基于高通量筛选技术的抗肺腺癌新天然小分子化合物筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是世界上最常见的恶性肿瘤之一,其死亡率高居肿瘤死亡之首,近年来其发病率及死亡率均呈明显上升趋势。2002年世界肺癌新发病例1,350,000人,死亡1,180,000人,肺癌占新发恶性肿瘤发病总数的12.4%。在我国的大中城市中,肺癌的死亡率更高居恶性肿瘤首位。2005年我国约有540,000人患肺癌,其中约480,000人死亡。肺癌中腺癌的发病率上升迅速,在美国、加拿大及北欧等国家肺腺癌已超过肺癌总数的一半,在亚裔肺癌患者中,肺腺癌也正将超过鳞癌成为最常见的肺癌类型。尽管手术、放化疗等肺癌传统治疗手段不断发展,但由于70%的肺癌患者在确诊时都属中晚期,往往失去根治性手术机会,而作为肺癌非手术治疗主要手段的化疗,虽然不断改进方案,但是毒副作用大,化疗耐药性等难题仍制约其临床应用及疗效,总体临床疗效令人失望,肺癌的生存期并未得到提高。在美国,其5年生存期不到15%;在发展中国家更低于9%。寻找有效的、毒副作用小的抗癌药物是肺癌治疗的关键。
     中草药以其毒副作用较小、药效可靠等优势,成为抗癌新药筛选比较理想的天然产物资源。但由于中药成分复杂、作用机制不明确,大大限制了其在肿瘤治疗方面的开发和利用。高通量筛选是目前药物发现的主流方法,筛选库是其重要的组成部分。与目前常见的组合化合物药物库和药物衍生物药物库相比,天然化合物药库具有数量庞大、结构多样等巨大优势。中药作为筛选样品库更具有应用历史悠久、药效确切等巨大优势。但是,由于化合物分离工作量大,耗时长,目前并没有规模足够大的筛选样品库。因此建立适合高通量筛选的中药样品库,从中发现新的抗癌活性化合物是目前肿瘤药物筛选的新思路。
     本研究利用制备型HPLC对500种常见中草药按亲水性排列,连续收集小分子组分建立中药样品组分库。每种草药收集80个组分,建立了含40000个中草药组分的天然小分子样品库。在此样品库基础上,通过细胞增殖抑制测定,针对人肺腺癌A549细胞系进行高通量筛选。以改良MTT法检测细胞活性,在酶标仪540nm波长下测定吸光度A540,计算细胞生长抑制率,抑制率大于50%的药物作为阳性结果。选取脾细胞毒性较小的组分经分析型液相色谱分离纯化后得到活性化合物,结合质谱及核磁技术鉴定化合物结构,确定抗癌活性的单体化合物。在此基础上,进一步检测活性化合物对A549细胞及人外周血白细胞的50%增殖抑制率(IC50)。通过Hoechst33258染色观察活性化合物处理后的细胞形态学变化;通过流式细胞仪分析活性化合物对细胞周期的影响。
     本研究结果表明,从500种常见中药成功得到40,000个组分,每个组分所含有的主要成分(可见峰)<20,从而构建成中药高通量筛选组分库。以肺腺癌A549细胞系为药物筛选的细胞模型,在建库的200种中药的16000个组分进行了高通量筛选,其中8种中药共24个组分能够显著抑制肺腺癌细胞A549增殖。这些中药是:远志、益智仁、补骨脂、草薢、藕节、浮小麦、急性子、卷柏。小鼠脾细胞毒性试验发现,急性子及卷柏活性组分处理24小时后的小鼠死亡脾细胞比对照组略有增加,总死亡细胞数目较少,提示其毒副作用较小,因此选择急性子及卷柏进行进一步活性化合物分离。利用分析型HPLC确定了急性子的活性组分E3对应的保留时间13.75分钟,并纯化得到对应的化合物。经过质谱和核磁共振技术分析,急性子的活性单体化合物为槲皮素。槲皮素对A549肺腺癌细胞24小时的50%增殖抑制率(IC50)为10.8μmol/l。这些结果证明了本天然产物高通量筛选体系的可行性及有效性。同样方法,利用分析型HPLC确定了卷柏活性组分G8对应的保留时间为25.80分钟,纯化得到对应的活性化合物,经过质谱和核磁共振技术分析后发现,此化合物为首次从卷柏中分离得到的新的活性单体化合物ALA(考虑今后的新药开发及专利申请,故暂称ALA),其对A549肺癌细胞24小时的IC50为10.2μmol/l。在此基础上,本研究选择首次从卷柏中发现的活性化合物ALA进行进一步药理实验。MTT检测ALA对人的外周血总白细胞毒性的IC50为62.5μmol/l,表明ALA对外周血白细胞毒性作用较小。Hoechst33258染色荧光显微镜下可见ALA处理24小时后的A549细胞内出现明显的高亮蓝色的典型凋亡小体,细胞核呈现染色质凝集,细胞皱缩,细胞核固缩、碎裂、体积变小,荧光强度增高的细胞凋亡特点。通过流式细胞仪分析表明ALA处理的A549细胞周期受到调控,G2/M期细胞相对增多,肿瘤细胞出现凋亡。另外,对其他阳性中药组分的活性单体化合物分离和作用机制的研究工作正在进行中。
     综上所述,本研究1.成功建立了适用于高通量筛选的中药样品组分库;2.从中药组分库中筛选出抑制人肺腺癌A549细胞增殖的8种中药的24个组分;3.成功从中药急性子中分离得到活性单体化合物槲皮素,证明了目前的HTS系统的可行性及有效性;4.首次从中药卷柏中分离出活性单体化合物ALA;5.ALA可阻滞A549细胞于G2/M期,从而使肿瘤细胞增殖减缓;6.ALA可诱导肺腺癌A549细胞凋亡;7.ALA具有毒性小,抑癌活性强的特点,为肺腺癌的治疗提供了新的途径;8.其他6种阳性中药组分的活性单体化合物分离及机制的研究工作正在进行中。
