慢性肾脏病的3.0T功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨功能磁共振技术在诊断慢性肾脏病(CKD)、鉴别CKD不同分期,以及评价肾脏功能和小管间质损害程度的应用价值,包括三个部分,第一部分为血氧水平依赖成像(BOLD),第二部分为扩散加权成像(DWI),第三部分为扩散张量成像(DTI)。
     对象和方法:搜集2010年3月~2010年12月天津医科大学总医院肾科收治的慢性肾脏病患者59例,测量血清肌酐水平(Scr),根据简化肾脏病膳食改善(MDRD)方程计算肾小球滤过率估算值(eGFR),并根据eGFR确定CKD分期。CKD患者中21例患者接受了肾脏穿刺活组织检查,进行小管间质损伤程度病理评分。同时,搜集27例健康志愿者作为正常对照组。全部受试者均在3.0 TMR扫描仪(3.0T HD-X, GE healthcare)上行如下检查:①第一部分包括常规MRI及BOLD检查,BOLD采用8回波的mGRE序列,单次屏气扫描,扫描时间为18秒;②第二部分为多b值的DWI检查,b值取0、50 s/mm2,0、100 s/mm2, 0、500 s/mm2,0、1000 s/mm2四组,单次屏气扫描,每次扫描时间为21秒;③第三部分为DTI检查,b值取0、300 s/mm2,扩散敏感梯度脉冲施加方向为6,单次屏气扫描,扫描时间为15秒。分别测量并计算:①第一部分评价三个参数,即对照组及CKD患者的皮质、髓质及髓质/皮质R2*值;②第二部分评价6组参数,即4组b值下的皮髓质ADC值,及根据体素内无规律运动(IVIM)模型进行双指数拟合计算得出的皮髓质纯扩散系数ADCd值及皮髓质灌注分数Fp;③第三部分评价6个参数,即皮质、髓质、髓质/皮质FA值及皮质、髓质、髓质/皮质RA值。对上述指标进行如下分析:①比较对照组肾脏皮质与髓质之间的R2*值差异,比较对照组与不同分期CKD患者之间的皮质、髓质及髓质/皮质R2*值差异,并确定髓质/皮质R2*值用于鉴别对照组及不同分期CKD患者之间的最佳诊断阈值;②分析CKD患者皮质、髓质、髓质/皮质R2*值与Scr、eGFR及CKD分期之间的相关性,并分析肾脏穿刺活检患者皮质、髓质、髓质/皮质R2*值与小管间质损伤病理评分之间的相关性;③比较对照组肾脏皮质与髓质之间的ADC值、ADCd值及Fp差异,比较对照组与不同分期CKD患者之间的皮髓质ADC值、皮髓质ADCd值及皮髓质Fp差异,并确定DWI参数用于鉴别对照组及不同分期CKD患者之间的最佳诊断阈值;④分析CKD患者皮髓质ADC值、ADCd值及Fp与Scr、eGFR及CKD分期之间的相关性,并分析肾脏穿刺活检患者皮髓质ADC值、ADCd值及Fp与小管间质损伤病理评分之间的相关性;⑤比较对照组肾脏皮质与髓质之间的FA值、RA值差异,并比较对照组与不同分期CKD患者之间的皮质、髓质、髓质/皮质FA值及皮质、髓质、髓质/皮质RA值差异,绘制ROC曲线,利用曲线下面积比较髓质FA值及髓质RA值鉴别对照组及不同分期CKD患者的诊断效能并确定其最佳阈值;⑥分析CKD患者皮质、髓质、髓质/皮质FA值与Scr、eGFR及CKD分期之间的相关性,并分析肾脏穿刺活检患者皮质、髓质、髓质/皮质FA值与小管间质损伤病理评分之间的相关性。
     结果:最终纳入图像分析正常对照组27例,CKD轻度损害组(CKD1期和2期)23例,CKD中重度损害组(CKD3期-5期)29例,CKD患者中肾脏穿刺活检患者21例。①对照组髓质R2*值显著大于皮质(p<0.001)。单因素方差分析显示对照组、CKD轻度损害组、中重度损害组之间的皮质、髓质、髓质/皮质R2*值均存在统计学差异(p<0.01),其中两两比较显示髓质/皮质R2*值在各两组之间的差异最显著(p<0.001)。采用髓质/皮质R2*值鉴别对照组与CKD轻度损害组、CKD轻度损害组与中重度损害组时,所得ROC曲线下面积分别为0.871、0.925,最佳诊断阈值分别为1.858、1.577,其敏感度及特异度均在86%以上;②CKD患者的髓质、髓质/皮质R2*值与Scr、CKD分期均呈负相关(p<0.01),与eGFR呈正相关(p<0.01),以髓质/皮质R2*值的相关强度最高,肾脏穿刺活检患者的髓质、髓质/皮质R2*值与小管间质损伤评分呈负相关(p<0.05),以髓质/皮质R2*值的相关强度最高;③对照组中,皮髓质ADCso值之间无统计学差异(p>0.05),而皮质ADC100、ADC500、ADC1000值均大于髓质(p<0.001),皮质ADCd值大于髓质(p<0.05),而皮质Fp均值大于髓质,但二者之间无统计学差异(p>0.05)。单因素方差分析显示对照组与不同分期CKD患者之间皮髓质ADC值、皮髓质ADCd值、皮髓质Fp均存在统计学差异(p<0.001),其中两两比较显示皮髓质ADC1000值在各两组间的差异最显著(p<0.001)。采用皮髓质ADC1000值鉴别对照组与CKD轻度损害组、CKD轻度损害组与中重度损害组时,所得ROC曲线下面积均大于0.76,敏感度及特异度均在65%以上;④CKD患者的皮髓质ADC1000值均与Scr、CKD分期均呈负相关(p<0.01),与eGFR呈正相关(p<0.01),肾脏穿刺活检患者的皮髓质ADC1000值均与小管间质损伤评分呈负相关(p<0.05);⑤对照组髓质的FA值、RA值均大于皮质(p<0.001)。单因素方差分析显示对照组与不同分期CKD患者之间的皮质、髓质、髓质/皮质FA值及皮质、髓质、髓质/皮质RA值均存在统计学差异(p<0.05),其中两两比较以髓质FA值及髓质RA值在各两组间的差异最显著(p<0.001)。应用ROC曲线分析显示,鉴别对照组与CKD轻度损害组、CKD轻度损害组与中重度损害组时,髓质FA值的ROC曲线下面积Az值均大于髓质RA值,诊断效能更高,确定髓质FA值的最佳诊断阈值分别为0.367、0.349,其敏感度及特异度均在56%以上;⑥CKD患者的髓质、髓质/皮质FA值与Scr、KD分期均呈负相关(p<0.01),与eGFR均呈正相关(p<0.001),肾脏穿刺活检患者的髓质、髓质/皮质FA值与小管间质损伤病理评分均呈负相关(p<0.05)。
     结论:肾脏功能MR成像技术可以从氧合水平、水分子扩散各向同性及各向异性等角度揭示肾脏生理学特征,并能反映CKD的病理生理学改变。①第一部分,肾脏3.0 T BOLD MRI证实正常肾脏皮质的氧合水平高于髓质。髓质/皮质R2*值能够区分正常肾脏与CKD肾脏及不同分期的CKD肾脏,有助于CKD的诊断及分期鉴别,并可作为反映肾脏功能改变程度及小管间质损伤程度的敏感指标;②第二部分,肾脏DWI检查中,应用多b值及IVIM模型能够计算皮髓质的纯扩散系数ADCd值及灌注分数Fp,结果表明正常皮质的水分子扩散程度高于髓质,而皮质的微循环灌注相对丰富,但皮髓质之间无显著差异。ADC值、ADCd值及Fp可反映CKD肾脏水分子扩散程度及微循环灌注不同程度减低,皮髓质ADC1ooo值对CKD的诊断及分期鉴别、反映肾脏功能及小管间质损伤程度有一定价值;③第三部分,肾脏3.0 T DTI MRI切实可行,正常肾脏髓质的水分子扩散各向异性高于皮质。肾髓质FA值可反映CKD患者髓质内水分子扩散的各向异性不同程度减低,对CKD的诊断及不同分期的鉴别均有一定的诊断效能,并能在一定程度上反映肾脏功能变化的程度及肾脏小管间质损伤的程度,为CKD肾脏病变程度的评估提供了一种新的方法。
Objective:To investigate the values of functional magnetic resonance imaging (MRI) techniques in diagnosis and stage of chronic kidney disease (CKD), and the values in evaluation the kidney function and the degree of tubulointerstitial injury. There were three parts included, the first part of blood oxygen level dependent (BOLD), the second part of diffusion-weighted imaging (DWI) and the third part of diffusion tensor imaging (DTI).
