 68.45±24.09Hu and 56.90±21.31Hu.The renal cortex CT peak value had positive linear corelation with GFR,The correlation coefficient r=0.672, The renal medulla CT peak value had positive linear corelation with GFR,The correlation coefficient r=0.623.
     Conclusion:①The CMC and the renal cortex and medulla CT peak value all degrade when the kidney functiong decrease of obstructive nephrohydrosis patients.Hypofunction.②The CMC and the renal cortex CT peak value of obstructive nephrohydrosis had positive linear corelation with GFR.So they are of certain value in evaluating the single renal function of hydronephrosis.
     PartⅣRelationship between renal cortex thickness or volume and split renal function:study with CT measurement
     Objective To study the relationship between renal cortex thickness or volume and renal function,and to assess the value of CT as a criterion to grade renal function.
     Methods Enhancement CT were performed in 36 nephrohydrosis patients whose split renal glomerular filtration rate(GFR) were measured by SPECT renal dynamic imaging.The 72 kidneys were divided into normal renal function,mild and severe renal impairment groups according to renal function.Differences between the groups respect to the mean cortex thickness and volume were assesses by ANOVA.Using Pearson's correlation test,the corelation between the renal cortex thicknesses,volume and renal GFR were examined.
     Results The renal cortex thicknesses of normal renal function,mild and severe renal impairment groups were(0.51±0.1)、(0.37±0.12)、(0.23±0.80) cm respectively,and the renal cortex volume were (74.26±11.92)、(55.28±15.19)、(27.57±7.02)cm~3.There were significant differences of renal cortex thickness and volume between three groups (cortex thickness F=51.60,P<0.01:cortex cortex F=77.01,P<0.01),The thicknesses of renal cortex(r=0.778 P<0.01),the volume of renal cortex (r=0.815 P<0.01)had positive linear corelation with renal function.
     Conclusion The thicknesses and volume of renal cortex measured by CT can reflect renal function.CT was a supplementary method to a ssess renal function.
引文
[1]Khalaf IM,Shokeir AA,El-Gyoushi FI,et al.Recoverability of renal function after treatment of adult patients with unilateral obstructive uropathy and normal contralateral kidney:A prospective study.Urology.2004;64(4):664-668.
    [2]夏樾,程帆,张杰,等.彩色多普勒超声动态观察大鼠单侧肾积水[J].武汉大学学报,2002,23(1):82-84.
    [3]赵金英,李树森,廖明松,等.肾脏积水的彩色多普勒能量图分析[J].中国临床医学影像杂志,2001,12(1):31-33.
    [4]阮玉琚,黄华,桓文穆,等.放射性核素肾脏显像在评价肾功能的临床应用[J].中华肾脏病杂志,1998,14(6):391-392.
    [5]许玉峰,唐光健.CT测量肾脏皮质厚度与年龄关系的研究.中华放射学杂志,2004,38(8):805-810.
    [6]李颂,董宝伟,唐杰等,彩色Doppler能量图血流定量的实验研究.中华超声影像学杂志,1997,6(4):231-234
    [7]Miles KA,Hayball M.Dixon AK.Colour perfusion imaging:a new application of computed tomography.Lancet.1991;337(8742):643-645.
    [8]Eastwood JD,Lev MH,Provenzale JM.Perfusion CT with iodinated contrast material.[J].AJR Am J Roentgenol,2003,180(1):3-12.
    [9]Eastwood JD,Lev MH,Azhari T,et al.CT perfusion scanning with deconvolution analysis:pilot study in patients with acute middle cerebral artery stroke.Radiology,2002,222(1):227-236.
    [10]Furukawa M,Kashiwagi S,Matsunaga N,et al.Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia:comparison with xenon CT.J Comput Assist Tomogr,2002,26:272-278.
    [11]Miles KA.Measurement of tissue perfusion by dynamic computed tomography [J].BrJ Radiol,1991,64(761):409-412.