Lung cancer is one of the most cancers and the leading cause of cancer death in the world. Recently, its incidence and mortality showed a clear upward trend. In 2002, there were 1,350,000 new cases of lung cancer in the world, and 1,180,000 people were dead. In China, lung cancer has the highest mortality rate among all the cancers in the city dwellers. In 2005, there were 540,000 new cases of lung cancer in China, and 480,000 people were dead. The major patients of lung cancer are non-small cell lung cancer (NSCLC), which comprises approximately 80% of lung cancer patients. In recent years, the incidence of lung adenocarcinoma, a subtype of NSCLC, is increasing and becoming the most subtype of lung cancer in Asian patients. Such as surgery, radiotherapy and chemotherapy, the conventional treatment of lung cancer have provided some new avenues for therapeutic strategies. However, certain patients are still plagued by rapid disease recurrence and progression. Particularly, lung adenocarcinoma is often at the stages beyond surgical remedy and resistant to chemotherapy and radiation. There has been no significant improvement in the overall survival. The 5-year survival rate of lung cancer is less than 15% in U.S.A and 9% in developing countries. The chemotherapeutic benefits and the prognosis of lung adenocarcinoma remain to be promoted. Thus, the development of new anti-lung adenocarcinoma drugs becomes more important and urgent issue.
     Traditional Chinese medicine (TCM) is a kind of natural products, and generally low in cost, rich in resource. In clinical practice, TCM has been prescribed for many diseases over centuries and show very little toxicity or side effects. Recently, TCM began to be matched by increasing scientific attention as an important resource of screening new drug worldwide. However, despite the vast interest and increasing demand, the complexity of TCM and the lack of credible data for its mechanism are the main obstacles toward the treatment for many diseases, such as cancer. High throughput screening (HTS) is the major technique of drug discovery. Drug library is the important part of HTS. Compared with combinatorial chemistry compound and derivatives of proved drugs, the natural compound library shows many great advantages such as plentiful and structural diversity. However, there is no such an ideal herbal-based natural compound library that has good therapeutic coverage and is suitable for HTS. It is necessary to create such sample database of TCM and find anti-cancer drugs from it.