     Materials and Methods:Fifty-nine patients with chronic kidney disease were enrolled in this study from March 2010 to December 2010, and the serum creatinine level (Scr) were measured, the estimated glomerular filtration rate (eGFR) were calculated with MDRD equation, the stage of CKD were determined. Among the CKD patients, twenty-one received kidney tissue puncturation biopsy examination, and the score of tubulointerstitial injury degree were decided. The control group was composed of 27 healthy volunteers. All of the subjects underwent studies on 3.0T MR scanner(3.0THD-X, GE healthcare) as follows:①The first part were conventional MRI and BOLD examinations, mGRE sequence with 8 echoes were used for BOLD scan with a single breath-hold time of 18s;②The second part was DWI examinations with multiple b values, included 0、50 s/mm2,0、100 s/mm2,0、500 s/mm2 and 0、1000s/mm2 four group of b values, with a single breath-hold time of 21s for each scan;③The third part was DTI examination, with b factor of 0 and 300 s/mm2, with a single breath-hold time of 15s with 6 acquisition directions. Parameters evaluated and calculated consisted of:①Three parameters were evaluated in the first part, include cortical R2* value, medullary R2* value and medullary/cortical R2* ratio of control group and CKD patients;②Six group parameters were evaluated in the second part, include cortical and medullary ADC values with each group of b value, and cortical and medullary ADCd (pure diffusion coefficient) and Fp (perfusion fraction) obtained by biexponential fit calculation with IVIM model;③In the third part, six parameters were assessed, include cortical FA and RA values, medullary FA and RA values, and medullary/cortical FA and RA ratios. The following data were analyzed:①Independent-Samples T Test was used to compare mean R2* value between cortex and medulla in control group. One-Way ANOVA (analysis of variance) were used to compare mean cortical R2* value, medullary R2* value and medullary/ cortical R2* ratio among control group and different stage of CKD patients. Receiver operating characteristics (ROC) analysis was performed in order to evaluate the diagnostic performance of medullary/cortical R2* ratio in differentiating CKD kidney from normal kidney and different stage of CKD kidneys and extracted the optimal cutoff value;②In CKD patient group, Pearson and Spearman rank correlation coefficients were calculated to evaluate the correlations of the kidney R2* parameters with Scr, eGFR and CKD grade. In CKD patients who received kidney tissue biopsy examination, Spearman rank correlation coefficients were calculated to evaluate the correlations of the kidney R2* parameters with pathology score of tubulointerstitial injury of kidney tissue biopsy specimen;③ndependent-Samples T Tests were used to compare mean ADC value, ADCd and Fp between cortex and medulla in control group. One-Way ANOVA were used to compare mean cortical and medullary ADC value, cortical and medullary ADCd, cortical and medullary Fp among control group and different stage of CKD patients. Receiver operating characteristics (ROC) analysis was performed in order to evaluate the diagnostic performance of DWI parameters in differentiating CKD kidney from normal kidney and different stage of CKD kidneys and extracted the optimal cutoff value;④In CKD patient groups, Pearson and Spearman rank correlation coefficients were calculated to evaluate the correlations of the kidney DWI parameters with Scr, eGFR and CKD grade. In CKD patients who received kidney tissue biopsy examination, Spearman rank correlation coefficients were calculated to evaluate the correlations of the kidney DWI parameters with pathology score of tubulointerstitial injury;⑤Mean FA value and RA value between cortex and medulla in control group were compared. Mean kidney FA parameters and RA parameters were compared among control group and different stages of CKD patients by One-Way ANOVA. The diagnostic value of medullary FA and RA value in differentiating CKD kidney from normal kidney and different stages of CKD kidneys were compared by ROC under curve area Az and the optimal cutoff value were determined;⑥Pearson and Spearman rank correlation analyses were used to evaluate the correlations of the kidney DTI parameters with Scr, eGFR and CKD grade of CKD patients. Spearman rank correlation analyses were used to evaluate the correlations of the kidney DTI parameters with the score of tubulointerstitial injury.