    [12]Miles KA,Hayball MP,Dixon AK,et al.Measurement of human pancreatic perfusion using dynamic computed tomography with perfusion imaging.The British Journal of Radiology,1995,68(809):471-475.
    [13]Dugdale PE,Miles KA,Bunce I,et al.CT measurement of perfusion and permeability within lymphomam assesandits ability to assess grade,activity,and chemotherapeutic response.J Comput Assist Tomogr,1999,23(4):540-547
    [14] Harvey CJ,Blomley MJ,Dawson P,et al.Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland:early experience.J Comput Assist Tomogr.2001,25 (1):43-49
    [15] Jaschke WR,Gould RG,Cogan MG,etal .Cine-CT measurement of cortical renal blood flow. J Comput Assist Tomogr,1987,11(5):779-784.
    [16] Probst P, Link L, Futerlieb A et al. Experimental acute renal artery stenosis. Dynamic CT and renal perfusion.Invest Radiol, 1984,19(2) :87-95.
    [17] Paul JF, Ugolini P, Sapoval M, et al. Unilateral renal artery stenosis: perfusion patterns with electron-beam dynamic CT-preliminary experience. Radiology, 2001,221(1)261-265.
    [18] Lerman LO,Taler SJ,Textor SC,et al.Computed tomography-derived intrarenal blood flow in renovascular and essential hypertension[J]. Kidney International, 1996, 49: 846-854.
    [19] Hindmarsh T.Elimination of water-soluble contrast media from the subarachnoid space.Investigation with computed tomography. Acta Radiol, 1975,346(1):45-50.
    [20] Miles KA, Heyball MP, Dixon AK. Functional images of hepatic perfusion obtained with Dynamic CT. Radiology, 1993,188(2):405-411.
    [21] Peters AM, Gunasekera RD, Henderson BL, et al. Noninvasive measurement of blood flow and extraction fraction. Nucl Med Commun, 1987, 8(10)823-837.
    [22] Patlak CS,Blasberg RG,Fenstermacher JD.Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab,1983,3(1):1-7.
    [23] Iwasaki T,Ritman EL,Fiksen-Olsen MJ,et al.Renal cortical perfusion- preliminary experience with the dynamic spatial reconstructor(DSR)[J]. Ann Biorned Eng, 1985,13(3-4)259-271.
    [24] Bentley MD, Lerman LO. Hoffman EA, et al.Measurement of renal perfusion and blood flow with fast computed tomography.[J].Circulation Research, 1994, 74(5):945-951.
    [25] Nitzsche EU, Choi Y. Killion D,et al. Quantification and parametric imaging of renal cortical blood flow in vivo based on Patlak graphical analysis.[J]. Kidney Int,1993,44(5):985-996.
    [26] Lerman LO, Flickinger AL,Sheedy PF 2nd,et al. Reproducibility of human kidney perfusion and volume determinations with electron beam computed tomography. [M]. Invest Radiol, 1996,31 (4): 204-210.
    [27] Miles KA ,Hayball MP,Dixon AK.Functional imaging of changes in human intrarenal perfusion using quantitative dynamic computed tomography. Invest Radiol,1994,29(10):911-914.
    [28] Blomley MJ. Kormano M, Coulden R, et al. Renal perfusion quantified with contrast-enhanced computed tomography[J]. Invest Radiol. 1994,29,Supplement 2,s232-s233.
    [29] Jaschke W, Gould KG, Lipton MJ,et al. Flow measurements with a high-speed computed tomography scanner.[J].Med Phys 1987,14(2): 238-243.
    [30] 林善铁.当代肾脏病学.上海:上海科技教育出版社, 2001.502-505
    [31] Goh V, Halligan S, Hugill JA, Gartner L, Bartram CI. Quantitative Colorectal Cancer Perfusion Measurement Using Dynamic Contrast-Enhanced Multidetector-Row Computed Tomography: Effect of Acquisition Time and Implications for Protocols. Journal of Computer Assisted Tomography. 2005,29(1):59-63.