     Our strategy is to build up a TCM compound fraction library from a collection of most frequently used 500 TCM according hydrophilic. The library consisted of 40,000 fractions from Chinese traditional medicines. For construction of this library, HPLC was used for the separation of the TCM fractions. We select lung adenocarcinoma A549 cell line as the model to screen the potential anti-tumor small molecules. We performed our HTS with modified MTT assay, and the absorbance at 540nm (A540) was read on a spectrophotometric plate reader. The proportion of surviving cells and he inhibition rate were calculated. The IC50 values were obtained according the inhibition rate. The fractions whose inhibition rate was above 50% was defined as the positive. Preparative and analytical HPLC were used for the separation and purification of active compounds. Mass spectrometer (MS) and nuclear magnetic resonance (NMR) techniques were selected to determine the chemical structure of anti-cancer active compound. The toxicity of active compound was detected by MTT method on A549 cells and human peripheral blood leukocytes. Hoechst33258 staining was used to find out the morphological changes after drug treatment. The effect of active compound on the cell cycle was analyzed by flow cytometry.
     The results indicated the TCM compound fraction library including 40,000 fractions was successfully built up, in which each fraction contained less than 20 main components. On the basis of this library, we screened 16,000 fractions from 200 TCM and found 24 fractions of 8 TCM with the ability of inhibiting to the growth of A549 cells. These herbs are:Thinleaf Milkwort Root, Sharpleaf Galangal Fruit, Malaytea Scurfpea Fruit. Sevenlobed Yam Rhizome, Lotus Rhizome Node, Blighted Wheat, Garden Balsam Seed and Selaginella tamariscina. The toxicity test of these drug fractions on the mouse spleen cells showed that Garden Balsam Seed and Selaginella tamariscina are less toxic to spleen cells. So far, Garden Balsam Seed and Selaginella tamariscina were chose for the separation of the active compound. The analytical HPLC showed that the retention time of the active fraction E3 in Garden Balsam Seed is 13.75min. MS and NMR technology identified that the active compound is quercetin. The IC50 value of quercetin against A549 cells is 10.8umol/l. By the same method, the analytical HPLC showed that the retention time of the active fraction G8 in Selaginella tamariscina is 25.80min. MS and NMR technology identified that the active compound is ALA. The IC50 value of ALA against A549 cells is 10.2umol/l. Many articles have described the anti-cancer mechanism of quercetin, but less about ALA. So far, we further studied the anti-cancer mechanism of ALA by morphological observation and flow cytometry. We found that the IC50 value of ALA against human peripheral blood leukocytes is 62.5umol/l. This result indicated ALA has little toxic effect on peripheral blood leukocytes. By Hoechst staining, we found apparent apoptosis bodies in treatment group. At the same time, flow cytometry showed that the cell cycle of A549 treated by ALA is blocked in G2/M phase. These results suggested that ALA can induce apoptosis for A549 cell. In addition, the separation and identification of other 6 active compounds were in progress.
     Taken together, the present study demonstrates that 1. The TCM compound fraction library for HTS was successfully built up.2.24 active anti-cancer ingredients of 8 TCM were found from our library; 3. The successful separation of quercetin from Garden Balsam Seed proved that our HTS system is feasible and credible:4. The anti-cancer active compound ALA was separated from Selaginella tamariscina for the first time; 5. ALA can inhibit A549 cells course at G2/M phase, then slow down cells proliferation.6. ALA can induce the apoptosis of A549 cells; 7. Because ALA has the traits of low toxicity and strong inhibition, it will provide a new therapy for the lung adenocarcinoma; 8. The separation of other 6 active compounds is in progress.
引文
[1]Parkin DM,Bray F,Ferlay J, et al. Globe cancer statistic 2002[J]. CA Cancer J Clin.2005;55(2):74-108.
