东昆仑中段辉石岩的成因与构造—热演化史
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑造山带经历了非常复杂的构造演化历史。前寒武纪基底形成之后,原特提斯和古特提斯洋陆转换又在这里留下了大量物质记录和构造形迹。晚三叠世东昆仑进入陆内演化阶段,物质记录较少,但是有限的陆相沉积及其构造变形(如八宝山组磨拉石建造中发育的褶皱-冲断构造)说明,东昆仑存在强烈的燕山运动。40Ar/39Ar等热年代学研究结果也显示东昆仑地区侏罗-白垩纪时期有过强烈的构造热事件。由于物质记录的缺乏,东昆仑造山带中-新生代构造演化的研究还非常薄弱。不同封闭温度的热年代学方法为解决这一问题提供了契机。由于热年代学并不反映地质体形成的时间,而是形成之后又经历某一温度环境的时间,而不同方法有不同的封闭温度,特别是裂变径迹(FT)方法中“部分退火带”的概念,使我们可以用来揭示“老地质体的近代史”,为缺乏物质记录的地质时期的构造演化研究提供了一个可行的解决方案。
     辉石岩是一种比较特殊的岩石,化学成分上属于基性岩,而在矿物组成上属于超镁铁质岩。辉石岩是上地幔除橄榄岩之外的另一个重要组成部分,现今在近地表出现的辉石岩可以通过构造侵位、岩浆捕获甚至岩浆直接侵位形成。构造侵位形成的如蛇绿岩带、镁铁质杂岩体等,其岩石组合中一般有辉石岩的成分;玄武岩中经常会有各种捕掳体,其中也不乏辉石岩成分的;但是在地幔部位形成辉石岩岩浆直接上升侵位形成辉石岩体的非常少见。本文研究的辉石岩就是这样一种特殊产状的辉石岩体,侵位于早志留世花岗闪长岩与元古代基底变质岩系接触部位。该辉石岩岩浆源区来自地幔,侵位于中、上地壳,后来又抬升剥露到地表,经历了漫长的垂向运移路径和丰富的构造演化历史,是难得的理想研究样品。本论文在详细的野外调查和构造解析的基础上,采集了大量样品,对辉石岩进行了岩石学、地球化学、锆石U-Pb年代学和Lu-Hf同位素、裂变径迹热年代学以及显微构造和岩石物理等方面的研究,结合区域地质背景,对比前人相关研究成果,探讨了辉石岩的成因及与其相关的壳幔相互作用,分析和模拟了辉石岩侵位之后的热历史,建立了较为完整的辉石岩构造-热演化史。
     研究取得的主要认识如下:
     (1)岩石主要由单斜辉石、斜方辉石和角闪石组成,另有少量斜长石、石英、黑云母和铁质不透明矿物。角闪石和黑云母为后期退变质矿物。鉴于岩石在矿物组成上与某些镁铁质(基性)麻粒岩非常相似,需要判定岩石究竟是辉石岩还是基性麻粒岩,而二者的区别主要在于其中的斜方辉石是变质成因的还是岩浆成因的,如果是变质成因的,则岩石为基性麻粒岩,如果是岩浆成因的则岩石为辉石岩。通过电子探针数据的成因矿物学分析,确定岩石中斜方辉石为岩浆成因的,因此该样品为辉石岩,而非基性麻粒岩。
     (2)该辉石岩化学成分上表现为高MgO高CaO低Al203特征,微量元素表现为Rb、Th富集而Nb、Ti的亏损,锆石U、Th含量非常富集,176Hf/177Hf比值较低,而εHf(t)均为负值,这些特征表明其岩浆来源于富集地幔。通过岩相学、稀土元素等特征与前人研究结果对比认为该辉石岩的岩浆中有富Si熔体的加入,而富Si熔体只能是来自地壳的成分,因此推断辉石岩的形成过程中存在壳幔相互作用。
     (3)野外详细的构造解析发现辉石岩的侵位要晚于其围岩花岗闪长岩,因为围岩发生糜棱岩化而辉石岩没有明显的韧性变形,推断二者为侵入接触关系。LA-ICPMS方法测得锆石21个分析点的206Pb/238U年龄明显分为两组,加权平均值分别为462.6±5.3Ma(A组)和261.2+3.0Ma(B组)。有部分锆石在CL图像上可以看到明显的核幔结构,核部为变质锆石,幔部为具有韵律环带的岩浆锆石。从锆石分析点的信号曲线上可以看出明显的分段现象,也表明同一颗粒中存在不同期次生长的锆石。结合岩体野外产状、岩相学、地球化学并对照区域上前人研究成果,认为B组锆石年龄(261.2±3.0Ma)是该岩体侵位时代的最佳估计,A组锆石年龄(462.6+5.3Ma)可能是岩体侵位于下地壳时捕获的白沙河岩群麻粒岩相变质岩中的锆石,随着岩浆冷却结晶在这些变质锆石的基础上生长了岩浆锆石。其可能的成因模式是:古特提斯洋岩石圈于中二叠世向北大规模俯冲过程中,俯冲板片部分熔融产生的富Si熔体与富集地幔楔的橄榄岩交代反应形成的辉石岩岩浆底侵到东昆北下地壳麻粒岩相变质岩中并捕获了麻粒岩相变质锆石,之后继续上升就位于白沙河岩群变质岩系与早志留世花岗闪长岩体接触部位,但是在辉石岩岩浆底侵过程中没有引起下地壳发生大规模熔融,从而形成独立侵位的小型岩体。在辉石岩的整个形成过程中,从岩浆起源到上升侵位,都存在壳幔物质的交换、混合等壳幔相互作用,壳幔相互作用在该辉石岩形成过程中扮演了重要角色。辉石岩在后期的抬升剥露过程中发生了退变质和蚀变改造。
     (4)辉石岩虽然在露头和手标本上看不出定向构造,但是矿物显微组构的EBSD分析显示,其单斜辉石和斜方辉石却有较强的结晶学优选方位(CPO),尤其是斜方辉石,其中以[001]轴和(010)面上的极点分布具有明显的优选方位,[001]轴和(010)面极点分布都呈不太完整的大圆环。透射电子显微镜(TEM)观察发现,辉石岩中的单斜辉石和斜方辉石矿物广泛发育有自由位错、位错弓弯、位错列、位错壁(亚颗粒边界),局部还有位错网等位错亚构造。相比之下,斜方辉石中自由位错较多。总的来看,辉石岩中位错构造既有较低温条件下的自由位错、位错缠结现象,也有标志高温塑性流变的位错弓弯和不完整的位错环构造,说明辉石岩经历了很宽的温度范围,而且受热不均匀。位错密度的统计结果与镜下显微构造特征指示辉石矿物组构和位错构造是在辉石岩冷却后期受到较小构造应力而发生位错蠕变造成的,很可能就是在岩体侵位之后抬升期剥露过程中产生的显微构造。
     (5)常温常压条件测试结果显示,辉石岩具有明显的电性和波速的各向异性,与辉石岩中斜方辉石和单斜辉石具有较强的结晶学优选方位是一致的。利用EBSD测试数据估算的波速特征也显示辉石岩具有一定的各向异性特征,说明辉石岩波速各向异性是由组成岩石的单斜辉石和斜方辉石的结晶学优选方位控制的。主要组成矿物中结晶学优选方位的存在,可能是这种宏观上不具有定向构造的岩石,但物性上具有明显各向异性特征的微观机制。
     (6)通过辉石岩磷灰石裂变径迹(AFT)热年代学和热史模拟研究,发现辉石岩侵位以来经历了大约5个阶段的构造-热演化历史。第一阶段从大约260Ma到205Ma左右,岩体快速冷却至大约40℃,冷却速率约2.9℃/Ma,假设东昆仑地区地温梯度为35℃/km的话,辉石岩在这一阶段抬升了大约4.6km,平均抬升速率为84m/Ma。第二阶段从大约205Ma~200Ma之间很短的时间内,辉石岩发生增温事件,从40℃左右增加到大约80℃,这可能是受到附近构造热事件如断裂活动、岩浆侵位等的影响所致。第三阶段从200Ma到130Ma左右辉石岩发生冷却,从80℃降低到50℃左右,平均冷却速率为0.4℃/Ma。第四阶段从大约130Ma到约5Ma,辉石岩缓慢冷却,温度降幅非常低,仅仅是从50℃降低到43℃左右,平均冷却速率为0.06℃/Ma。第五阶段是5Ma以来的快速冷却,冷却速率大约8.6℃/Ma,根据地温梯度换算为平均抬升速率为246m/Ma。可以看出,第一阶段和第五阶段辉石岩都是快速冷却抬升。第一阶段的冷却抬升与古特提斯洋俯冲闭合后向北的持续挤压导致东昆北地块的隆升有关。第五个阶段的迅速抬升剥露是上新世以来青藏高原整体强烈隆升和局部断陷活动差异抬升共同作用的结果。
     (7)封闭温度较高的锆石U-Pb年代学与封闭温度较低的锆石和磷灰石裂变径迹热年代学(FT)方法结合,基本完整的揭示了辉石岩的侵位、抬升、冷却、剥露的构造-热历史和动力学过程。这充分表明,裂变径迹(FT)等构造热年代学方法是研究老地质体近代史的有效手段,而来源于地幔的辉石岩漫长的垂向运移路径,二者的结合可以反映一个地区在更广时空背景里的构造-热历史。
The East Kunlun orogen has gone through a very complex tectonic evolution history. It's one of the particular areas in the Qinghai-Tibetan Plateau that contains substance records of both Proto-Tethys and Paleo-Tethys after the formation of the Precambrian basement. The East Kunlun enter the stage of intercontinental evolution since Mesozoic. There were lack of substance records in this period, but the limited deformation of sedimentary rocks(such as fold-thrust structures developed in the Babaoshan Fm molasse) indicated a strong Yanshan movement in the East Kunlun area. Other thermochronology studies(such as40Ar/39Ar) also show that there was an intense tectonic thermal event in Jurassic-Cretaceous period in the East Kunlun. The tectonic evolution research of the East Kunlun in Mesozoic-Cenozoic period is still very weak due to the lack of substance records. Some thermochronology methods with different closure temperatures provide an opportunity to solve this problem.Thermochronology results do not reflect the time of formation of the rocks, but the time of the thermal events the rocks experienced after it formed. With different closure temperature, especially the notion of Partial Annealing Zone(PAZ) in fission track (FT) method, we can reveal the modern history of the old geological body. It provides a viable solution for the tectonic evolution research in some area with less substance records during a geological period.