    [32] Aleksa C, Darius GN, Rosemary A, et al. A CT method to measuree hemodynamics in brain tumors: validation and application of cerebral blood flow maps.A JNR,2 000,2 1(3):46 2-470
    [33] Heidi CRJimothy PLR,Wade SS,et al.Multisection dynamic CT perfusion for acute cerebral ischemia: the"toggling-table"technique. AJNR, 2001, 22(6): 1077-1080.
    [34] Blomley MJ,Dawson P Review article:The quantification of renal function with enhanced computed tomography[J].The British Journal of Radiology, 1996,69(827):989-995.
    [35] Gunnar B, Malte LB, Ulf H, et al. Regional blood flow, capillary permeability and compartmental volumes: measurement with dynamic CT-initial experience [J] Radiology, 1999,210(1):269-276.
    [36] Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003,76(904)220-231.
    [37] Brix G, Bahner ML, Hoffmann U,et al. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT—initial experience.Radiology,1999,210(1):269-276.
    [38]Miles KA.Perfusion CT for the assessment of turnout vascularity:which protocol? Br J Radiol,2003,76(suppl-1):S36-S42.
    [39]Hoeffner EG,Case I,Jain R,et al.Cerebral perfusion CT:technique and clinical applications.Radiology,2004,231(3):632-644.
    [40]Blomley MJ,Coulden R,Dawson P,et al.Liver perfusion studied with ultrafast CT.J Comput Assist Tomogr,1995,19(3):424-433.
    [41]Koenig M,Klotz E,Luka B,et al.Perfusion CT of the brain:diagnostic approach for early detection of ischemia stroke[J].Radiology,1998,209(1):85-93.
    [42]Miles KA,Blomley M,TsushimaY,el al.Ideal contrast medium bolus for perfusion measurement in dynamic lung.Radiology,1998,209(2):583-585.
    [43]Bell SD,Peters AM.Measurement of the blood flow from first-pass radionuclide angiography:Influnce of bolus volume.EurJ NuclMed,1991,18(11):885-888.
    [44]Zhang M,Kono M.Solitary pulmonary nodules:evaluation of blood flow patterns with dynamic CT.Radiology,1997,205(2):471-478.
    [45]Jaschke W,Cigan MG,Sievers R,et al.Measurement of renal blood flow by cine computed tomography.Kidney Int,1987,31(4):1038-1042.
    [46]卢延、张雪哲主编,肾输尿管CT与MRI(第一版),中国医药科技出版社,2005,1:120-2040.
    [47]MJ Blomley,AM Bride,S Mohammedtagi,T Albrecht,CJ Harvey,R Jager,NJ Standfield,and Dawson.Functional renal perfusion imaging with color mapping:is it a useful adjunct to spiral CT of in the assessment of abdominal aortic aneury sm(AAA)?E urJ Radiol,Junel,1999;30(3):214-220.
    [48]刘晓晟,许建荣,江旭峰,等.兔急性肾功能衰竭CT灌注成像与核素显像对照的实验研究.放射学实践,2005,20(10):854-856.
    [49]Rosen SM.Blood flow through organs and tissues,ed by Bain WH & Harper AM.E.and S.Livingstone,Edinburgh,1968,P458-465.
    [50]孙建男,郭启勇,幺刚等.正常肾脏MSCT灌注成像的研究.中国医学影像学杂志,2005,13(4):275-278.
    [51]Berne RM,Levy MN.Physiology(4rd),CV Mosby Co,St Louis,1998,P677-704.
    [52]王荣福,刘志军.不同病理类型IgA肾病肾动态显像分析.中华核医学杂志, 2002,22:219-220.
    [53]王海燕,主编.肾脏病学.第2版.北京:人民卫生出版社,1996.320-321,1385,1630.