     Results:The images of 27 healthy volunteers,23 minor CKD patients(CKD 1 and 2 stage),29 moderate/severe CKD patients(CKD 3~5stage) were finally analyzed. Among the CKD patients, twenty one received kidney tissue puncturation biopsy examination. The data analyses revealed:①In control group, the medullary R2* value was higher than cortical (p<0.001). There were statistical differences among the control group, minor CKD and moderate/severe CKD patients in the cortical R2* value, medullary R2* value and medullary/cortical R2* ratio(p<0.01), and the differences of medullary/cortical R2* ratio between every two groups were most significant(p<0.001). The area under the ROC curve for medullary/cortical R2* ratio in differentiating between minor CKD kidneys and normal kidneys and between minor CKD kidneys and moderate/severe CKD kidneys were 0.871,0.925 respectively, and the cutoff value were 1.858、1.577. With the threshold from ROC curve, the sensitivity and specificity were all above 86%;②Negative correlations were found between medullary R2* value with Scr level and CKD grade and also between medullary/cortical R2* ratio with Scr level and CKD grade (p<0.01). Positive correlations were found between medullary R2* value and medullary/ cortical R2* ratio with eGFR(p<0.01). Negative correlations were found between medullary R2* value and medullary/cortical R2* ratio with score of tubulointerstitial injury (p<0.05) The correlation coefficient of medullary/cortical R2* ratio was higher than medullary R2* value;③In control group, no significant difference was found between the cortical and medullary ADC50 value(p>0.05). However, the ADC100, ADC500 and ADC1000 of cortex were all higher than medulla in control group. The ADCd of cortex was higher than medulla in control group (p<0.05), however, the mean value of cortical Fp was higher than medullary but with no statistical significance (p>0.05). There were statistical differences among the control group, minor CKD and moderate/severe CKD patients in the cortical and medullary ADC value, cortical and medullary ADCd and cortical and medullary Fp (p<0.001). The differences of cortical and medullary ADC1000 value between two groups were most significant (p<0.001). Using the cortical and medullary ADC1000 value criteria to differentiate minor CKD kidneys from normal kidneys and discriminate minor CKD kidneys from moderate/severe CKD kidneys, the area under ROC curve were all larger than 0.76, with sensitivity and specificity were all above 65%;④Negative correlations were found between cortical and medullary ADC1000 value with Scr level and CKD grade (p<0.01). Positive correlations were found between cortical and medullary ADC1000 value with eGFR (p<0.01). Negative correlations were found between cortical and medullary ADC1000 value with score of tubulointerstitial injury (p<0.05);⑤The FA and RA value of medullary were higher than that of cortical in control group(p<0.001). There were statistical differences among the control group, minor CKD and moderate/severe CKD patients in the cortical FA value, medullary FA value, medullary/cortical FA ratio and cortical RA value, medullary RA value, medullary/cortical RA ratio (p<0.05). Among the six parameters mentioned above, the differences of medullary FA and medullary R.A value between two groups were most significant (p<0.001). From the ROC curve, the Az of medullary FA value were larger than medullary RA value in differentiating between minor CKD kidneys and normal kidneys and between minor CKD kidneys and moderate/severe CKD kidneys. Medullary FA value of 0.367 and 0.349 were determined as the threshold, with the sensitivity and specificity were all above 56%;⑥Negative correlations were found between medullary FA value and medullary/cortical FA ratio with Scr level and CKD grade (p<0.01). Positive correlations were found between medullary FA value and medullary/cortical FA ratio with eGFR (p<0.001). Negative correlations were found between medullary FA value and medullary/cortical FA ratio with score of tubulointerstitial injury (p<0.05)
     Conclusions:Functional magnetic resonance imaging of kidney could reveal the physiological characters and reflect the pathophysiological changes of CKD from different aspects, such as kidney oxygenation, water molecular diffusion isotropy and diffusion anisotropy.①In the first part, renal 3.0 T BOLD MRI demonstrated that the oxygenation level of cortex is higher than medulla in normal kidney. Medullary/ cortical R2* ratio is valuable in diagnosis of CKD and different stages of CKD. Medullary/cortical R2* ratio is a sensitive parameter to reflect the degree of kidney function and tubulointerstitial injury;②In the second part, ADCd value and Fp of cortex and medulla could be calculated with IVIM model and multiple b values. The extent of water molecular diffusion in normal cortex is higher than medulla, and the microperfusion of normal cortex is relatively high but with no significant difference between cortex and medulla. The ADC value, ADCd and Fp can indicate alternation of water diffusion and microcirculation in CKD kidneys. To some extent,the ADC1000 value of cortex and medulla could be used to diagnose and differentiate the stage of CKD and reflect kidney function and tubulointerstitial injury degree;③In the third part, it is feasible to apply DTI to kidney. The anisotropy of water diffusion in medullary is higher than cortical in normal kidney. Lower medullary FA value can reflect the decrease of water diffusion anisotropy in CKD patients. Medullary FA value can represent the kidney function and tubulointerstitial injury degree, and may provide valuable information with diagnosis and stage of CKD. Thus, DTI provides a new method for evaluating the CKD disease.
引文
I. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med.2009 May 5;150(9):604-12.