     Pyroxenite is a special rock which belongs to mafic rocks on chemical composition, and the ultramafic rocks on the mineral composition. It's another important part of upper mantle beside peridotite. Pyroxenite could be formed and uplift to near-surface by tectonic emplacement or magma capture, even magma emplacement directly. Geological body formed by tectonic emplacement, such as the ophiolite belt and mafic igneous complex generally have the composition of pyroxenite; The basaltic magma often carry a variety of xenoliths, and many of the xenoliths are pyroxenite; But it is very rare that the pyroxenite magma formed in the mantle, rise directly and emplacement into the crust and formed a pyroxenite pluton. The pyroxenite in this study is such a special occurrence, which emplaced in the contact area between the Early Silurian granodiorite and Proterozoic basement metamorphic rocks. The magma of the pyroxenite was from the mantle source region, emplaced in the middle-upper crust, and then uplift and erode to the surface. Through a long vertical migration path and complex tectonic evolution history, the pyroxenite became a ideal sample for research. Based on detailed field survey and structural analysis, the thesis have done many aspects of research on the pyroxenite, such as petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotope, fission track thermal chronology, fabric and microstructure, petrophysics. Combined with regional geological background and the previous research, we investigated the causes and its associated crust-mantle interaction of the pyroxenite, simulated the thermal history of pyroxenite after its emplacement, and then established a complete tectono-thermal history of the pyroxenite pluton eventually.
     The new findings and knowledge aehieved in this study are as follows:
     (1) The rock is mainly composed of clinopyroxene, orthopyroxene and amphibole, and minor plagioclase, quartz, biotite and iron opaque minerals. Amphibole and biotite were formed during retrograde metamorphism. The mineral composition of the rock is very similar with some mafic granulites and the difference between the two is that the orthopyroxene metamorphic or magmatic origin. If the orthopyroxene in the rock has a metamorphic origin, the rock is granulite, and if it is magmatic origin, the rock is pyroxenite. The discriminant analysis results suggested that the orthopyroxene are magmatogenic, thus the rock should be named pyroxenite rather than granulite.
     (2) The rock have high MgO, CaO and low A12O3and enriched in Rb and Th and depleted in Nb and Ti, high U, Th in the zircon, low176Hf/177Hf and negative εHf(t) values showing clear evidence for an enriched mantle source. Petrography, rare earth elements and other features of the rock showing that during the pyroxenite magma forming there had Si-rich melt added which came from the crust ingredients. In other words, there was crust-mantle interaction in the formation process of pyroxenite contrast with the results of previous studies.
     (3) Field occurrence of the pyroxenite pluton suggest that the pyroxenite pluton was formed after the mylonization of the surrounding rocks. In situ LA-ICPMS U-Pb dating, and trace element and MC-ICPMS Lu-Hf isotope analyses were undertaken on zircon grains from the pyroxenite sample. We have two major206Pb/238U age clusters,452-474Ma(A group) and255-270Ma(B group), which yield two weighted mean206Pb/238U ages of462.6±5.3Ma and261.2±3.0Ma respectively. Some of the zircon CL images have core-rim structures and the cores have oval shapes and cross-shaped zones and the rims with oscillatory zoning. That means the cores are metamorphic and the rims are igneous zircon. The segmented signal curves of some spots of LA-ICPMS zircon U-Pb dating also showing the multi-period growth of zircons in pyroxenite. Combined with field occurrence and petrography, we suggest that the age of261.2±3.0Ma is the best estimated age of emplacement time of the pyroxenite pluton. Age of462.6±5.3Ma, corresponding to the age of the granulite-facies metamorphism of Baishahe Group in the East Kunlun orogen, implying that the cores of zircons from the pyroxenite pluton were captured from the metamorphic rocks of Baishahe Group when the ultramafic pyroxenite magma underplated the overlying lower crust, and then, the magmatic zircon growth and wrapped on the metamorphic cores. The zircons have high U, Th and REE contents, low176Hf/177Hf and negative εHf (t) values of-12.1to-3.0showing clear evidence for an enriched mantle source and crust-mantle interaction during the magma formation and emplacement process. We propose a model for ultramafic magma underplatting and crust-mantle interaction in a subduction zone environment, in which subduction of an Paleo-Tethys(A'nyemaqen) oceanic slab at the Middle Permian led to fluid and Si-rich melt metasomatism, inducing partial melting of an enriched lithospheric mantle(peridotites) to form the ultramafic pyroxenite magma. The pyroxenite magma underplated the overlying lower crust, captured the metamorphic zircons of the granulite and exchange some trace elements, but didn't result in the lower crust partial melting to form any felsic magma. The pyroxenite magma emplacement alone eventually. Crust-mantle interaction plays an important role in the entire process of the formation of pyroxenite, including the magma originated and emplacement. There are retrogression and alteration in the pyroxenite during the later uplift and exhumation process.
     (4) Although there is no preferred orientation on the pyroxenite outcrops and hand samples, the EBSD analysis results show that the mineral Clinopyroxene and orthopyroxene both have a strong crystallographic preferred orientation fabric(CPO), especially the orthopyroxene. On the fabric figure, there are preferred orientation(CPO) along the [001] axis and the (010) surface, and the [001] axis and (010) surface distribution were less complete ring. The transmission electron microscope (TEM) observation shows that, dislocation microstructures, such as free dislocation, dislocation bowing, dislocation arrays, dislocation wall (subgrain border) and a little dislocation net are widely developed in clinopyroxene and orthopyroxene of the pyroxenite samples.In contrast, the orthopyroxene have more free dislocations.Overall, there are both free dislocation and islocation tangles which under lower temperature conditions and dislocation bowing and incomplete dislocation loop which indicate the higher temperature plastic rheology conditions. These description implied the pyroxenite had experienced a uneven and very wide range of temperature conditions. The statistical results of the free dislocation density and the microstructures indicates these dislocations were formed by creep during the uplift process of the pyroxenite pluton.
     (5) The test results under normal temperature and pressure conditions show that the pyroxenite have apparent resistivity and velocity anisotropy. It's consistent with the strong fabric of the orthopyroxene and clinopyroxene of the pyroxenite. The wave velocity estimated use the EBSD data show anisotropic characteristics too, this imply that the anisotropy of rocks controlled by the fabric of its main mineral composition. The presence of fabrics in mainly composed minerals of rocks are the origin of the significantly anisotropic characteristics of the physical properties in the rocks without any macro orientation structures.
     (6) Through the research of apatite fission track (AFT) thermochronology and thermal history modeling, we found that the tectono-thermal history of the pyroxenite since the emplacement can be divided into five-stages. The first stage from about260Ma to205Ma. The rock cooling to about40℃rapidly and the cooling rate was about2.9℃/Ma. We can estimate that the pyroxenite lifted about4.6km in this stage if it was assumed that the geothermal gradient was35℃/km, and the average uplift rate was84m/Ma. There was a temperature increase incident in the second stage from about205Ma to200Ma for a short time, the temperature of the pyroxenite from about40℃increased to about80℃, which may be due to the impact of nearby tectono-thermal events such as faulting, magma emplacement, etc. The third stage was about200Ma to130Ma, and the pyroxenite cooling slowly from80℃to50℃with an average cooling rate of0.4℃/Ma. The fourth stage from about130Ma to about5Ma, the pyroxenite cooling very slow, with the average cooling rate of0.06℃/Ma. In the fifth stage the pyroxenite cooling rapid since5Ma with the cooling rate of about8.6℃/Ma. The average uplift rate was about246m/Ma. It can be seen in the first and the fifth stage the pyroxenite were cooling and uplift very fast. The first stage corresponds to the uplift of the northern block of the East Kunlun related to the Paleo-Tethys subduction and continued extrusion in this area. The rapid cooling and uplift in the fifth stage was the result of rapid uplift and exhumation of the entire Qinghai-Tibetan Plateau since the Pliocene and local fault depression activities and differential uplifts.
     (7) The combination of zircon U-Pb geochronology method with higher closure temperature and zircon and apatite fission track thermochronology (FT) method with lower closure temperatures basic revealed the process of the emplacement, uplift, cooling the tectonic exhumation-thermal history and dynamics of the pyroxenite, which fully shows that the thermochronology methods, such as fission track, are effective means in study of the modern history of the old geological bodies. The combination of the two above can reflect the tectono-thermal history of a wider region in the space-time background.
引文
(1)中国地质大学(武汉),2006,1:25万不冻泉幅区域地质调查报告.
    (1)青海省地质矿产局,1991.青海省区域地质志.地质出版社
    (2)中国地质大学(武汉),2006.1:25万不冻泉幅、1:25万库赛湖幅区域地质调查报告
    (1)青海省地质矿产局,1991.青海省区域地质志.地质出版社.