    [54]许玉峰,唐光健,蒋学祥.肾脏形态与肾小球滤过功能相关性的CT研究.中华放射学杂志,2006,40(10):1079-1082。
    [55]Higa H,Nalatsu M.A comparison of methods in measurement of effective renal plasma flow and golmerular filtration rate in clinical practice.[J]Clin Nucl Med,1993,18(10):877-883.
    [56]叶慧,胡道予,王秋霞等.MSCT灌注成像对积水肾脏单肾功能评价的实验研究。临床放射学杂志,2006,25(12):1159.
    [57]曾甫清,鲁功成,刘博,等.慢性不全梗阻肾积水多普勒参数于肾盂形态学指标相关性的研究.中华实验外科杂志,1997,14(4):250.
    [58]Cheng EY,Maizels M,Chou P,et al.Response of the newborn ureteropelvic junction complex to induced and later reversed partial ureteral obstruction in the rabbit model.J Urol.1993,150(2 Pt 2):782-789.
    [59]Lim GY,Jang HS,Lee EJ,et al.Utility of the resistance index ratio in differentiating obstructive from nonobstructive hydronephrosis in Children.J Clin Ultrasound,1999,27(4):187-193.
    [60]Durick JE,Winter TC,Schmiedl UP,et al.Renal perfusion:pharmacoiogic changes depicted with power Doppler US in an animal model.Radiology,1995,197(3):615-617.
    [61]Rubin JM,Adler RS,Fowlkes JB,et al.Fractional moving blood volume:estimation with power Doppler US,Radiology,1995,197(1):183-190.
    [62]Frush DP,Babcock DS,White KS,et al.Quantification of intravenous contrast-enhanced Doppler power spectrum in the rabbit carotid artery.花Ultrasound Med Biol.1995,21(1):41-47.
    [63]Verbeek XA,Willigers JM,Prinzen FW,et al.High-resolution functional imaging with ultrasound contrast agents based on RF processing in an in vivo kidney experiment.Ultrasound Med Biol,2001,27(2):223-233.
    [64]Martirosian P,Klose U,Mader I,et aI.FAIR true-FISP perfusion imaging of the kidneys.Magn Reson Med,2004,51(2):353-361.
    [65]Peeter F,Annet L,Hermoye L,et al.Inflow correction of hepatic perfusion measurements using Tl-weighted,fast gradient-echo,contrast-enhanced MRI.Magn Resort Med,2004,51(4):710-717.
    [66]Itoh K,Tsushima S,Tsukam oto E,et al.Accuracy of plasma sample methods for determination of glomerular filtration rate with 99mTc—DTPA.Ann Nucl Med,2002,16(1):39-44.
    [67]Juillard L,lanier MF,Fouque D.et al.Renal blood flow measurement by positron emission tomography using 150—labeled water.Kidney lnt,2000,57(6):2511-2518.
    [68]El-Diasty TA,Shokeir AA,El-Ghar ME,et al.Contrast enhanced spiral computerized tomography in live kidney donors:a single session for anatomi cal and functional assessment.J Urol,2004,171(1):31-34.
    [69]Dawson P,Peters AM Functional imaging in computed tomography.The use of contrast-enhanced computed tomography for the study of renal function and physiology.Invest Radiol,1993,28(Suppl 5):S79-84;discussion S85-6.
    [70]Ishidoya S,Kaneto H,Fukuzaki A,et al.Pathophysiology and clinical implication of obstructive nephropathy.Nippon Hinyokika Gakkai Zasshi,2003,94(7):645-655.
    [71]Garcia-Sanz A,Rodriguez-Barbero A,Bentley MD,et al.Three-dimensional microcomputed tomography of renal vasculature in rats.Hypertension.1998,31(1pt 2):440-444.