    2.郑伯承.世界肾脏日.中国健康教育,2007,23(4):742
    3. Smith DH, Gullion CM, Nichols G, et al. Cost of medical care for chronic kidney disease and comorbidity among enrollees in a large HMO population. Am Soc Nephrol.2004 May; 15(5):1300-6.
    4. Perico N, Codreanu I, Schieppati A, et al. Prevention of progression and remission/regression strategies for chronic renal diseases:can we do better now than five years ago? Kidney Int Suppl.2005 Sep;(98):S21-4.
    5. Atkins RC. The changing patterns of chronic kidney disease:the need to develop strategies for prevention relevant to different regions and countries. Kidney Int Suppl.2005 Sep;(98):S83-5.
    6. Tumkur SM, Vu AT, Li LP, et al. Evaluation of intra-renal oxygenation during water diuresis:a time-resolved study using BOLD MRI. Kidney Int.2006 Jul;70(1):139-43.
    7. Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitative BOLD MRI measurements in kidney:application to unilateral ureteral obstruction. Kidney Int.2005;67(6):2305-2312.
    8. Li LP, Ji L, Santos EA, et al. Effect of nitric oxide synthase inhibition on intrarenal oxygenation as evaluated by blood oxygenation level-dependent magnetic resonance imaging. Invest Radiol.2009 Feb;44(2):67-73..
    9. dos Santos EA, Li LP, Ji L, et al. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol.2007 Mar;42(3):157-62.
    10. Thoeny HC, Kessler TM, Simon-Zoula S, et al. Renal oxygenation changes during acute unilateral ureteral obstruction:assessment with blood oxygen level-dependent mr imaging--initial experience. Radiology.2008 Jun;247(3):754-61.
    11. Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging:initial experience. Radiology.2006;241(3):812-821.
    12. Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol.2007 Feb;292(2):F513-22.
    13.Alford SK, Sadowski EA, Unal O, et al. Detection of acute renal ischemia in swine using blood oxygen level-dependent magnetic resonance imaging. J Magn Reson Imaging.2005 Sep;22(3):347-53.
    14. Liu AS, Xie JX. Functional evaluation of normothermic ischemia and reperfusion injury in dog kidney by combining MR diffusion-weighted imaging and Gd-DTPA enhanced first-pass perfusion. J Magn Reson Imaging.2003 Jun;17(6):683-93.
    15. Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia.2005 Aug;7(8):779-87.
    16. Yang D, Ye Q, Williams DS, et al. Normal and transplanted rat kidneys:diffusion MR imaging at 7 T. Radiology.2004 Jun;231(3):702-9.
    17. Namimoto T, Yamashita Y, Mitsuzaki K, et al. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging.1999 Jun;9(6):832-7.
    18. Eisenberger U, Thoeny HC, Binser T, et al. Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol.2010 Jun;20(6):1374-83.
    19. Thoeny HC, Binser T, Roth B, et al. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging:a prospective study. Radiology. 2009Sep;252(3):721-8.
    20. Cheung JS, Fan SJ, Chow AM, et al. Diffusion tensor imaging of renal ischemia reperfusion injury in an experimental model. NMR Biomed.2010 Jun;23(5):496-502.
    21. Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney:apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging.2000 Feb;11(2):156-60.
    22. Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging.2001 Jul;14(1):42-9.
    23. Notohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensor imaging of the kidney with parallel imaging:initial clinical experience. Invest Radiol.2008 Oct;43(10):677-85.
    24. Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl.2005 Dec;(99):S46-51.
    25. Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol.2006 Jan;17(1):17-25.
    26. Norman JT, Fine LG. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol.2006 Oct;33(10):989-96.
    27. Brezis M, Rosen S. Hypoxia of the renal medulla--its implications for disease. N Engl J Med.1995 Mar 9;332(10):647-55.
    28. Li LP, Halter S, Prasad PV. Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am.2008 Nov;16(4):613-25, viii.
    29. Simon-Zoula SC, Hofmann L, Giger A, et al. Non-invasive monitoring of renal oxygenation using BOLD-MRI:a reproducibility study. NMR Biomed.2006 Feb;19(1):84-9.
    30. Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care.2002 Mar;25(3):575-8.
    31.Blatow M, Nennig E, Durst A, et al. MRI reflects functional connectivity of human somatosensory cortex. Neuroimage.2007 Sep 1;37(3):927-36.
    32. Shen Q, Ren H, Duong TQ. CBF, BOLD, CBV, and CMRO(2) fMRI signal temporal dynamics at 500-msec resolution. J Magn Reson Imaging.2008 Mar;27(3):599-606.
    33. Fukunaga M, Horovitz SG, de Zwart JA, et al. Metabolic origin of BOLD signal fluctuations in the absence of stimuli. J Cereb Blood Flow Metab.2008 Jul;28(7):1377-87
    34. Herrmann CS, Debener S. Simultaneous recording of EEG and BOLD responses: a historical perspective. Int J Psychophysiol.2008 Mar;67(3):161-8
    35. Edelstein WA, Glover GH, Hardy CJ, et al. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med.1986 Aug;3(4):604-18
    36. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Am J Kidney Dis. 2002 Feb;39(2 Suppl):S1-266
    37. Katafuchi R, Kiyoshi Y, Oh Y, et al. Glomerular score as a prognosticator in IgA nephropathy:its usefulness and limitation. Clin Nephrol.1998 Jan;49(1):1-8.
    38.潘晓平,倪宗瓒.组内相关系数在信度评价中的应用.华西医科大学学报,1999,30(1):62-63.
    39.王维,陈青山,刘治民.应用Excel完成组内相关系数ICC的计算和评价.中国卫生统计,2008,25(3):314-315
    40.陈卉.Bland-Altman分析在临床测量方法一致性评价中的应用.[J].中国卫生统计,2007,24(3):308-315
    41. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbon monoxyhemoglobin. Proc Natl Acad Sci U SA.1936 Apr;22(4):210-6..