    (2)青海地质调查院,2002.东昆仑东段成矿区(带)矿产资源调查评价“十五”工作部署方案.
    (1)青海地质调查院,2002.东昆仑东段成矿区(带)矿产资源调查评价“十五”工作部署方案.
    (1)孙丰月,陈国华,迟效国等.2003.中国地质调查局“新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究”研究报告
    (1)中国地质大学(武汉),2003.1:25万阿拉克湖区域地质调查报告及地质图
    (1)Mainprice D.http://www.isteem.univ-montp2.fr/TECTONOPHY/petrophysics_software.html.In:2003.
    [1]Frey F A. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii:trace element evidence. American Journal of Science,1980,280:427-449.
    [2]Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB. Contributions to Mineralogy and Petrology,1996, 124(2):185-208.
    [3]Liu Y S, Gao S, Lee C T A, et al. Melt- peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Science Letters, 2005,234(1):39-57.
    [4]Downes H. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos,2007,99(1-2):1-24.
    [5]陈斌,田伟,刘安坤.冀北小张家口基性-超基性杂岩的成因:岩石学、地球化学和Nd-Sr同位素证据.高校地质学报,2008,14(3):295-303.
    [6]张亚玲,徐义刚.辉石岩:高压结晶还是再循环洋壳?高校地质学报,2012,18(1):74-87.
    [7]冯建赞.东昆仑都兰可可沙—科科可特镁铁—超镁铁质岩的地质特征、形成时代及构造意义:[硕士学位论文].长安大学,2010
    [8]冯建赟,裴先治,于书伦等.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄.中国地质,2010,37(1):28-38.
    [9]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义.西北地质科学,1988,21(1):17-28.
    [10]李卫东,彭湘萍,康正文等.东昆仑木孜塔格地区畅流沟蛇绿岩岩石地球化学特征及其构造意义.新疆地质,2003,21(3):263-268.
    [11]王秉璋,张智勇,张森琦等.东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征.地球科学——中国地质大学学报,2000,25(6):592-598.
    [12]谌宏伟,罗照华,莫宣学等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,2005,32(3):386-395.
    [13]刘成东,莫宣学,罗照华等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,2004,49(6):596-602.
    [14]刘成东,张文秦,莫宣学等.东昆仑约格鲁岩体暗色微粒包体特征及成因.地质通报,2002,21(11):739-744.
    [15]常丽华,陈曼云,金巍等.透明矿物薄片鉴定手册.北京:地质出版社,2006.
    [16]谢鸿森.地球深部物质科学导论.北京:科学出版社,1997.
    [17]卢良兆,林强,刘招君.成因岩石学.长春:吉林大学出版社,2004.
    [18]刘勇胜,袁洪林,高山等.汉诺坝橄榄辉石岩包体锆石U-Pb年龄:97-158Ma岩浆底侵作用和麻粒岩相变质作用之间的成因联系.科学通报,2004,49(8):790-797.
    [19]宗克清,刘勇胜,高山等.汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义.岩石学报,2005,21(3):909-920.
    [20]陈道公,支霞臣,李彬贤等.汉诺坝玄武岩中辉石岩类包体Nd、Sr、Pb同位素及其成因信息.地球化学,1997,26(1):1-12.
    [21]陈道公,汪相,李彬贤等.北大别辉石岩成因:锆石微区年龄和化学组成.科学通报,2001,46(7):586-590.
    [22]李曙光,洪吉安,李惠民等.大别山辉石岩-辉长岩体的锆石U-Pb年龄及其地质意义.高校地质学报,1999,5(3):351-355.
    [23]夏群科,Deloule E.大别山道士冲地区辉石岩锆石的氧同位素组成壳幔相互作用的新信息.科学通报,2002,47(16):1256-1260.
    [24]吴才来,杨经绥,许志琴等.可可西里辉石岩包体矿物化学及其地质意义.中国科学(D辑:地球科学),2001,31(S1):109-116.
    [25]代立东,李和平,刘丛强等.高温高压下辉石岩的电导率实验研究.矿物学报,2005,25(3):303-306.
    [26]王多君,李和平,刘从强等.高温高压下辉石岩的电导率研究.高压物理学报,2004,18(2):177-182.
    [27]徐有生.地幔矿物岩石的电导率研究进展.地学前缘,2000,7(1):229-237.
    [28]Prinzhofer A, Lewin E, Allegre C J. Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12°50'N. Earth and Planetary Science Letters, 1989,92(2):189-206.
    [29]Blichert-Toft J, Albarede F, Kornprobst J. Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco:implications for basalt origin. Science,1999,283(5406):1303.
    [30]Lundstrom C C, Shaw H F, Ryerson F J, et al. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system:implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta,1998, 62(16):2849-2862.
    [31]Carlson R W, Nowell G M. Olivine-poor sources for mantle-derived magmas:Os and Hf isotopic evidence from potassic magmas of the Colorado Plateau. Geochemistry, geophysics, geosystems.,2001,2(6):1034.
    [32]O'Hara J M, Mercy E. Petrology and petrogenesis of some garnetiferous peridotites.1963.
    [33]Dickey J S. Partial fusion products in alpine-type peridotites:Serrania de la Ronda and other examples. Spec. Pap. Mineralog. Soc. Am,1970,3:19-33.
    [34]Suen C J, Frey F A. Origins of the mafic and ultramafic rocks in the Ronda peridotite. Earth and Planetary Science Letters,1987,85(1-3):183-202.
    [35]Smyth J R, Caporuscio F A, Mccormick T C. Mantle eclogites:evidence of igneous fractionation in the mantle. Earth and Planetary Science Letters,1989,93(1):133-141.
    [36]Irving A J. Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. Journal of Petrology,1974,15(1):1-40.
    [37]Best M G. Amphibole-bearing cumulate inclusions, Grand Canyon, Arizona and their bearing on silica-undersaturated hydrous magmas in the upper mantle. Journal of Petrology, 1975,16(1):212-236.
    [38]Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters,1978, 38(1):129-176.
    [39]Kornprobst J, Piboule M, Roden M, et al. Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco):original plagioclase-rich gabbros recrystallized at depth within the mantle? Journal of Petrology,1990,31(3):717-745.
    [40]Pearson D G, Davies G R, Nixon P H. Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology,1993,34(1):125-172.
    [41]Girardeau J, Ibarguchi J I G. Pyroxenite-rich peridotites of the Cabo Ortegal complex (Northwestern Spain):evidence for large-scale upper-mantle heterogeneity. Journal of Petrology,1991, Special Volume(2):135-154.
    [42]Muntener O, Hermann J. The Val Malenco lower crust- upper mantle complex and its field relations (Italian Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 1996,76:475-500.
    [43]Ater P C, Eggler D H, Mccallum M E. Petrology and geochemistry of mantle eclogite xenoliths from Colorado-Wyoming kimberlites:recycled ocean crust. Kimberlites II:The Mantle and Crust-Mantle Relationships:Amsterdam, Elsevier,1984:309-318.
    [44]Jacob D E, Schmickler B, Schulze D J. Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos,2003,71(2-4):337-351.
    [45]Yu S, Xu Y, Ma J,et al. Remnants of oceanic lower crust in the subcontinental lithospheric mantle:Trace element and Sr-Nd- O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth and Planetary Science Letters,2010, 297(3-4):413-422.
    [46]Gonzaga R G, Lowry D, Jacob D E, et al. Eclogites and garnet pyroxenites:Similarities and differences. Journal of Volcanology and Geothermal Research,2010,190(1-2):235-247.
    [47]Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature,2005,434(7033):590-597.
    [48]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology, 1999,160(4):335-356.
    [49]Kelemen P B. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology,1995,120(1):1-19.
    [50]Burg J P, Bodinier J L, Chaudhry S, et al. Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya):petro-structural evidence. TERRA NOVA-OXFORD-,1998,10:74-80.
    [51]高山,章军锋,许文良等.拆沉作用与华北克拉通破坏.科学通报,2009,54(14):1962-1973.
    [52]Wilde S A, Zhou X, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton:A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology,2003,31(9):817-820.
    [53]Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology,2004,147(6):750-767.
    [54]Hooker P J, Bertrami R, Lombardi S, et al. Helium-3 anomalies and crust-mantle interaction in Italy. Geochimica et Cosmochimica Acta,1985,49(12):2505-2513.
    [55]Kerr A, Fryer B J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical geology,1993,104(1-4):39-60.
    [56]Illies J H. Graben tectonics as related to crust-mantle interaction. Graben Problems, International Upper Mantle Project Scientific Report,1970, (27):4-27.
    [57]Dong C, Zhou X, Li H, et al. Late Mesozoic crust-mantle interaction in southeastern Fujian. Chinese science bulletin,1997,42(6):495-498.
    [58]Berger M, Rollinson H. Isotopic and geochemical evidence for crust-mantle interaction during late Archaean crustal growth. Geochimica et cosmochimica acta,1997, 61(22):4809-4829.
    [59]Xu X S, Xie X. Late Mesozoic-Cenozoic basaltic rocks and crust-mantle interaction, SE China. Geological Journal of China Universities,2005,11(3):318-334.
    [60]Stevenson R, Upton B, Steenfelt A. Crust-mantle interaction in the evolution of the Ilimaussaq Complex, South Greenland: Nd isotopic studies. Lithos,1997,40(2-4):189-202.
    [61]Zhao Z, Bao Z, Zhang B, et al. Crust-mantle interaction and its contribution to the Shizhuyuan superlarge tungsten polymetallic mineralization. Science in China(Series D:Earth Sciences),2001,44(3):266-276.