    [2]陈万青,张思维,邹小农.中国肺癌发病死亡的估计和流行趋势研究[J].中国肺癌杂志,2010;13(5):488-493.
    [3]杨玲,李连弟,陈育德,等.中国肺癌死亡趋势分析及发病、死亡的估计与预测[J].中国肺癌杂志,,2005;8(4):274-278.
    [4]陈万青,张思维,李连弟,等.中国部分市县1998-2002年肺癌的发病与死亡[J].中国肿瘤,2006;15(9):570-574.
    [5]蔡琳,Binh Yang,Donald M, Parkin,等.亚太若干地区恶性肿瘤流行趋势分析[J].肿瘤,2004,24(5):422-426.
    [6]Mathur KC. Epidemiology of lung cancer in India[J].Lung Cancer,2005; 49(Suppl2)BS385(25).
    [7]Sanchez de Cos J,Miravet L, Nunez A,et al.Lung Cancer (LC) in Spain. Last epidemiological trends concerning age, gender, smoking prevalence and histological types[J].Lung Cancer.2005;49 (Supp12) Bs197(P2309).
    [8]Kazakevich D,Vdovichenko V,Zaborovsky G. Epidemiology of lung cancer in Belarus[J]. Lung Cancer,2005;49(Suppl2)BS384 (P223).
    [9]胡雁.青岛市大气污染对人体健康经济损失评估[J].中国公共卫生,2003;19(8):940-941.
    [10]Abbey,Nishino,McDonnel,et al.Long-terminhalableparticls and other air pollutants related to mortality in nonsmokers[J]. Am J Respir Crit Care Med,1999,159;373-382.
    [11]Anthony J,Alberg,Jean G,et al. Epidemiology of Lung Cancer:ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition)[J].Chest,2007,132(3 Suppl);29S-55S.
    [12]Matakidou A,Eisen T,Bridle H,et al. A case-control study of familial lung cancer risk in UK women[J].Lung Cancer.2005.49(Suppl2)BS193(P2297).
    [13]Loic Le Marchand, Lakshmi Sivaraman.Lisa Pierce.et al.Associations of CYP1A1,GSTMl,and CYP2E1 polymorphisms with lung cancer suggest cell type specifities tobacco carcinogens [J]. Cancer Res,1998,58(21);4858-4863.
    [14]Agneta Rannug,Anna-Karin Alexandrie.Irene Persson,et al. Genetic Polymophism of Cytochromes P4501A1,2D6 and 2E1 regulation and Toxicological Significane [J]. J Occupational Enviroment Med,1995,37(1); 25-36.
    [15]Persson I.Johansson I,Bergling H,et al. Genetic polmorphism of cytochrome P4502E1 in a Swedish population [J]. Relationship to incidence of lung cancer. FEBS lett,1993,319:207-211.
    [16]李雪飞,张颉,周彩存.硫酸基转移酶1E1基因单核苷酸多态性联合吸烟与肺癌易感性的关系[J].肿瘤,2010.30(11);934-938.
    [17]Liang G.Miao X.Zhou Y, et al. A functional polymorphism in the SULT1A1 gene (G638A) is associated with risk of lung cancer in relation to tobacco smoking[J]. Carcinogenosis.2004.25(5); 773-778.
    [18]Arslan S.Silig Y.Pinarbasi H. An investigation of the relation between SULT1A1 Arg(213)His polymorphis and lung cancer susceptibility in a Turkish population[J]. Cell Biochem Funct.2009.27(4):211-215.
    [19]Zhao YH. Ma TH, Yang ZG.et al, Association of matrix metalloproteinase-9 and p53 gene polymorphisms with genetic susceptibility to no-small-cell lung cancer[J].Chem.Res.Chinese unviersities.2011,27(1).80-82.
    [20]刘复生,刘彤华.肿瘤病理学[M].北京:北京医科大学中国协和医科大学联合出版社,1997.
    [21]Travis W D.Travis L B.Devesa S S. Lung Cancer[J].Cancer 1995,75;191-202.