    [72]Lilach O,Lerman,Md,Phd,et al.Reproducibility of human kidney perfusion and volume determinations with electron beam computed tomography.Invest Radiol.1996,31(4):204-210.
    [73]Lerman LO,Rodriquez-porcel M.Functional assessment of the circulation of the single kidney.Hypertension,2001,38(3 Pt 2):625-629.
    [74]Wen JQ,Ringgaard S,Frokiaer J,et al.Contralateral compensatory kidney growth in rats with partial unilateral ureteral obstruction monitored by magnetic resonance imaging.The Journal of Urology,1999,162(19):1084-1089.
    [75]叶慧,胡道予,王秋霞等.多层螺旋CT灌注成像对肾积水肾功能可复性的预测价值.中华放射学杂志,2007,41(4):409-412.
    [76]叶任高、沈清瑞.肾脏病诊断与治疗学.北京:人民卫生出版社,1994.336-350.
    [77]Semelka RC,Hricak H,Stevens SK,et al.Combined gadolinium-enhanead and fat-saturation MR imaging of renal nlasses.Radiology,1991,178:803.
    [78]Semelka RC,Chew W,Hrieak H,et al.Fat-saturation MR imaging of the upper abdomen.AIR,1990,155:1111.
    [79]Choyke PL,Frank JA,Girton ME,et al.Dynamic Gd-DTPA-enhanced MR imaging of the kidney:Experimental results.Radiology,1989,170:713.
    [80]Munechika H,Sullivan DC,Hedlund LW,et al.Evaluation of acute renal failure with magnetic resonance imaging using gradient-echo and Gd-DTPA.Invest Radial,1991,26:22.
    [81]Marrotti M,Hricak H,Terrier F,et al.MR in renal disease:Importance of cortico-medullary distinction.Magn Reson Mad,1987,5:160.
    [82]Semelka RC,Corrigan K,Ascher SM,et al.Renal corticomedullary differentiation:observation in patients with differing serum creatinine levels.Radiology,1994,190:149.
    [83]裴新龙,谢敬霞,李选等。慢性肾病肾脏皮髓质分界的MRI研究。临床放射学杂志,2007,26(40):358-361
    [84]Knox FG,Ritman EL,Romero JC.Intralateral distribution of blood flow:Evaluation of a new approach to measurement.Kidney Int,1984,25:473.
    [85]Kasiske BL,Umen AJ.The influence of age,sex,race,and body habitus on kidney weight in human.Ach Patho Lab Med,1986,110:55-66.
    [86]Gourtsoyiannis N,Prassopoulos P,Cavouras D,et al.The thickness of the renal parenchyma decreases with age:a CT study of 360patients.AJR,1990,155,541-544.
    [87]Prassopoulos P,Cavouras D.Renal parenchymal thickness in children measured by computed tomography.Eur Urol,1994,25:51-54.
    [88]周衍椒,张镜如,主编.生理学.第3版.北京:人民卫生出版社,1991.311-313.
    [89]Troell S,Berg U,Johansson B,et al.Ultrasonographic renal parenchymal volume related to kidney function and renal parenchymal area in chlldren with recurrent urinary tract infections and asyptomatic bacteriuria.Acta Radiol Diagn,1984,25:411-416.
    [90]Mounier—Vehier C.Lions C.Devos P.et al.Cortical thickness: all early morohological marker of atherosclerotic renal disease.Kidney Int.2002.61:591-598.
    [1] Axel L .Cerebral blood flow determination by rapid-sequence computed tomography:the ore tic alan alysis.R adiology, 1980,137(3):679-686.
    [2] Klots E,Koenig M.Perfusion measurement of the brain:Using dynamic CT for the quantitative assessment of cerebral ischema in acute stroke[J].Eur J Radiol. 1999,30(3): 170-184
    [3] Koenig M , Klotz E , Heuser L. Perfusion CT in acute stroke : characterization of cerebral ischemia using parameter images of cerebral blood flow and their therapeutic relevance[J ]. Clinical experiences , Electromedica , 1998 ,66 (1): 61-67.