    [62]Jayananda M, Martin H, Peucat J J, et al. Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India. Contributions to Mineralogy and Petrology,1995,119(2):314-329.
    [63]金振民,高山.底侵作用(underplating)及其壳—幔演化动力学意义.地质科技情报,1996,15(2):1-7.
    [64]杜杨松,刘金辉,秦新龙等.岩浆底侵作用研究进展.自然科学进展,2003,13(3):237-242.
    [65]樊祺诚,张宏福,隋建立等.岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据.中国科学(D辑:地球科学),2005,35(1):1-14.
    [66]Jahn B, Wu F, Lo C H, et al. Crust- mantle interaction induced by deep subduction of the continental crust:geochemical and Sr- Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical geology,1999, 157(1):119-146.
    [67]Cai H, Zhang H, Xu W, et al. Petrogenesis of Indosinian volcanic rocks in Songpan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination. SCIENCE CHINA Earth Sciences,2010,53(9):1316-1328.
    [68]Xu W, Zhou Q, Pei F, et al. Destruction of the North China Craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Research,2009,54(19):3367-3378.
    [69]Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton. Chinese Science Bulletin,2009,54(19):3367-3378.
    [70]Hong-Fei Z, Parrish R, Zhang L, et al. Reply to the comment by Zhang et al. on:"First finding of A-type and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination". Lithos,2008,103(3-4):565-568.
    [71]Zhang C, Li B, Cai J, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination: Comment. Lithos,2008,103(3-4):562-564.
    [72]Buontempo L, Bokelmann G H R, Barruol G, et al. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth and Planetary Science Letters,2008,273(3-4):237-250.
    [73]Zhang H, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos,2007,97(3-4):323-335.
    [74]王有学,姜枚,熊盛青等.西昆仑岩石圈的拆沉作用及其深部构造含义——地震层析成像及航磁异常证据.中国地质,2006,33(2):299-308.
    [75]Rao V V, Prasad B R. Structure and evolution of the Cauvery Shear Zone system, Southern Granulite Terrain, India:Evidence from deep seismic and other geophysical studies. Gondwana Research,2006,10(1-2):29-40.
    [76]罗照华,魏阳,辛后田等.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束.岩石学报,2006,22(6):1672-1684.
    [77]Gao S, Kern H, Jin Z, et al. Poisson's ratio of eclogite:Implications for lower crustal delamination of orogens. Science in China(Series D:Earth Sciences),2003,46(9):909-918.
    [78]Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere. Mineralogy and Petrology, 2012,104(3):211-224.
    [79]Kumar S, Pieru T. Petrography and major elements geochemistry of microgranular enclaves and neoproterozoic granitoids of south Khasi, Meghalaya: Evidence of magma mixing and alkali diffusion. Journal of the Geological Society of India,2010,76(5):345-360.
    [80]Pe-Piper G, Moulton B. Magma evolution in the Pliocene-Pleistocene succession of Kos, South Aegean arc (Greece). Lithos,2008,106(1-2):110-124.
    [81]Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002, 61(3-4):237-269.
    [82]Lesher C E. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 1990,344:235-237.
    [83]莫宣学,罗照华,邓晋福等.东昆仑造山带花岗岩及地壳生长.高校地质学报,2007,13(3):403-414.
    [84]Garrido C J, Bodinier J L. Diversity of mafic rocks in the Ronda peridotite:evidence for pervasive melt- rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology,1999,40(5):729-754.
    [85]Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters,1998,164(1-2):387-406.
    [86]邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,(23):2474-2482.
    [87]李荣社,计文化,杨永成等.昆仑山及邻区地质.北京:地质出版社,2008.
    [88]郑健康.东昆仑区域构造的发展演化.青海地质,1992,1(1):15-25.
    [89]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境.青海地质,1998,7(1):27-36.
    [90]Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics,1996,258(1-4):215-231.
    [91]龙晓平,于立社,余能.东昆仑山清水泉镁铁质——超镁铁质岩的地球化学特征.地质通报,2004,23(7):664-669.
    [92]许志琴,杨经绥,李海兵等.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力.中国地质,2006,33(2):221-238.
    [93]许志琴,杨经绥,李海兵.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社,2007.
    [94]许志琴,李海兵,杨经绥.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘,2006,13(4):1-17.
    [95]李德威.青藏高原隆升机制新模式.地球科学——中国地质大学学报,2003,28(6):593-600.
    [96]李德威.青藏高原及邻区三阶段构造演化与成矿演化.地球科学——中国地质大学学报,2008,33(6):723-742.
    [97]陆松年,于海峰,李怀坤等.中央造山带(中、西部)前寒武纪地质.北京:地质出版社,2009.
    [98]陆松年,于海峰,李怀坤等.“中央造山带”早古生代缝合带及构造分区概述.地质通报,2006,25(12):1368-1380.
    [99]姜春发,王宗起,李锦轶.中央造山带开合构造.北京:地质出版社,2000.
    [100]杨经绥,许志琴,宋述光等.青海都兰榴辉岩的发现及对中国中央造山带内高压—— 超高压变质带研究的意义.地质学报,2000,74(2):156-168.
    [101]许志琴,杨经绥,李海兵等.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报,2006,80(12):1793-1806.
    [102]姜春发,杨经绥,冯秉贵等.昆仑开合构造.北京:地质出版社,1992.
    [103]李德威.青藏高原及邻区大地构造单元划分新方案.地学前缘,2003,10(2):291-292.
    [104]古凤宝.东昆仑地质特征及晚古生代——中生代构造演化.青海地质,1994,(1):4-14.
    [105]许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用——以“格尔木-唐古拉山”地质及地球物理综合剖面为例.地质学报,1996,70(3):195-206.
    [106]任二峰,张桂林,邱炜等.东昆南马尔争地区加里东期花岗岩岩石地球化学特征及构造意义.现代地质,2012,26(1):36-44.
    [107]李建放,陈丽娟,任二峰等.扎日加变质核杂岩的确定及地质意义.西北地质,2012,45(1):102-109.
    [108]许长坤.青海成矿地质特征的特殊性及找矿布局探讨.地质与勘探,2011,47(5):782-793.
    [109]秦江锋,赖绍聪,张国伟等.川北九寨沟地区隆康熔结凝灰岩锆石LA-ICP-MS U-Pb年龄——勉略古缝合带西延的证据.地质通报,2008,27(3):345-350.
    [110]裴先治,张国伟,赖绍聪等.西秦岭南缘勉略构造带主要地质特征.地质通报,2002,21(8-9):486-494.
    [111]王秉璋,宋泰忠,王瑾等.东昆仑布喀达坂峰地区发现二叠纪冷温动物群.地质通报,2002,21(7):411-414.
    [112]陈丹玲,刘良,车自成等.祁漫塔格印支期铝质A型花岗岩的确定及初步研究.地球化学,2001,(6):540-546.
    [113]Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints. Tectonophysics,2001, 343(1-2):111-134.
    [114]李海兵,杨经绥.青藏高原北部白垩纪隆升的证据.地学前缘,2004,4(4):345-359.
    [115]刘永江,Franz, Neubauer等.阿尔金断裂带年代学和阿尔金山隆升.地质科学,2007,42(1):134-146.
    [116]李德威,夏义平,徐礼贵.大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例.地学前缘,2009,16(3):110-119.
    [117]李德威.再论大陆构造与动力学.地球科学——中国地质大学学报,1995,20(1):19-26.
    [118]黄汲清.对中国大地构造特点的一些认识并着重讨论地槽褶皱带的多旋回发展问题.地质学报,1979,53(2):99-111.
    [119]张以蔸.青海及邻近地区地质构造演化初探.高原地震,1994,6(3):10.16.
    [120]胡正国,刘继庆,钱壮志等.东昆仑区域成矿规律初步研究.黄金科学技术,1998,6(5-6):60-13.
    [121]王国灿,王青海,简平等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘,2004,11(4):481-490.
    [122]潘裕生,周伟明,许荣华等.昆仑山早古生代地质特征与演化.中国科学(D辑:地球科学),1996,26(4):302-307.
    [123]潘裕生.青藏高原第五缝合带的发现与论证.地球物理学报,1994,37(2):184-192.
    [124]朱云海,Panyuanming,张克信等.东昆仑造山带蛇绿岩矿物学特征及其岩石成因讨论.矿物学报,2000,20(2):128-142.
    [125]朱云海,张克信,陈能松等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义.地球科学——中国地质大学学报,1999,24(2):134-138.
    [126]朱云海,张克信,拜永山.造山带地区花岗岩类构造混杂现象研究——以清水泉地区为例.地质科技情报,1999,19(2):12-15.
    [127]庞存廉,汪效民,黄国辉.根据布格重力异常初探青海主要基底断裂构造.青海地质,1982,(2):62-70.
    [128]王永标,杨浩.东昆仑-阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征.中国科学(D辑:地球科学),2003,33(8):775-780.
    [129]林启祥,邓中林,王国灿.东昆仑马尔争早中二叠世生物礁及其层序地层研究.地球科学——中国地质大学学报,2003,28(6):601-605.
    [130]杨经绥,许志琴,李海兵等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系.岩石矿物学杂志,2005,24(5):369-380.
    [131]王国灿,魏启荣,贾春兴等.关于东昆仑地区前寒武纪地质的几点认识.地质通报,2007,26(8):929-937.
    [132]殷鸿福,张克信.东昆仑造山带的一些特点.地球科学——中国地质大学学报,1997,22(4):3-6.
    [133]王国灿,陈能松,朱云海等.东昆仑东段昆中构造带晚加里东期逆冲型韧性剪切变形的年代学证据及其意义.地质学报,2003,77(3):432.