    42. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA,1990 Dec;87(24):9868-72
    43. Haque M, Koktzoglou I, Li W, et al. Functional MRI of liver using BOLD MRI: effect of glucose. J Magn Reson Imaging.2010 Oct;32(4):988-91.
    44. Manka R, Paetsch I, Schnackenburg B, et al. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. J Cardiovasc Magn Reson.2010 Sep 22; 12:54.
    45. Rakow-Penner R, Daniel B, Glover GH. Detecting blood oxygen level-dependent (BOLD) contrast in the breast. J Magn Reson Imaging.2010 Jul;32(1):120-9.
    46. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation.1996;94(12):3271-3275.
    47. Schachinger H, Klarhofer M, Linder L, et al. Angiotensin Ⅱ decreases the renal MRI blood oxygenation level-dependent signal. Hypertension. 2006;47(6):1062-1066.
    48. Prasad PV, Chen Q, Goldfarb JW, et al. Breath-hold R2* mapping with a multiple gradient-recalled echo sequence:application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging.1997;7(6):1163-1165
    49. Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradient-recalled echo sequence. Invest Radiol. 2006;41(2):181-184.
    50. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J.1993 Mar;64(3):803-12.
    51. Fisel CR, Ackerman JL, Buxton RB, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility:numerical simulations and applications to cerebral physiology. Magn Reson Med.1991 Feb;17(2):336-47.
    52. Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging.2004;20(5):901-904.
    53. Gloviczki ML, Glockner J, Gomez SI, et al. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease. Invest Radiol.2009 Sep;44(9):566-71.
    54. Chandarana H, Lee VS. Renal functional MRI:Are we ready for clinical application? AJR Am J Roentgenol.2009 Jun; 192(6):1550-7.
    55. Epstein FH, Agmon Y, Brezis M. Physiology of renal hypoxia. Ann N Y Acad Sci. 1994;718:72-81.
    56. Evans RG, Gardiner BS, Smith DW, O'Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol.2008 Nov;295(5):F 1259-70.
    57. Jandl JH.Blood.textbook of hematology:Boston, Mass:Little, Brown, 1987.154-157.
    58. Brezis M, Agmon Y, Epstein FH. Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol.1994;267(6 Pt 2):F1059-F1062.
    59. Prasad P, Li LP, Halter S, et al. Evaluation of Renal Hypoxia in Diabetic Mice by BOLD MRI. Invest Radiol.2010 Sep 8. [Epub ahead of print]
    60. Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J Magn Reson Imaging.2003 Jan;17(1):104-13.
    61. Li LP, Ji L, Lindsay S, et al. Evaluation of intrarenal oxygenation in mice by BOLD MRI on a 3.0T human whole-body scanner. J Magn Reson Imaging.2007 Mar;25(3):635-8.
    62. Prasad PV, Epstein FH. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int.1999;55(1):294-298.
    63. Prasad PV, Priatna A, Spokes K, et al. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging.2001;13(5):744-747.
    64. Priatna A, Epstein FH, Spokes K, et al. Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence. J Magn Reson Imaging.1999;9(6):842-846.
    65. Epstein FH, Prasad P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int.2000;57(5):2080-2083.
    66. Yang X, Cao J, Wang X, et al. Evaluation of renal oxygenation in rat by using R2' at 3-T magnetic resonance:initial observation. Acad Radiol.2008 Jul;15(7):912-8.
    67. Ji L, Li LP, Schnitzer T, et al. Intra-renal oxygenation in rat kidneys during water loading:effects of cyclooxygenase (COX) inhibition and nitric oxide (NO) donation. J Magn Reson Imaging.2010 Aug;32(2):383-7.
    68. Li LP, Storey P, Pierchala L, et al. Evaluation of the reproducibility of intrarenal R2* and Delta R2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging.2004 May; 19(5):610-6.
    69. Boss A, Martirosian P, Jehs MC, et al. Influence of oxygen and carbogen breathing on renal oxygenation measured by T2*-weighted imaging at 3.0 T. NMR Biomed.2009 Jul;22(6):638-45.
    70. Li L, Storey P, Kim D, et al. Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI. J Magn Reson Imaging.2003 Jun;17(6):671-5.
    71. Hofmann L, Simon-Zoula S, Nowak A, et al. BOLD-MRI for the assessment of renal oxygenation in humans:acute effect of nephrotoxic xenobiotics. Kidney Int. 2006 Jul;70(1):144-50.
    72. Brezis M, Rosen S. Hypoxia of the renal medulla--ts implications for disease. N Engl J Med.1995 Mar 9;332(10):647-55.
    73. Heyman SN, Kaminski N, Brezis M. Dopamine increases renal medullary blood flow without improving regional hypoxia. Exp Nephrol.1995 Nov-Dec;3(6):331-7.
    74. Klein IH, Abrahams A, van Ede T, et al. Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. Transplantation.2002 Mar 15;73(5):732-6.
    75. Li LP, Li BS, Storey P, Fogelson L, et al. Effect of free radical scavenger (tempol) on intrarenal oxygenation in hypertensive rats as evaluated by BOLD MRI. J Magn Reson Imaging.2005 Mar;21(3):245-8.
    76. Xiao WB, Wang QD, Xu JJ, et al. Evaluation of kidney oxygen bioavailability in acute renal failure by blood oxygen level dependent magnetic resonance imaging. Zhejiang Da Xue Xue Bao Yi Xue Ban.2010 Mar;39(2):157-62.
    77. Juillard L, Lerman LO, Kruger DG, et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int.2004 Mar;65(3):944-50.
    78. Rognant N, Guebre-Egziabher F, Bacchetta J, et al. Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis. Nephrol Dial Transplant.2011 Apr;26(4):1205-10. Epub 2010 Sep 3.
    79. Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol.2008 Apr;19(4):780-8.
    80. Edlund J, Hansell P, Fasching A, et al. Reduced oxygenation in diabetic rat kidneys measured by T2* weighted magnetic resonance micro-imaging. Adv Exp Med Biol.2009;645:199-204.