    [4] Konig M , Klotz E , Luka B , et al. Perfusion CT of the brain : diagnostic approach for early detection of ischemia stroke[J ]. Radiology ,1998 , 209 (1): 85-93.
    [5] Wolfkiel CJ , Ferguson JL , Chomka EV , et al. Measurement of myocardial blood flow by ultrafast computed tomography [J ]. Circulation , 1987 , 76 (6): 1262-1273
    [6] Miles KA , Hayball MP , Dixon AK. Functional images of hepatic perfusion obtained with dynamic CT.[J ]. Radiology, 1993 , 188(2): 405-411
    [7] Blomley MJ , Coulden R, Bufkin CRT , et al. Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion[J]. Invest Radiol ,1993,28(Suppl5):S72-S77
    [8] Miles KA , Hayball MP , Dixon AK. Measurement of human pancreatic perfusion using dynamic computed tomography with perfusion imaging[J ]. Br J Radiology, 1995 , 68(809): 471-475
    [9] Blomley MJ , Kormano M , Coulden R , et al. Renal perfusion quantifiedwith contrast enhanced computed tomography[J]. Invest Radiol,1994, 29(2):S232-S233
    [10] Miles KA , Hayball MP , Dixon AK. Functional images of changes in human intarenal perfusion using quantitative dynamic computed tomography[J]. Invest Radiol, 1994,29(10): 911-914
    [11] Blomley MJ , Mcbride A, Mohammecltagi S , et al. Functional renal perfusion imaging with colour mapping : is it a useful adjunct to spiral CT of ia the assessment of abdominal aortic aneurysm(AAA)[J]?Eur J Radiol,1999,30(3):214-220.
    [12]刘晓晟,许建荣,江旭峰,等.兔急性肾功能衰竭CT灌注成像与核素显像对照的实验研究.放射学实践,2005,20(10):854-856.
    [13]孙建男,郭启勇,幺刚等.正常肾脏MSCT灌注成像的研究.中国医学影像学杂志,2005,13(4):275-278.
    [14]叶慧,胡道予,王秋霞等.MSCT灌注成像对积水肾脏单肾功能评价的实验研究。临床放射学杂志,2006,25(12):1159.
    [15]叶慧,胡道予,王秋霞等.多层螺旋CT灌注成像对肾积水肾功能可复性的预测价值.中华放射学杂志,2007,41(4):409-412.
    [16]Hindmarsh T.Elimination of water-soluble contrast media from the sub-rachnoid space.Investigation with computed tomography.Acta Radiol,1975,346:45-50.
    [17]Miles KA,Hayball MP,Dixon AK.Color perfusion imaging:a new application of computed tomography[J].Lancet,1991,337(8742):643-645.
    [18]Miles KA Measurement of tissue perfusion by dynamic computed tomography [J].Br J Radiology,1991,64(761):409-412.
    [19]Dugdale PE,Miles KA,Bunce I,et al.CT measurement of perfusion and permeability within lymphoma masses and its ability to assess grade,activity,and chemotherapeutic response.Journal of Computer Assisted Tomograpy.1999;23(4):540-547.
    [20]Meier P,Zierler KL.On the theory of the indicatordilution method for measurement of blood flow and volume.J Appl Physiol 1954;6:731-44.
    [21]Miles KA,Griffiths MR.Perfusion CT:a worthwhile enhancement? Br J Radiol.2003,76:220-231.
    [22]Hopper JL,Davis SD,Tress BM,Kaye AH,Rossiter SC,Derrick PL.Analysis of dynamic computed tomography scan brain images.Invest Radiol,1987,22:651-657.
    [23]Nambu K,Takehara R,Terada T.A method of regional cerebral blood perfusion measurement using dynamic CT with an iodinated contrast medium.Acta Neurol Scand,1996,166:(suppl)28-31.