    [134]潘桂棠,陈智梁,李兴振等.东特提斯地质构造形成演化.北京:地质出版社,1997.
    [135]张国伟,程顺有,郭安林等.秦岭-大别中央造山系南缘勉略古缝合带的再认识.地质通报,2004,23(9):846-853.
    [136]任纪舜.昆仑——秦岭造山系的几个问题.西北地质,2004,37(001):1-5.
    [137]王国灿,贾春兴,朱云海等.阿拉克湖幅地质调查新成果及主要进展.地质通报,2008,23(5-6):549-554.
    [138]袁万明,莫宣学,喻学惠等.东昆仑印支期区域构造背景的花岗岩记录.地质论评,2000,46(2):203-211.
    [139]Liu Y, Genser J, Neubauer F, et al.40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 2005,398(3-4):199-224.
    [140]施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑:地球科学),1998,3(28):263-271.
    [141]Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14Ma ago from a new minimum age for east-west extension. Nature,1995,374:45-92.
    [142]Harrison T M, Copeland P, Kidd W, et al. Raising Tibet. Science,1992, 255(5052):1663-1670.
    [143]Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics,1993,31(4):357-396.
    [144]李吉均,方小敏,潘保田等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391.
    [145]李吉均,方小敏,马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑:地球科学),1996,26(4):316-322.
    [146]施雅风,李吉均,李炳元等.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-20.
    [147]崔之久,高全洲,刘耕年.夷平面,古岩溶与青藏高原隆升.中国科学(D辑:地球科学),1996,26(4):378-385.
    [148]钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑:地球科学),1996,26(4):289-295.
    [149]王成善,丁学林.青藏高原隆升研究新进展综述.地球科学进展,1998,13(6):17-23.
    [150]张建新,孟繁聪,万渝生等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据.地质通报,2003,22(6):397-404.
    [151]Chen N S, Sun M, Wang Q Y, et al. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen:Records of multi-tectonometamorphic events. Chinese Science Bulletin,2007,52(16):2252-2263.
    [152]Chen N S, Sun M, Zhang K X, et al.40Ar-39Ar and U-Pb ages of metadiorite from the East Kunlun Orogenic Belt:Evidence for Early-Paleozoic magmatic zone and excess argon in amphibole minerals. Chinese Science Bulletin,2001,46(04):330-334.
    [153]刘成东.东昆仑造山带东段花岗岩岩浆混合作用.北京:地质出版社,2008.
    [154]常丽华,曹林,高福红.火成岩鉴定手册.北京:地质出版社,2009.
    [155]Roger F, Jolivet M, Malavieille J. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus Geosciences,2008,340(2-3):180-189.
    [156]Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical geology,2008, 247(1):133-153.
    [157]陈安国,马配学,李洪阳等.河北省赤城县小张家口超基性岩体主要特征和时代.岩石学报,1996,12(1):156-162.
    [158]Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications,1989,42(1):313-345.
    [159]Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary science letters,1973,19(2):290-300.
    [160]Schaltegger U, Fanning C M, Gunther D, et al. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY,1999,134(2-3):186-201.
    [161]Bowring S A, Erwin D H, Jin Y G, et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. SCIENCE,1998,280(5366):1039-1045.
    [162]Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu- Hf and U- Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters,2005,240(2):378-400.
    [163]吴福元,李献华,郑永飞等.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220.
    [164]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology,2006,231(1-2):135-158.
    [165]Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom.,2008,23(8):1093-1101.
    [166]Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008, 257(1-2):34-43.
    [167]Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. Journal of Petrology,2010,51(1-2):537-571.
    [168]Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010, 55(15):1535-1546.
    [169]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U- Th- Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter,1995,19(1):1-23.
    [170]Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California,2003.
    [171]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247(1-2):100-118.
    [172]Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock. Science,2001, 293(5530):683-687.
    [173]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997, 148(1-2):243-258.
    [174]Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,1999,63(3-4):533-556.
    [175]Amelin Y, Lee D C, Halliday A N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 2000,64(24):4205-4225.
    [176]Morimoto N. Nomenclature of pyroxenes. Mineralogy and Petrology,1988,39(1):55-76.
    [177]靳是琴,李鸿超.成因矿物学概论(下册):几种常见矿物的成因矿物学.长春:吉林大学出版社,1986.
    [178]Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49(15):1554-1569.
    [179]Chen D, Wang X, Deloule E, et al. Zircon SIMS ages and chemical compositions from Northern Dabie Terrain: Its implication for pyroxenite genesis. Chinese Science Bulletin, 2001,46(12):1047-1050.
    [180]Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science,2005,308(5723):841-844.
    [181]Bea F, Montero P G, Gonzalez-Lodeiro F, et al. Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society,2006,163(5):847.
    [182]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    [183]Baldwin J A, Brown M, Schmitz M D. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology,2007,35(4):295.
    [184]Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry:applications and limitations. Contributions to Mineralogy and Petrology,2008,156(2):197-215.
    [185]高晓英,郑永飞.金红石Zr和锆石Ti含量地质温度计.岩石学报,2011,27(2):417-432.
    [186]Wilde S A, Zhou X, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology,2003,31(9):817-820.
    [187]张国辉,周新华,陈绍海等.汉诺坝玄武岩中麻粒岩和辉石岩捕虏体Sr-Nd-Pb同位素五维空间特征及其地质意义.科学通报,1998,43(20):2218-2222.
    [188]张国辉,周新华,孙敏等.下地壳及壳幔过渡带化学不均一性——河北汉诺坝地区深源捕虏体元素地球化学证据.地球化学,1998,27(2):153-169.
    [189]Chen S, O'Reilly S Y, Zhou X, et al.Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos,2001, 56(4):267-301.
    [190]Fan Q, Zhang H, Sui J, et al. Magma underplating and Hannuoba present crust-mantle transitional zone composition:Xenolith petrological and geochemical evidence. Science in China(Series D:Earth Sciences),2005,48(8):1089-1105.
    [191]Bhattacharyya C. An evaluation of the chemical distinctions between igneous and metamorphic orthopyroxenes. American Mineralogist,1971,56:499-506.
    [192]Rietmeijer F J M. Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes:a re-evaluation. Mineralogical Magazine,1983,47:143-151.
    [193]Heaman L M, Bowins R, Crocket J. The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochimica et Cosmochimica Acta,1990, 54(6):1597-1607.
    [194]Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts. Science,2007,316(5823):412-417.
    [195]罗照华,柯珊,曹永清等.东昆仑印支晚期幔源岩浆活动.地质通报,2002,21(6):292-297.
    [196]Brey G P, Kohler T. Geothermobarometry in four-phase lherzolites Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology,1990,31(6):1353-1378.
    [197]Mercier J C C. Single-pyroxene thermobarometry. Tectonophysics,1980,70(1-2):1-37.
    [198]Wood B J, Banno S. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to mineralogy and petrology,1973, 42(2):109-124.
    [199]Nehru C E, Wyllie P J. Electron microprobe measurement of pyroxenes coexisting with H 2 O-undersaturated liquid in the join CaMgSi 2 O 6-Mg 2 Si 2 O 6-H 2 O at 30 kilobars, with applications to geothermometry. Contributions to Mineralogy and Petrology,1974, 48(3):221-228.
    [200]Lindsley D H, Dixon S A. Diopside-enstatite equilibria at 850 degrees to 1400 degrees C,5 to 35 kb. American Journal of Science,1976,276(10):1285-1301.
    [201]Wells P R A. Pyroxene thermometry in simple and complex systems. Contributions to mineralogy and Petrology,1977,62(2):129-139.
    [202]Bertrand P, Mercier J C C. The mutual solubility of coexisting ortho-and clinopyroxene: toward an absolute geothermometer for the natural system? Earth and Planetary Science Letters,1985,76(1):109-122.
    [203]Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry,2003,53(1):27-62.
    [204]Zhao G, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex:implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science,2002,302(3):191-226.
    [205]Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters,1997,151(3-4):191-203.
    [206]罗照华,邓晋福,曹永清等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质,1999,13(1):51-56.
    [207]Liu C, Mo X, Luo Z, et al. Mixing events between the crust-and mantle-derived magmas in eastern kunlun:Evidence from zircon SHRIMP Ⅱ chronology. Chinese Science Bulletin, 2004,49(8):828-834.
    [208]熊富浩,马昌前,张金阳等.东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年 龄及地质意义.地质通报,2011,30(8):1196-1202.
    [209]熊富浩,马昌前,张金阳等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素|Sr-Nd-Hf同位素地球化学.岩石学报,2011,27(11):3350-3364.
    [210]孙雨,裴先治,丁仨平等.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报,2009,83(7):1000-1010.
    [211]徐海军,金淑燕,郑伯让.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质,2007,21(2):213-225.
    [212]Prior D J, Boyle A P, Brenker F, et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist,1999,84(11-12):1741-1759.
    [213]Xie Y, Wenk H, Matthies S. Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics,2003,370(1-4):269-286.
    [214]Bestmann M, Prior D J, Grasemann B. Characterisation of deformation and flow mechanics around porphyroclasts in a calcite marble ultramylonite by means of EBSD analysis. Tectonophysics,2006,413(3-4):185-200.
    [215]Pennock G M, Drury M R, Spiers C J. The development of subgrain misorientations with strain in dry synthetic NaCl measured using EBSD. Journal of Structural Geology,2005, 27(12):2159-2170.
    [216]Lloyd G E. Grain boundary contact effects during faulting of quartzite:an SEM/EBSD analysis. Journal of Structural Geology,2000,22(11-12):1675-1693.