    81. Wang ZJ, Kumar R, Banerjee S, et al. Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy:Preliminary experience. J Magn Reson Imaging.2011 Mar;33(3):655-660
    82. Han F, Xiao W, Xu Y, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant.2008 Aug;23(8):2666-72.
    83. Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation.2006 Sep 15;82(5):621-8.
    84. Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging:initial experience. Radiology.2005 Sep;236(3):911-9.
    85. Heyman SN, Khamaisi M, Rosen S, et al. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol. 2008;28(6):998-1006.
    86. Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol.2006 Jan;17(1):17-25.
    87. Norman JT, Fine LG. Intrarenal oxygenation in chronic renal failure. Clin Exp Pharmacol Physiol.2006 Oct;33(10):989-96.
    88. Evans RG, Gardiner BS, Smith DW, et al. Intrarenal oxygenation:unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol. 2008 Nov;295(5):F1259-70.
    89. Wang ZJ, Yeh BM. Is assessing renal oxygenation by using blood oxygen level-dependent MR imaging a clinical reality? Radiology.2008 Jun;247(3):595-6.
    90. Xiao W, Xu J, Wang Q, et al. Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol.2011 Mar 8. [Epub ahead of print]
    91. Semelka RC, Corrigan K, Ascher SM, et al. Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology.1994 Jan;190(1):149-52.
    92. Colagrande S, Carbone SF, Carusi LM, et al. Magnetic resonance diffusion-weighted imaging:extraneurological applications. Radiol Med.2006 Apr;111(3):392-419.
    93. Michaely HJ, Herrmann KA, Nael K, et al. Functional renal imaging:nonvascular renal disease. Abdom Imaging.2007 Jan-Feb;32(1):1-16.
    94. Thoeny HC,De Keyzer FD,Oyen RH, et al. Diffusion-weighted MR Imaging of Kidneys in Healthy Volunteers and Patients with Parenchymal Diseases:Initial Experience [J]. Radiology,2005,235 (3):911-917.
    95.许玉峰,王霄英,蒋学祥.磁共振扩散加权成像对肾脏应用价值的初步研究.中国医学影像技术,2005,21(12):1848-1851
    96. Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate:preliminary experience. J Magn Reson Imaging.2007 Sep;26(3):678-81.
    97. Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology.1988 Aug;168(2):497-505.
    98. Koh DM, Collins DJ. Diffusion-weighted MRI in the body:applications and challenges in oncology. AJR Am J Roentgenol.2007 Jun;188(6):1622-35.
    99. Stejskal EO, Tanner JE. Spin Diffusion Measurements:Spin Echoes in the Presence of a Time - Dependent Field Gradient. J Chem hys,1965, 42(1):288-292
    100. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders. Radiology.1986Nov;161(2):401-7.
    101. Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging.2006 Sep;24(3):637-45.
    102. Laissy JP, Menegazzo D, Dumont E, et al. Hemodynamic effect of iodinated high-viscosity contrast medium in the rat kidney:a diffusion-weighted MRI feasibility study. Invest Radiol.2000 Nov;35(11):647-52.
    103. Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology.1999 Mar;210(3):617-23.
    104. Maeda K, Chung YS, Ogawa Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer.1996 Mar 1;77(5):858-63.
    105. Pedersen M, Wen JG, Shi Y, et al. The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl. 2003;(109):29-34.
    106. Pedersen M, Shi Y, Anderson P, et al. Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med.2004 Mar;51(3):510-7.
    107. Murtz P, Flacke S, Traber F, et al. Abdomen:diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology.2002 Jul;224(1):258-64.
    108. Binser T, Thoeny HC, Eisenberger U, et al. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imaging.2010 May;31(5):1144-50.
    109. Muller MF, Prasad PV, Bimmler D, et al. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology.1994 Dec;193(3):711-5.
    110. Pedersen M, Vajda Z, Stφdkilde-Jφrgensen H, et al. Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol.2007 May;292(5):F1645-51.
    111. Xu X, Fang W, Ling H, et al. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease:initial study. Eur Radiol.2010 Apr;20(4):978-83.
    112. Vexler VS, Roberts TP, Rosenau W. Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. Ren Fail.1996 Jan; 18(1):41-57.
    113. Carbone SF, Gaggioli E, Ricci V, et al. Diffusion-weighted magnetic resonance imaging in the evaluation of renal function:a preliminary study [J]. Radiol Med,2007,112:1201-1210.
    114. Toya R, Naganawa S, Kawai H, et al. Correlation between estimated glomerular filtration rate (eGFR) and apparent diffusion coefficient (ADC) values of the kidneys. Magn Reson Med Sci.2010;9(2):59-64.
    115. Toyoshima S, Noguchi K, Seto H, et al. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging. Relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol. 2000Nov;41(6):642-6.
    116. Bozgeyik Z, Kocakoc E, Sonmezgoz F. Diffusion-weighted MR imaging findings of kidneys in patients with early phase of obstruction. Eur J Radiol.2009 Apr;70(1):138-41.
    117. Yildirim E, Kirbas I, Teksam M, et al. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol.2008 Jan;65(1):148-53.
    118. Yildirim E, Gullu H, Caliskan M, et al. The effect of hypertension on the apparent diffusion coefficient values of kidneys. Diagn Interv Radiol.2008 Mar;14(1):9-13.
    119. Karadeli E, Ulu EM, Yildirim E, et al. Diffusion-weighted MR imaging of kidneys in patients with systemic lupus erythematosus:initial experience. Rheumatol Int.2010 Jul;30(9):1177-81.
    120. Karadeli E, Ulu EM, Yilmaz S, et al. Diffusion-weighted MRI of the kidneys in patients with familial Mediterranean fever:initial experience. Diagn Interv Radiol.2009 Dec;15(4):252-5.
    121. Wang CL, Chea YW, Boll DT, et al. Effect of gadolinium chelate contrast agents on diffusion weighted MR imaging of the liver, spleen, pancreas and kidney at 3T. Eur J Radiol.2010 Jun 18. [Epub ahead of print]
    122. Chandarana H, Lee VS, Hecht E, et al. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions:preliminary experience. Invest Radiol.2011 May;46(5):285-91.