    [22]Kung I T M.So K F,Lam T H. Lung cancer in Hongkong Chinese:Mortality and histological types.1973-1982[J].Br J Cancer 1984.50;381-388.
    [23]Lam K Y.Fu K H.Wong M P.et al. Significant changes in the diatribution of histologic type of lung cancer in Hong Kong[J].Pathology.1993.25:103-105.
    [24]Ikeda T,Kurita Y,Inutsuka S,et al. The changing pattern of lung cancer by histological type. A review of 1151 cases from a university hospital in Japan,1970-1989[J].Lung cancer,1991,7;157-164.
    [25]Watanabe S, Tsugane S,Arimoto H,et al. Trend of lung cancers in the National Cancer Center of Japan and comparison with that of Japanese Pathological Autopsy Records[J].Jpn J Cancer Res (Gann) 1987,78;460-466.
    [26]Pfister DG,Johnson DH,Azzoli,et al. American Society of Clinical Oncology treatment of unresectable non-small lung cancer guideline:update 2003[J].J Clin Oncol,2004,22(2); 330-353.
    [27]Mok TS.Wu YL,Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma[J].N Engl J Med,2009;361(10);947-957.
    [28]Rosell R.Moran T,Queralt C,et al. Screening for epidermal growth factor receptor mutations in lung cancer[J]. N Engl J Med,2009,361(10);958-967.
    [29]Mitsudomi T.Morita S,Yatabe Y.et al,Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405):an open label, randomised phase 3 trial.
    [30]Paez JG,Janne PA,Lee JC,et al, EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J].Science,2004,304 (5676) 1497-1500.
    [31]Asahina H.Yamazaki K.Kinoshita I,et al. A phase Ⅱ trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations[J].Br J Cancer,2006,95(8);998-1044.
    [32]Hsiao W L.Liu L, The role of traditional Chinese herbal medicines in cancer therapy-from TCM theory to mechanistic insights[J], Planta Med.2010, 76(11);1118-1131.
    [33]李琳,康慧琦,中药坚定发展史上的本草著作[J],长春中医药大学学报,2009,25(4);637.
    [34]Miller EL, The penicillins:A review and update[J]J Midwifery Womens Health[J].2002,47(6);426-434.
    [35]Graeme KA,Pollack CV Jr. Antibiotic use in the emergency department. Ⅱ. The aminoglycosides, macrolides, tetracyclines, sulfa drugs, and urinary antiseptics [J],J (Emerg Med.1996,14(3);361-371.
    [36]Lee SW Chung SS, A review of the effects of vitamins and other dietary supplements on seizure activity[J].Epilepsy and Behavior,2010,18(3);139-150.
    [37]Lavastre O.Bonnette F,Gallard L, Parallel and combinatorial approaches for synthesis of ligands[J], Curr Opin Chem Bio.2004.8(3);311-318.
    [38]Ortholand J.Ganesan A, Natural products and combinatirial chemistry:back to the future[J] Curr Opin Chem Bio.2004,8(3);271-280.
    [39]Clardy J.Walsh C, Lessons from natural molecules[J]. Nature.2004, 432(7019);829-837.
    [40]Clardy J, Using genomics to deliver natural products from symbiotic bacteria[J], Genome Biol.2005.6(9);232.
    [41]Harvey A, Strategies for discovering drugs from previously unexplored natural products [J].Drug Discovery Today.2000:5(7):294-300.
    [42]Newman DJ.Cragg GM.Snader KM, Natural products as sources of new drug over the period 1981-2002[J].J Nat Prod.2003,66(7):1022-1037.
    [43]Cragg GM,Newman DJ.Snader KM, Natural products in drug discovery and development[J] J Nat Prod,1997.60;52-60.
    [44]Van Der Heijden R,Jacobs DI,Snoeijer W,et al, The Cathaaranthus alkaoids: pharmacognosy and biotechnology [J],Curr Med Chem,2004,11(5);607-628.
    [45]Okouneva T,Hill BT,Wilson L.et al. The effects of vinflunine, vinoreline, and vinblastine on centromere dynamics[J],Mol Cancer Ther,2003,2(5);427-436.