    [217]Vonlanthen P, Kunze K, Burlini L, et al. Seismic properties of the upper mantle beneath Lanzarote (Canary Islands):Model predictions based on texture measurements by EBSD. Tectonophysics,2006,428(1-4):65-85.
    [218]Halfpenny A, Prior D J, Wheeler J. Electron backscatter diffraction analysis to determine the mechanisms that operated during dynamic recrystallisation of quartz-rich rocks. Journal of Structural Geology,2012,36:2-15.
    [219]Zhang B, Zhang J, Yan S, et al. Detrital quartz and quartz cement in Upper Triassic reservoir sandstones of the Sichuan basin:Characteristics and mechanisms of formation based on cathodoluminescence and electron backscatter diffraction analysis. Sedimentary Geology,2012,267-268(l):104-114.
    [220]Dalbeck P, Cusack M, Dobson P S, et al.Identification and composition of secondary meniscus calcite in fossil coral and the effect on predicted sea surface temperature. Chemical Geology,2011,280(3-4):314-322.
    [221]Kaczmarek M A, Reddy S M, Timms N E. Evolution of zircon deformation mechanisms in a shear zone (Lanzo massif, Western-Alps). Lithos,2011,127(3-4):414-426.
    [222]Mclaren S, Reddy S M. Automated mapping of K-feldspar by electron backscatter diffraction and application to 40Ar/39Ar dating. Journal of Structural Geology,2008, 30(10):1229-1241.
    [223]Prior D J, Wheeler J. Feldspar fabrics in a greenschist facies albite-rich mylonite from electron backscatter diffraction. Tectonophysics,1999,303(1-4):29-49.
    [224]Grellet-Tinner G, Sim C M, Kim D H, et al. Description of the first lithostrotian titanosaur embryo in ovo with Neutron characterization and implications for lithostrotian Aptian migration and dispersion. Gondwana Research,2011,20(2-3):621-629.
    [225]Kleinschrodt R, Duyster J P. HT-deformation of garnet:an EBSD study on granulites from Sri Lanka, India and the Ivrea Zone. Journal of Structural Geology,2002,24(11):1829-1844.
    [226]Puelles P, abalos B, Gil Ibarguchi J I. Transposed high-pressure granulite fabrics (Cabo Ortegal, NW Spain):Implications on the scales of deformation localization. Journal of Structural Geology,2009,31(8):776-790.
    [227]Pollok K, Lloyd G E, Austrheim H, et al. Complex replacement patterns in garnets from Bergen Arcs eclogites:A combined EBSD and analytical TEM study. Chemie der Erde-Geochemistry,2008,68(2):177-191.
    [228]Raimbourg H, Toyoshima T, Harima Y, et al. Grain-size reduction mechanisms and rheological consequences in high-temperature gabbro mylonites of Hidaka, Japan. Earth and Planetary Science Letters,2008,267(3-4):637-653.
    [229]Gibert B, Mainprice D. Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature. Tectonophysics,2009, 465(1-4):150-163.
    [230]Miyajima N, Yagi T, Ichihara M. Dislocation microstructures of MgSiO3 perovskite at a high pressure and temperature condition. Physics of the Earth and Planetary Interiors,2009, 174(1-4):153-158.
    [231]Mussi A, Cordier P, Mainprice D, et al. Transmission electron microscopy characterization of dislocations and slip systems in K-lingunite:Implications for the seismic anisotropy of subducted crust. Physics of the Earth and Planetary Interiors,2010,182(1-2):50-58.
    [232]Muramoto M, Michibayashi K, Ando J, et al. Rheological contrast between garnet and clinopyroxene in the mantle wedge:An example from Higashi-akaishi peridotite mass, SW Japan. Physics of the Earth and Planetary Interiors,2011,184(1-2):14-33.
    [233]Poirier J P, Langenhorst F. TEM study of an analogue of the Earth's inner core ε-Fe. Physics of the Earth and Planetary Interiors,2002,129(3-4):347-358.
    [234]Trepmann C A, Stockhert B. Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate. Journal of Structural Geology,2003, 25(12):2035-2051.
    [235]Amiguet E, Raterron P, Cordier P, et al. Deformation of diopside single crystal at mantle pressure.1:Mechanical data. Physics of the Earth and Planetary Interiors,2009, 177(3-4):122-129.
    [236]Li L, Raterron P, Weidner D, et al. Olivine flow mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors,2003,138(2):113-129.
    [237]Raterron P, Amiguet E, Chen J, et al. Experimental deformation of olivine single crystals at mantle pressures and temperatures. Physics of the Earth and Planetary Interiors,2009, 172(1-2):74-83.
    [238]Demouchy S, Mainprice D, Tommasi A, et al. Forsterite to wadsleyite phase transformation under shear stress and consequences for the Earth's mantle transition zone. Physics of the Earth and Planetary Interiors,2011,184(1-2):91-104.
    [239]Bestmann M, Pennacchioni G, Nielsen S, et al. Deformation and ultrafine dynamic recrystallization of quartz in pseudotachylyte-bearing brittle faults:A matter of a few seconds. Journal of Structural Geology,2012,38:21-38.
    [240]Marassi R, Nobili F. MEASUREMENT METHODS|Structural and Chemical Properties: Transmission Electron Microscopy.2009:769-789.
    [241]胡玲,刘俊来,纪沫等.变形显微构造识别手册.北京:地质出版社,2009.
    [242]徐梦婧,金振民.西藏罗布莎地幔橄榄岩变形显微构造特征及其地质意义.地质通报,2010,29(12):1795-1803.
    [243]刘援朝,倪志耀,蔡学林.塔里木盆地北缘幔源岩石包体特征及岩石圈上地幔流变规律.矿物岩石,2010,30(2):82-86.
    [244]李德威.雅鲁藏布江蛇绿岩中橄榄石的位错构造及上地幔流变状态.现代地质,1993,7(4):428-434.
    [245]许志琴.地壳变形与显微构造.北京:地质出版社,1984.
    [246]Bystricky M, Mackwell S.Creep of dry clinopyroxene aggregates. Journal of Geophysical Research,2001,106(B7):13413-13443.
    [247]Chen S, Hiraga T, Kohlstedt D L. Water weakening of clinopyroxene in the dislocation creep regime. Journal of geophysical research,2006,111(B8):B8203.
    [248]Koll E J J, Blacic J D. Deformation of single-crystal clinopyroxenes:1. Mechanical twinning in diopside and hedenbergite. Journal of Geophysical Research,1982, 87(B5):4019-4034.
    [249]Orzol J, Trepmann C A, Stockhert B, et al. Critical shear stress for mechanical twinning of jadeite—an experimental study. Tectonophysics,2003,372(3-4):135-145.
    [250]王永锋,章军锋,金振民等.全国岩石学与地球动力学研讨会.贵阳:2008
    [251]许丽丽.河北怀安地体型麻粒岩显微组构特征及含水量研究:[硕士学位论文].武汉:中国地质大学,2009
    [252]Zhang J, Green Ii H W, Bozhilov K N. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth and Planetary Science Letters,2006,246(3-4):432-443.
    [253]Mauler A, Godard G, Kunze K. Crystallographic fabrics of omphacite, rutile and quartz in Vendee eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics,2001,342(1-2):81-112.
    [254]Bascou J, Barruol G, Vauchez A, et al. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics,2001,342(1-2):61-80.
    [255]王璐,金振民,章军锋.超高压榴辉岩中绿辉石组构和变形机制研究进展.地质科技情报,2005,24(1):19-24.
    [256]Piepenbreier D, Stockhert B. Plastic flow of omphacite in eclogites at temperatures below 500℃ - implications for interplate coupling in subduction zones. International Journal of Earth Sciences,2001,90(1):197-210.
    [257]焦述强,金振民,金淑燕等.大别超高压榴辉岩中绿辉石的组构与变形.地质学报,1999,73(4):377-378.
    [258]徐海军.超高压榴辉岩和片麻岩的显微构造特征及其韧性剪切带地震波各向异性的关系:以中国大陆科学钻探(CCSD)主孔0~2000m岩心的研究为例:[博士学位论文].武汉:中国地质大学,2008
    [259]章军锋,王永锋,金振民.变形组构引起的超高压榴辉岩地震波速各向异性.中国科学(D辑:地球科学),2007,37(11):1433-1443.
    [260]Zhang J, Green H W. Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. Journal of Metamorphic Geology,2007,25(2):97-115.
    [261]Philippot P, van Roermund H L M. Deformation processes in eclogitic rocks:evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. Journal of Structural Geology,1992,14(8-9):1059-1077.
    [262]Godard G, van Roermund H L M. Deformation-induced clinopyroxene fabrics from eclogites. Journal of Structural Geology,1995,17(10):1425-1443.
    [263]Brenker F E, Prior D J, Muller W F. Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation (LPO). Journal of Structural Geology,2002,24(12):1991-2005.
    [264]Zhang J, Green H W. On the deformation of UHP eclogite:from laboratory to nature. International Geology Review,2007,49(6):487-503.
    [265]Weiss T, Siegesmund S, Rabbel W, et al. Seismic velocities and anisotropy of the lower continental crust:a review. Seismic Exploration of the Deep Continental Crust,1999:97-122.
    [266]Mainprice D. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Computers & Geosciences,1990,16(3):385-393.
    [267]Mainprice D. The estimation of seismic properties of rocks with heterogeneous microstructures using a local cluster model—Preliminary results. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2000,25(2):155-161.
    [268]Collins M D, Brown J M. Elasticity of an upper mantle clinopyroxene. Physics and Chemistry of Minerals,1998,26(1):7-13.