    123. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging:concepts and applications. J Magn Reson Imaging.2001 Apr;13(4):534-46
    124. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B.1996 Jun;111(3):209-19.
    125. Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol.2002 Apr;23(4):520-7.
    126. Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver:preliminary experience in healthy volunteers. AJR Am J Roentgenol.2004 Sep;183(3):677-80.
    127. Sinha S, Sinha U. In vivo diffusion tensor imaging of the human prostate. Magn Reson Med.2004 Sep;52(3):530-7.
    128. Scollan DF, Holmes A, Winslow R, et al. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol.1998 Dec;275(6 Pt 2):H2308-18.
    129. de Bazelaire CM, Duhamel GD, Rofsky NM, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T:preliminary results. Radiology.2004 Mar;230(3):652-9.
    130. Masi JN, Sell CA, Phan C, et al. Cartilage MR imaging at 3.0 versus that at 1.5 T:preliminary results in a porcine model. Radiology.2005 Jul;236(1):140-50.
    131. Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain. Radiology.1996 Dec;201(3):637-48.
    132. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J.1994 Jan;66(1):259-67.
    133. Basser PJ, Jones DK. Diffusion-tensor MRI:theory, experimental design and data analysis-a technical review. NMR Biomed.2002 Nov-Dec;15(7-8):456-67.
    134. 郭雪梅,肖江喜.扩散张量磁共振成像基本原理及应用.实用放射学杂志,2003,19(9):540-543
    135. Bammer R, Acar B, Moseley ME. In vivo MR tractography using diffusion imaging. Eur J Radiol.2003 Mar;45(3):223-34.
    136. Mukherjee P, Berman JI, Chung SW, et al. Diffusion tensor MR imaging and fiber tractography:theoretic underpinnings. AJNR Am J Neuroradiol.2008 Apr;29(4):632-41.
    137. Mukherjee P, McKinstry RC. Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am.2006 Feb; 16(1):19-43, ⅶ.
    138. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research:a review. J Mol Neurosci.2008;34(1):51-61.
    139. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol.2006 Dec; 187(6):1521-30.
    140. Ardekani S, Sinha U. Quantitative assessment of parallel acquisition techniques in diffusion tensor imaging at 3.0 Tesla. Conf Proc IEEE Eng Med Biol Soc.2004;2:1072-5.
    141. Stahl R, Dietrich O, Teipel SJ, et al. White matter damage in Alzheimer disease and mild cognitive impairment:assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology.2007 May;243(2):483-92.
    142. Fushimi Y, Miki Y, Okada T, et al. Fractional anisotropy and mean diffusivity: comparison between 3.0-T and 1.5-T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed.2007 Dec;20(8):743-8.
    143. Kataoka M, Kido A, Yamamoto A, et al. Diffusion tensor imaging of kidneys with respiratory triggering:optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging.2009 Mar;29(3):736-44.
    144. Notohamiprodjo M, Dietrich O, Horger W, et al. Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol.2010 May;45(5):245-54.
    145. Jin H, Zeng MS, Ge MY, et al. A study of in vitro and in vivo MR of free-breathing whole-heart 3D coronary angiography using parallel imaging. Int J Cardiovasc Imaging.2009 Apr;25 Suppl 1:121-9.
    146. Morita S, Ueno E, Suzuki K, et al. Navigator-triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP:an initial prospective comparative study using healthy volunteers. J Magn Reson Imaging.2008 Sep;28(3):673-7.
    147. Barnwell JD, Smith JK, Castillo M. Utility of navigator-prospective acquisition correction technique (PACE) for reducing motion in brain MR imaging studies. AJNR Am J Neuroradiol.2007 Apr;28(4):790-1.
    148. Siegel CL, Aisen AM, Ellis JH, et al. Feasibility of MR diffusion studies in the kidney. J Magn Reson Imaging.1995 Sep-Oct;5(5):617-20.
    149. Murtz P, Pauleit D, Traber F, et al. Pulse triggering for improved diffusion-weighted MR imaging of the abdomen. Rofo.2000 Jul;172(7):587-90.
    150. Noeske R, Seifert F, Rhein KH, et al. Human cardiac imaging at 3 T using phased array coils. Magn Reson Med.2000 Dec;44(6):978-82.
    151. Michaely HJ, Kramer H, Oesingmann N, et al. Intraindividual comparison of MR-renal perfusion imaging at 1.5 T and 3.0 T. Invest Radiol.2007 Jun;42(6):406-11.
    152. Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI:physical background and reduction strategies. Eur J Radiol.2008 Jan;65(1):29-35.
    153. Kido A, Kataoka M, Yamamoto A, et al. Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla. Acta Radiol.2010 Nov;51(9):1059-63.
    154. Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging.2007 Sep;26(3):756-67.
    155. Landman BA, Farrell JA, Jones CK, et al. Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage.2007 Jul 15;36(4):1123-38.
    156. Melhem ER, Itoh R, Jones L, et al. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol.2000 Nov-Dec;21(10):1813-20.
    157. Tsuda K, Murakami T, Sakurai K, et al. Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence. Nippon Igaku Hoshasen Gakkai Zasshi.1997 Jan;57(1):19-22.
    158. Chow LC, Bammer R, Moseley ME, et al. Single breath-hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging.2003 Sep;18(3):377-82.
    159. Cutajar M, Clayden JD, Clark CA, et al. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects. Eur J Radiol.2011 Jan 10. [Epub ahead of print]
    160. Alexander AL, Lee JE, Wu YC, et al. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimaging Clin N Am.2006 May;16(2):299-309, xi.
    161. Rossi C, Boss A, Lindig TM, et al. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla. Rofo.2007 Mar; 179(3):219-24.
    162. 黎磊石,刘志红.中国肾脏病学(下册):1077-1094
    [1]Chandarana H, Lee VS. Renal functional MRI:are we ready for clinical application?[J]. AJR,2009,192:1550-1557.