    [46]Schiff PB.Fant J.Horwitz SB, Promotion of microtubule assembly in vitro by taxol[J].Nature.1979.277(5698);665-667.
    [47]Williams SD.Birch R.Einhorn LH.et al, Treatment of disseminated germ-cell tumors with cisplatin. bleomycin. and either vinblastine or etoposide[J], New Engl J Med.1987.316;1435-1440.
    [48]Stahelin H, Acitivy of a new glycosidinc lignan derivative (VP-16-213) related to podophyllotoxin in experimental tumors[J], Eur J Cancer,1973,9;215-221.
    [49]Balunas MJ,Kinghorn AD, Drug discovery from medicinalplants[J],Life Sciences,2005,78(5):431-441.
    [50]Gullo VP,Hughes DE, Exploiting new approaches for natural product drug discovery in the biotechnology industry [J].Drug Discovery Today: Technologies,2005,2(3);281-286.
    [51]Hsiang YH,Hertzberg R,Hecht S,et,al, Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I [J],J Biol Chem,1985,260(27); 14873-14878.
    [52]Peng CC,Chen KC,Peng RY,et.al, Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells[J],J Ethnopharmacol,2007, 109(1),93-103.
    [53]Zhang DY,Wu J,Ye F.et al, Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by Scutellaria baicalensis[J],Cancer Res,2003,63(14) 4037-4043.
    [54]Lin SY,Liu JD,Chang HC.et al, Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis[J] J Cell Biochem.2002,84(3),532-544.
    [55]Broach JR,Thormer J, High-throughput screening for drug discovery [J],Nature, 1996,384(6604 Suppl);14-16.
    [56]Millar DP, Time-resolved fluorescence spectroscopy[J],Curr Opin Struct Biol,1996,6(5);637-642.
    [57]Pope AJ,Haupts UM,Moore KJ, Homogeneous fluorescen readouts for miniaturized high-throughput screening:theory and practice [J],Drug Discov Today,1999,4,350-362.
    [58]Kelley BP,Lunn MR,Root DE,et al, A flexible data analysis for chemical genetic screens[J],Chem Biol.2004,11(11);1495-1503.
    [59]Harper G,Bravi GS,Pickett SD,et al, The reduced graph descriptor in virtural screening and data-driven clustering of high-throughput screening data[J],J Chem Inf Comut Sci,2004,44(6);2145-2156.
    [60]Giiner O,Clement O,Kurogi Y,Pharmacophore modeling and three dimensional database searching for drug design using catalyst:recent advances[J],Curr Med Chem,2004,11 (22):2991-3005.
    [61]Cox B,Denyer JC,Binnie A,et al, Application of high-throughput screening techniques to drug discovery[J],Prog Med Chem,2007 (37); 83-133.
    [62]Wilkinson AP,Gee JM,Dupont MS,et al, Hydrolysis by lactase phlorizin hydrolase is the first step in the uptake of daidzein glucosides by small intestine in vitro[J],Xenobiotica,2003,33(3);255-264.
    [63]Yasgar A,Shinn P,Jadhav A,et al, Compound Management for Quantitative High-Throughput Screening[J],JALA Charlottesv Va,2008,13(2);79-89.
    [64]Sundberg SA, High-throughput and ultra-high-throughput screening:solution-and cell-based approaches[J],Curr Opin Biotechnol,2000,11(1);47-53.
    [65]Ciambrone GJ.Liu VF,Lin DC,et al, Cellular dielectric spectroscopy:a powerful new approach to label-free cellular analysis[J],J Biomol Screen,2004, 9(6);467-480.
    [66]Roddy TP,Horvath CR,Stout SJ,et al, Mass spectrometric techniques for label-free high-throughput screening in drug discovey[J],Anal Chem,2007, 79(21); 8207-8213.
    [67]Quercia AK,LaMarr WA,Myung J,et al, High-throughput screening by mass spectrometry:comparison with the scintillation proximity assay with a focused-file screen of AKT1/PKB alpha[J]J Biomol Screen,2007,12(4); 473-480.