    [269]Webb S L, Jackson I. The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe02)SiO3. European Journal of Mineralogy,1993,5(06):1111-1119.
    [270]Meissner R, Rabbel W, Kern H. Seismic lamination and anisotropy of the lower continental crust. Tectonophysics,2006,416(1):81-99.
    [271]Mainprice D, Popp T, Gueguen Y, et al. Physical Properties of Rocks and Other Geomaterials:A Special Volume to Honour Professor H. Kern. Tectonophysics,2003, (173):483-493.
    [272]Kern H, Jin Z, Gao S, et al. Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China:implications for the seismic structure at the Donghai (CCSD) drilling site. Tectonophysics,2002,354(3-4):315-330.
    [273]Wang Q, Ji S, Salisbury M H, et al. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie- Sulu orogenic belt (China):implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics,2005,398(1):67-99.
    [274]Ji S C, Wang Q, Marcotte D, et al. P-wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. Journal of Geophysical Research,2007,112(B9):B9204.
    [275]Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology,1973,40(3):259-274.
    [276]王瑜.构造热年代学——发展与思考.地学前缘,2004,11(4):435-443.
    [277]朱起煌.裂变径迹热年代学.地球科学进展,1993,8(6):79-80.
    [278]韩以贵,蔡晓荻,赵坤玲等.构造-热年代学和成矿年代学研究进展.地质找矿论丛,2008,23(2):94-99.
    [279]Logan P, Duddy I. An investigation of the thermal history of the Ahnet and Reggane Basins, Central Algeria, and the consequences for hydrocarbon generation and accumulation. SPECIAL PUBLICATION-GEOLOGICAL SOCIETY OF LONDON,1998,132:131-156.
    [280]Armstrong P A. Thermochronometers in sedimentary basins. Reviews in mineralogy and geochemistry,2005,58(1):499-525.
    [281]Gleadow A, Duddy I R, Lovering J F. Fission track analysis:a new tool for the evaluation of thermal histories and hydrocarbon potential. APEA Journal,1983,23(1):93-102.
    [282]Parnell J, Carey P F, Green P, et al. Hydrocarbon migration history, West of Shetland: integrated fluid inclusion and fission track studies. Geological Society of London,1999
    [283]向才富,冯志强,庞雄奇等.松辽盆地晚期热历史及其构造意义:磷灰石裂变径迹(AFT)证据.中国科学(D辑:地球科学),2007,37(8):1024-1031.
    [284]柳益群,冯乔,吴涛等.新疆吐鲁番-哈密盆地的古地温梯度及地质热历史.中国科学(D辑:地球科学),1997,27(5):431-436.
    [285]丁超,陈刚,李振华等.鄂尔多斯盆地东北部构造热演化史的磷灰石裂变径迹分析.现代地质,2011,25(3):581-616.
    [286]Arehart G B, Foland K A, Naeser C W, et al.40 Ar/39 Ar, K/Ar, and fission track geochronology of sediment-hosted disseminated gold deposits at Post-Betze, Carlin Trend, northeastern Nevada. Economic Geology,1993,88(3):622-646.
    [287]Arne D C. Regional thermal history of the Pine Point area, Northwest Territories, Canada, from apatite fission-track analysis. Economic Geology,1991,86(2):428-435.
    [288]Mcinnes B I A, Evans N J, Fu F Q, et al. Application of thermochronology to hydrothermal ore deposits. Reviews in mineralogy and geochemistry,2005,58(1):467-498.
    [289]安艳芬,韩竹军,万景林.川南马边地区新生代抬升过程的裂变径迹年代学研究.中国科学(D辑:地球科学),2008,38(5):555-563.
    [290]田朋飞,杨晓勇,袁万明等.长江中下游成矿带抛刀岭金矿裂变径迹研究及大地构造意义.地质学报,2012,86(3):400-409.
    [291]王建平,翟裕生,刘家军等.矿床变化与保存研究的裂变径迹新途径.地球科学进展,2008,23(4):421-427.
    [292]袁万明,侯增谦,李胜荣等.西藏甲马多金属矿区热历史的裂变径迹证据.中国科学(D辑:地球科学),2001,31(S1):117-121.
    [293]袁万明,王世成,王兰芬.裂变径迹法在洪水河金矿化时代研究中的应用.原子能科学技术,2000,34(S1):57-60.
    [294]袁万明,保增宽,董金泉等.新疆土屋-延东斑岩铜矿区成矿时代与构造活动的裂变径迹分析.中国科学(D辑:地球科学),2007,37(10):1330-1337.
    [295]Tagami T. Zircon fission-track thermochronology and applications to fault studies. Reviews in mineralogy and geochemistry,2005,58(1):95-122.
    [296]Hendriks B, Osmundsen P T, Redfield T F. Normal faulting and block tilting in Lofoten and Vesteralen constrained by Apatite Fission Track data. Tectonophysics,2010, 485(1-4):154-163.
    [297]Viola G, Mancktelow N S, Seward D, et al. The Pejo fault system:An example of multiple tectonic activity in the Italian Eastern Alps. Geological Society of America Bulletin,2003, 115(5):515-532.
    [298]张志诚,龚建业,王晓丰等.阿尔金断裂带东端40Ar/39Ar和裂变径迹定年及其地质意义.岩石学报,2008,24(5):1041-1053.
    [299]向宏发,万景林,韩竹军等.红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年.中国科学(D辑:地球科学),2006,36(11):977-987.
    [300]刘伟,杨进辉,李潮峰.内蒙赤峰地区若干主干断裂带的构造热年代学.岩石学报,2003,19(4):717-728.
    [301]Reiners P W, Brandon M T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci.,2006,34:419-466.
    [302]Sobel E R, Oskin M, Burbank D, et al. Exhumation of basement-cored uplifts:Example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics,2006, 25(2):C2008.
    [303]Spotila J A. Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Reviews in mineralogy and geochemistry,2005, 58(1):449-466.
    [304]Valla P G, Herman F, van der Beek P A, et al. Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history—Ⅰ: Theory and conceptual model. Earth and Planetary Science Letters,2010,295(3):511-522.
    [305]Van Der Beek P A, Valla P G, Braun J, et al. Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history-Ⅱ: Application to the French Western Alps. Earth and Planetary Science Letters,2010, 296(1-2):9-22.
    [306]Vernon A J, Van Der Beek P A, Sinclair H D, et al. Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth and Planetary Science Letters,2008,270(3):316-329.
    [307]丁汝鑫,周祖翼,许长海等.大别山区域低温剥露作用:基于(U-Th)/He和裂变径迹年代学数据的模拟.中国科学(D辑:地球科学),2006,36(8):689-697.
    [308]李丽,陈正乐,祁万修等.准噶尔盆地周缘山脉抬升-剥露过程的FT证据.岩石学报,2008,24(5):1011-1020.
    [3109]刘建辉,张培震,郑德文等.贺兰山晚新生代隆升的剥露特征及其隆升模式.中国科学:地球科学,2010,40(1):50-60.
    [310]唐哲民,郭宪璞,乔秀夫.龙门山中、南段中-新生代隆升史:来自裂变径迹的证据.岩石学报,2011,27(11):3471-3478.
    [311]王宗秀,李涛,张进等.博格达山链新生代抬升过程及意义.中国科学(D辑:地球科学),2008,38(3):312-326.
    [312]许长海,周祖翼,常远等.大巴I山弧形构造带形成与两侧隆起的关系:FT和(U-Th)/He低温热年代约束.中国科学:地球科学,2010,40(12):1684-1696.
    [313]袁万明,杨志强,张招崇等.安徽省黄山山体的隆升与剥露.中国科学:地球科学,2011,41(10):1435-1443.
    [314]赵红格,刘池洋,王锋等.贺兰山隆升时限及其演化.中国科学(D辑:地球科学),2007,37(S1):185-192.
    [315]郑勇,余心起,袁万明等.皖南黄山花岗岩体隆升时代的裂变径迹制约.中国科学:地球科学,2011,41(1):40-51.
    [316]杜治利,王清晨.中新生代天山地区隆升历史的裂变径迹证据.地质学报,2007,81(8):1081-1101.
    [317]李玮,胡健民,渠洪杰.准噶尔盆地周缘造山带裂变径迹研究及其地质意义.地质学报,2010,84(2):171-182.
    [318]王瑜,万景林,李齐等.阿尔金山北段阿克塞—当金山口一带新生代山体抬升和剥蚀的裂变径迹证据.地质学报,2002,76(2):191-198.
    [319]朱文斌,舒良树,万景林等.新疆博格达—哈尔里克山白垩纪以来剥露历史的裂变径迹证据.地质学报,2006,52(1):16-22.
    [320]Reiners P W, Zhou Z, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology. American Journal of Science, 2003,303(6):489-518.
    [321]Bernet M, Zattin M, Garver J I, et al. Steady-state exhumation of the European Alps. Geology,2001,29(1):35.
    [322]De Grave J, Buslov M M. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology. Journal of Asian Earth Sciences,2007,29(2):188-204.
    [323]Garver J I, Brandon M T, Roden-Tice M, et al. Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geological Society, London, Special Publications,1999,154(1):283-304.
    [324]Okay A I, Zattin M, Cavazza W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology,2010,38(1):35-38.
    [325]Van Der Beek P, Van Melle J, Guillot S, et al. Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience,2009,2(5):364-368.
    [326]林秀斌,陈汉林,杨树锋等.阿尔泰造山带富蕴基性麻粒岩折返过程:来自裂变径迹热年代学的限定.岩石学报,2010,26(2):413-420.