    [2]Martin DR, Sharma P, Salman K, et al. Individual kidney blood flow measured with contrastenhanced first-pass perfusion MR imaging [J]. Radiology,2008,246: 241-248.
    [3]Michaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenosis: functional assessment with dynamic MR perfusion measurements—feasibility study[J]. Radiology,2006,238:586-596.
    [4]Martirosian P, KloseU, Mader I, et al. FAIR true-FISP perfusion imaging of the kidneys [J]. Magn Reson Med,2004,51:353-361.
    [5]Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis:initial experience[J]. Radiology,2006,238:1013-1021.
    [6]Grenier N, Mendichovszky I, de Senneville BD,et al. Measurement of glomerular filtration rate with magnetic resonance imaging:principles, limitations, and expectations[J]. Semin Nucl Med,2008,38:47-55.
    [7]Bokacheva L, Rusinek H, Chen Q, et al.Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies [J]. Magn Reson Med,2007,57:1012-1018.
    [8]Baumann D, Rudin M. Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent (Gd-DOTA) using dynamic MRI[J]. Magn Reson Imaging,2000,18:587-595.
    [9]Hackstein N, Kooijman H, Tomaselli S, et al. Glomerular filtration rate measured using the Patlak plot technique and contrastenhanced dynamic MRI with different amounts of gadolinium-DTPA[J]. Magn Reson Imaging,2005,22:406-414.
    [10]Annet L, Hermoye L, Peeters F, et al. Glomerular filtration rate:assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney [J].Magn Reson Imaging,2004,20:843-849.
    [11]Lee VS, Rusinek H, Bokacheva L. Renal function measurements from MR renography and a simplified multicompartmental model [J]. Am J Physiol Renal Physiol,2007,292:F1548-F1559.
    [12]Zhang JL, Rusinek H, Bokacheva L, et al. Functional assessment of the kidney from magnetic resonance and computed tomography renography:impulse retention approach to a multicompartment model [J]. Magn Reson Med,2008,59:278-288.
    [13]Abou El-Ghar ME, Shokeir AA, Refaie HF,, et al. MRI in patients with chronic obstructive uropathy and compromised renal function:a sole method for morphological and functional assessment [J]. Br J Radiol,2008,81:624-629.
    [14]El-Diasty TA, El-Ghar ME, Shokeir AA,,et al. Magnetic resonance imaging as a sole method for the morphological and functional evaluation of live kidney donors [J]. BJU Int,2005,96:111-116.
    [15]Buckley DL, Shurrab AE, Cheung CM, et al. Measurement of single kidney function using dynamic contrast-enhanced MRI:comparison of two models in human subjects [J]. J Magn Reson Imaging,2006,24:1117-1123.
    [16]Mendichovszky I, Pedersen M, Frφki(?)aer J, et al. How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? a critical appraisal [J]. J Magen Reson Imaging,2008,27:925-931.
    [17]Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradient-recalled echo sequence [J]. Invest Radiol,2006,41: 181-184.
    [18]Prasad PV, Chen Q, Goldfarb JW, et al. Breath-hold R2* mapping with a multiple gradient-recalled echo sequence:application to the evaluation of intrarenal oxygenation [J]. J Magn Reson Imaging,1997,7:1163-1165.
    [19]Li LP, Ji L, Santos EA, et al. Effect of nitric oxide synthase inhibition on intrarenal oxygenation as evaluated by blood oxygenation level-dependent magnetic resonance imaging [J]. Invest Radiol,2009,44:67-73.
    [20]Thoeny HC, Kessler TM, Simon-Zoula S, et al. Renal oxygenation changes during acute unilateral ureteral obstruction:assessment with blood oxygen level-dependent MR imaging—initial experience [J]. Radiology,2008,247:754-761.
    [21]Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent [J]. J Magn Reson Imaging,2003,17:104-113.
    [22]Han F, Xiao W, Xu Y, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis [J]. Nephrol Dial Transplant,2008,23:2666-2672.
    [23]Alford SK,Sadmvski EA, Unal O, et al. Detection of acute renal isehemia in swine using blood oxygen level—ependent magnetic resonance imaging[J]. J Magn Reson Imaging,2005,22:347-353.
    [24]Hofmann L, Simon-Zoula S, Nowak A. BOLD-MRI for the assessment of renal oxygenation in humans:acute effect of nephrotoxic xenobiotics [J]. Kidney Int,2006, 70:144-150.
    [25]Michaely HJ, Herrmann KA, Nael K, et al. Functional renal imaging: nonvascular renal disease [J]. Abdom Imaging,2007,32:1-16.
    [26]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging [J]. Radiology,1988,168:497-505.
    [27]. Thoeny HC, Binser T, Phys D, et al.Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging:a prospective study [J]. Radiology, 2009,252:721-728.
    [28]Pedersen M, Wen JG, Shi Y, et al. The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI [J]. APMIS Suppl,2003,(109):29-34.
    [29]Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent [J]. J Magn Reson Imaging,2003,17:104-113.
    [30]Carbone SF, Gaggioli E, Ricci V, et al. Diffusion-weighted magnetic resonance imaging in the evaluation of renal function:a preliminary study [J]. Radiol Med,2007,112:1201-1210.
    [31]Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate:preliminary experience [J]. J Magn Reson Imaging,2007,26:678-681.
    [32]Xu X, Fang W, Ling H. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease:initial study [J]. Eur Radiol,2010:20:978-983
    [33]Yildirim E, Kirbas I, Teksam M, et al. Diffusion-weighted MR imaging of kidneys in renal artery stenosis [J]. Eur J Radiol,2008,65:148-153.
    [34]Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney:apparent diffusion coefficient measurements for clinical use [J]. J Magn Reson Imaging, 2000,11:156-160.
    [35]Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney[J]. Magn Reson Imaging,2001,14:42-49.
    [36]Notohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensor imaging of the kidney with parallel imaging:initial clinical experience [J]. Invest Radiol,2008,43:677-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700