    [24]Peters AM,Gunasekera RD,Henderson BL,et al.Noninvasive measurement of blood flow and extraction fraction.Nucl Med Commun,1987,8:823-837.
    [25] Miles KA, Charnsangavej C, Lee F, Fishman E, Horton K, Lee T-Y. Application of CT in the investigation of angiogenesis in oncology. Acad.Radiol, 2000,7:840-50.
    [26] Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. Am J Neuroradiol, 2000,21:462-70.
    [27] Patlak CS,Blasberg RG,Fenstermacher JD.Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab, 1983,3(1): 1-7.
    [28] Lee TY, Nabavi DG, Craen RA, et al. A review of methods for the calculation of cerebral blood flow,cerebral blood volume and mean transit time in contrast enhanced dynamic CT Scanning.Radiology,1999,213(1):1305-1326.
    [29] Cenic cA ,N abaviD G,C raenR A,et a l.Dynamic CT measurement of cerebral blood flow: A validation study. A JNR,1999,20(1):63-73.
    [30] Bell SD,Peters AM.Measurement of the blood flow from first-pass radionuclide angiography:Influnce of bolus volume.EurJ NuclMed,1991,18(11)885-888.
    [31] Miles KA. Perfusion CT for the assessment of tumour vascularity:which p rotocol[ J ] Br J Radiol, 2003, 76 (1): 36 - 42.
    [32] Funabashi N, Yoshida K, Tadokoro H, et al. Cardiovascular circulation and hepatic perfusion of pigs in 4 - dimensional films evaluated by 256 - slice cone - beam computed tomography[ J ]. Circ J,2005,69:585-589.
    [33] Yoshito Tsushima,Jun Aoki,Keigo Endo, et al.Underestimation of renal cortical perfusion calculated from dynamic CT data[J].Radiology,2002,224(2):613-6l4.
    [34] Miles KA ,Leggett DA ,Bennett GA. CT derived Patlak images of the human kidney.[J].The British Journal of Radiology, 1999,72 (854): 153-158.
    [35] Gunnar Brix , Malte L Bahner , Ulf Hoffmann ,et al. Regional blood flow ,capillary permeability and compartmental volumes measurement with dynamic CT-initial experience [J].Radiology, 1999,210(1):269-276.
    [36] Jean-Francois, Patricia U, Marc S, et al. Unilateral renal artery stenosis: perfusion patterns with Electron- Beam dynamic CT Preliminary experience. Radiology,2001,221: 261- 265.
    [37] Paul JF, Ugolini P, Sapoval M, et al. Unilateral renal artery stenosis: perfusion patterns with electron-beam dynamic CT-preliminary experience. Radiology, 2001,221(1)261-265.
    [38] Bentley MD , Lerman LO , Hoffman ER ,et al . Measurement of renal perfusion and blood flow with fast computed tomography. Circ Res, 1994 ,74 :945.
    [39] Jaschke WR,Could RG,Cogan MG,et al.Cine-CT measurement of cortical renal blood flow.J Computed Assist Tomogr, 1987,11(5)779-784.
    [40] Jaschke W,Cogon MR,Siever R,et al.Measurement of renal blood flow by cine computed tomography,Kidney Int, 1987,31 (4) :1038-1042.
    [41] Garcia-Sanz A, Rodriguez-Barbero A,Bentley MD,et al.Three-dimensional microcomputed tomography of renal vasculature in rats.Hypertension. 1998,31(1 pt 2):440-444.
    [42] Lilach O,Lerman,Md,Phd,et al.Reproducibility of human kidney perfusion and volume determinations with electron beam computed tomography.Invest Radiol. 1996,31 (4) :204-210.
    [43] Probst P, Link L, Futerlieb A, et al. Experimental acute renal artery steno-sis. Dynamic CT and renal perfusion. Invest Radiol, 1984,19:87.