    [327]张志勇,朱文斌,舒良树等.新疆阿克苏地区前寒武纪蓝片岩构造—热演化史.岩石学报,2008,24(12):2849-2856.
    [328]Donelick R A, O Sullivan P B, Ketcham R A. Apatite fission-track analysis. Reviews in mineralogy and geochemistry,2005,58(1):49-94.
    [329]Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences,1998,26(1):519-572.
    [330]Tagami T, O Sullivan P B. Fundamentals of fission-track thermochronology. Reviews in mineralogy and geochemistry,2005,58(1):19-47.
    [331]Wagner G A, Van den Haute P. Fission-track dating. Netherlands:Kluwer Academic Publishers,1992.
    [332]曹凯.帕米尔东北缘新生代构造过程的裂变径迹热年代学和构造地貌研究:[博士学位论文].武汉:中国地质大学,2011
    [333]Fleischer R L, Price P B, Walker R M. Nuclear tracks in solids:principles and applications. Berkeley:University of California Press,1975.
    [334]Wagner G A, Reimer G M. Fission track tectonics:the tectonic interpretation of fission track apatite ages. Earth and Planetary Science Letters,1972,14(2):263-268.
    [335]焦若鸿,许长海,张向涛等.锆石裂变径迹(ZFT)年代学:进展与应用.地球科学进展,2011,26(2):171-182.
    [336]Brandon M T, Roden-Tice M K, Garver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin,1998,110(8):985-1009.
    [337]Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology:Isotope Geoscience Section,1987,65(1):1-13.
    [338]杨经绥,王希斌,史仁灯等.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳.中国地质,2004,31(3):225-239.
    [339]兰朝利,李继亮,何顺利.古特提斯多岛洋洋-陆俯冲:木孜塔格蛇绿岩的矿物学证据.地球科学——中国地质大学学报,2007,(3):322-328.
    [340]郭正府,邓晋福,许志琴等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程.现代地质,1998,12(3):51-59.
    [341]李长安,殷鸿福,于庆文.东昆仑山构造隆升与水系演化及其发展趋势.科学通报,1999,44(2):211-214.
    [342]崔之久,伍永秋,刘耕年等.关于“昆仑-黄河运动”.中国科学(D辑:地球科学),1998, 28(1):53-59.
    [343]王国灿,侯光久,张克信等.东昆仑东段中更新世以来的成山作用及其动力转换.地球科学——中国地质大学学报,2002,27(1):4-12.
    [344]王国灿,向树元,王岸等.东昆仑及相邻地区中生代-新生代早期构造过程的热年代学记录.地球科学——中国地质大学学报,2007,32(5):605-614.
    [345]刘永江,叶慧文,葛肖虹等.阿尔金断裂变形岩激光微区40Ar/39Ar年龄.科学通报,2000,45(19):2101-2104.
    [346]Mock C, Arnaud N O, Cantagrel J M. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary Science Letters,1999,171(1):107-122.
    [347]王国灿,向树元,Garver John I等.东昆仑东段哈拉郭勒—哈图一带中生代的岩石隆升剥露——锆石和磷灰石裂变径迹年代学证据.地球科学——中国地质大学学报,2003,28(6):645-652.
    [348]袁万明,张雪亭,董金泉等.东昆仑隆升作用的裂变径迹研究.原子能科学技术,2004,38(2):166-168.
    [349]袁万明,董金泉,王世成等.东昆仑南部带磷灰石裂变径迹分析的地质意义.核技术,2005,28(9):707-711.
    [350]袁万明,王世成,王兰芬.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据.地球学报,2000,21(4):389-395.
    [351]王岸,王国灿,张克信等.东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据.地球科学——中国地质大学学报,2010,35(5):737-746.
    [352]王岸,王国灿,谢德凡等.东昆仑山小南川岩体裂变径迹年代与中新世晚期以来的构造地貌演化.地球科学——中国地质大学学报,2007,32(1):51-58.
    [353]Yuan W M, Zhang X T, Dong J Q, et al. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China. Radiation MeasurementsProceedings of the 21st International Conference on Nuclear Tracks in Solids, 2003,36(1-6):357-362.
    [354]Yuan W, Dong J, Shicheng W, et al. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences,2006,27(6):847-856.
    [355]陈宣华,Michael, Mcrivette W等.东昆仑造山带多期隆升历史的地质热年代学证据.地质通报,2011,31(11):1647-1660.
    [356]拜永山,任二峰,范桂兰等.青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据.地质通报,2008,27(07):1044-1048.
    [357]Kasuya M, Naeser C W. The effect of [alpha]-damage on fission-track annealing in zircon. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1988,14(4):477-480.
    [358]Garver J I, Kamp P J J. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts:application to the Southern Alps, New Zealand. Tectonophysics, 2002,349(1-4):203-219.
    [359]Garver J I, Reiners P W, Walker L J, et al. Implications for timing of Andean uplift from thermal resetting of radiation- damaged zircon in the Cordillera Huayhuash, Northern Peru. The Journal of geology,2005,113(2):117-138.
    [360]Rahn M K, Brandon M T, Batt G E, et al. A zero-damage model for fission-track annealing in zircon. American Mineralogist,2004,89(4):473-484.
    [361]Bernet M, Garver J I. Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry,2005,58(1):205-237.
    [362]Green P F. On the thermo-tectonic evolution of Northern England:evidence from fission track analysis. Geological Magazine,1986,123(6):493-506.
    [363]Gleadow A, Duddy I R, Green P F, et al. Confined fission track lengths in apatite:a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 1986,94(4):405-415.
    [364]Hurford A J, Green P F. A users' guide to fission track dating calibration. Earth and Planetary Science Letters,1982,59(2):343-354.
    [365]Green P F. A new look at statistics in fission-track dating. Nuclear tracks,1981, 5(1):77-86.
    [366]Galbraith R F. On statistical models for fission track counts. Mathematical Geology,1981, 13(6):471-478.
    [367]Galbraith R F, Laslett G M. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements,1993,21(4):459-470.
    [368]Burchart J. Evaluation of uncertainties in fission-track dating: some statistical and geochemical problems. Nuclear Tracks,1981,5(1-2):87-92.
    [369]郑德文,张培震,万景林等.碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法.地震地质,2000,22(B12):25-36.
    [370]Galbraith R F, Green P F. Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1990,17(3):197-206.
    [371]Brandon M T. Decomposition of mixed grain age distributions using Binomfit. On Track, 2002,24(8):13-18.
    [372]Dunkl I. TRACKKEY:a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences,2002,28(1):3-12.
    [373]Vermeesch P. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements,2009,44(4):409-410.
    [374]Fleischer R L, Hart H R. Fission track dating: techniques and problems. Calibration of Hominoid Evolution,1972:135-170.
    [375]Hurford A J, Green P F. The zeta age calibration of fission-track dating. Chemical Geology, 1983,41:285-317.
    [376]汤云晖,袁万明,韩春明等.裂变径迹长度测量的标准化研究.岩石矿物学杂志, 2004,23(4):346-350.
    [377]冉启贵,陈发景.镜质体反射率的热史反演.石油勘探与开发,1998,25(6):29-32.
    [378]张志诚,王雪松.裂变径迹定年资料应用中的问题及其地质意义.北京大学学报(自然科学版),2004,40(6):898-905.
    [379]Crowley K D, Cameron M, Schaefer R L. Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta,1991,55(5):1449-1465.
    [380]Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics;Ⅲ, Extrapolation to geological time scales. American Mineralogist,1999, 84(9):1235-1255.
    [381]Ketcham R A, Donelick R A, Donelick M B. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research,2000,2(1):1-32.
    [382]Deeken A, Sobel E R, Coutand Ⅰ, et al. Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology:From early Cretaceous extension to middle Miocene shortening. Tectonics,2006,25(6):C6003.
    [383]Fellin M G, Picotti V, Zattin M. Neogene to Quaternary rifting and inversion in Corsica: Retreat and collision in the western Mediterranean. Tectonics,2005,24(1):C1011.
    [384]Glorie S. Meso-Cenozoic tectonics of the Central Kyrgyz Tien Shan (Central Asia), based on apatite fission track thermochronology. Geologica Belgica,2008,11(3-4):175-177.
    [385]O'Sullivan P B, Evenchick C A, Osadetz K G, et al. Apatite fission track data for seventeen rock samples from the Bowser and Sustut basins, British Columbia: 2009
    [386]Robert X, Van der Beek P, Mugnier J L, et al. Thermochronological analysis of Siwalik sediments from the Karnali River section (western Nepal):Constraints on the kinematics of the frontal Himalayan prism.2006
    [387]Ketcham R A, Carter A C, Donelick R A, et al. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist,2007,92:789-798.
    [388]Ketcham R A, Carter A, Donelick R A, et al. Improved modeling of fission-track annealing in apatite. American Mineralogist,2007,92(5-6):799-810.
    [389]Ketcham R A. The role of crystallographic angle in characterizing and modeling apatite fission-track length data. Radiation measurements,2005,39(6):595-601.
    [390]Barbarand J, Hurford A J, Carter A. Variation in apatite fission track length measurement: implications for thermal history modeling. Chemical Geology (Isotope Geoscience Section), 2003,198:77-106.
    [391]Barbarand J, Carter A, Wood Ⅰ, et al. Compositional and structural control of fission-track annealing in apatite. Chemical Geology,2003,198:107-137.
    [392]Ketcham R A. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry,2005,58(1):275-314.
    [393]李炳元,顾国安,李树德等.青海可可西里地区自然环境.北京:科学出版社,1996.
    [394]Menand T. Physical controls and depth of emplacement of igneous bodies:A review. Tectonophysics,2011,500(1-4):11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700