    [44] Bentley MD , Lerman LO , Hoffman ER ,et al.Measurement of renal perfusion and blood flow with fast computed tomography.Circ Res, 1994 ,74 (5) : 945 -951.
    [45] Blomley ML Dawson P.Review articles:the quantification of renal function with enhanced computed tomography. The British Journal of Radiology, 1996, 69(827):989-995.
    [46] St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain Ⅱ. Experimental validation.J Cereb Blood Flow Metab 1998;18:1378-85
    [47] A.Nygren,H.R.Ulfendahl,P.Hansell,et al.Effects of intravenous cintrast media on cortical and medullary blood flow in the rat kidney. Investigative radiology, 1998,23:753-759.
    [48] Quan-Sing Ng, Vicky Goh, , Heinz Fichte, et al. Lung Cancer Perfusion at Multi-Detector Row CT: Reproducibility of Whole Tumor Quantitative Measurements. Radiology 2006,239:547-553.
    [49] El-Diasty TA, Shokeir AA, El-Ghar ME, et al. Contrast enhanced spiral computerized tomography in live kidney donors: A single session for anatomi cal and functional assessment. J Urol,2004,171:31.
    [50]LermanLO,Taler SJ,Textor SC,et al.Computed tomography-derived intrarenal blood flow in renovascular and essential hypertension.Kidney,Int,1996,49:846-854.
    [51]Paul JF,Ugolini P,Sapoval M,et al.Unilateral renal artery stenosis:perfusion patterns with electron-beam dynamic CT-preliminary experience.Radiology,2001,221(1)261-265.
    [52]Jean-Francois,Patricia U,Marc S,et al.Unilateral renal artery stenosis:perfusion patterns with Electron- Beam dynamic CT Preliminary experience.Radiology,2001,221:261-265.
    [53]黄伟,陈君坤,苏红等.电子束CT对肾脏临床血流灌注研究,临床放射学杂志,2001,221:261-265.
    [54]Rodriguez-Porcel M,Lerman LO,Sheedy PF,et al.Perfusion pressure dependency of in vivo renal tubular dynamics[J].Am J Physiol 1997,273(Spt2):F667-673.
    [55]Lerman LO,Bell MR,Lahera V,et al.Quantification of globle and regional renal blood flow with electron beam computed tomography[J].Am J Hypertens,1994,7(9 Pt 1);829-837.
    [56]Hermans R,Lambin P,Van der Coten A,et aI.Tumoural Perfusion as Measured by Dynamic Computed Tomography in Head Neck Catacinoma[J].Radiother Oncol,1999,53(2):105-111.
    [57]袁庆中,田建明,王培军.CT灌注成像在肾癌预后评估方面的应用价值[J].中国医学影像技术,2004,20(9):1403-1405.
    [58]Purdie TG,Henderson E,Lee TY.Function CT imaging of angiogenesis in rabbit VX2 soft-tissue tumor.Physics in Medicine and Biology,2001,46;3161.
    [59]Harvey CJ,Blomley MJ,Dawson P,et al.Functional CT imaging of the acute hyperemic reponse to radiating therapy of the prostate gland:early experience.Journal of Computer Assisted Tomography,2001,25;43.
    [60]Nabavi DG,Cenic A,Henderson S,et al.Perfusion mapping using computed tomography allows accurate prediction of cerebral infarcation in exprimential brain ischemia.Stroke,2001,32(1):175
    [61]R.A.Older,S.B.Gay,J.M.Friday,Segmental prolonged cortical nephrogram as a result of radiation damage to the kidneys,Abdom Imaging,1994,19;556-558.
    [62]Robert HC,Roberts TP,Lee TY,et al.Dynamic contrast-enhanced CT of human brain tumors;quanitative assessment of blood volume,blood flow,and microvascular permeability;report of two cases.AJNR,2002,23;828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700