    [68]Dove A, Drug screening-beyound the bottleneck[J],Nat Biotechnol,1999, 17(9);859-863.
    [69]Stanton DT,Morris TW,Roychoudhury S,et al, Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery[J],J Chem Inf Comput Sci,1999,39(1);21-27.
    [70]刘雄,高建德,赵磊.太白杜鹃的化学成分研究[J].中草药,2009,40(11):1723-1725.
    [71]徐国钧等.中国药材学(上).中国医药科技出版社[M),1996,第一版:1272
    [72]国家药典委员会编.中华人民共和国药典.化学工业出版社,2005,一部:186
    [73]南京药学院中草药学编写组编.中草药学(中册).江苏人民出版社,1976,第一版:634.
    [74]秦永祺等.急性子脂溶性成分的研究.中草药,1986,9:47
    [75]Shoji N,Umeyama A,Saitou N,et al,Hosenkosides A, B, C, D, and E, novel baccharane glycosides from the seeds of Impatiens balsamina[J], Tetrahedron,50(17);4973-4986.
    [76]Shoji N,Umeyama A,Saitou N.et al, Hosenkosides F, G, H, I, J, and K, novel baccharane glycosides from the seeds of Impatiens balsamina[J],Chem Pharm Bull(Tokyo),1994,42(7);1422-1426.
    [77]Shoji N,Umeyama A, Yoshikawa K,et al, Baccharane glycosides from seeds of Impatiens balsamina[J],Phytochemistry,199437(5); 1337-1341.
    [78]陈明霞,王相立,张玉杰.中药急性子油类成分分析及毒性考察[J],中国中药杂志,2006,6(31);928-929.
    [79]王发春,凤仙花籽油脂肪酸组分分析[J],中国油脂,2008,33(6);78-79.
    [80]田利焕急性子化学成分研究及苗体氯化的研究[D],郑州大学硕士学位论文,2007.
    [81]Kuhlmann MK,Burkhand G.Horsch E,et al, Inhibition of oxidant-induced lipid peroxidation in cultured renal tubular epithelial cells (LIC-PKI) by quercetin[J], Free Radic Res,1998,29(5);451-460.
    [82]Mnsonda CA,Chipman JK, Quercetin inhibits hydrogen peroxide (H2O2) induced NF-kappa B DNA damage in HepG2 cell[J],Carcinogenesis,1998,19(9); 1583-1591.
    [83]Rodgers EH,Grant MH, The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells[J].Chem Biol Interact,1998,116(3);213-228.
    [84]Frank J.Budek A,Lundh T.et al, Dietary flavonoids with a catechol structure increase alpha-tocopherol in rats and protect the vitamin from oxidation in vitro[J],J Lipid Res.2006,47(12);2718-2725.
    [85]Maggiolini M,Vivacqua A,Fasanella G.et al, The G protein-coupled receptor GPR30 mediated c-fos up-regulation by 17-estradiol and phytoestrogens in breast cancer cells[J],J Biol Chem,2004,279(6);27008-27016.
    [86]Yoshizumi M.Tsuchiya K.Kirima K.et al, Quercetin inhibits Shc-and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin Ⅱ in cultured rat aortic smooth muscle cells[J],Mol Pharmacol,2001,60(4);656-665.
    [87]Volate SR,Davenport DM.Muga SJ,et al, Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin. curcumin, silymarin, ginseng and rutin)[J].Carcinogenesis.2005,26(8);1450-1456.
    [88]Granado-Serrano AB.Martin MA.Bravo L.et al, Quercetin induces via caspase activation, regulation of Bcl-2. and inhibition of PI3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2)[J],J Nutr.2006.136(11); 2715-2721.
    [89]Pignatelli P,Di Santo S,Buchetti B.et al. Polyphenols enhance platelet nitric oide by inhibiting protein kinase C-dependent NADPH oxidase activation:Effect on platelet recruitment[J],FASEB J.2006.20(8);1082-1089.
    [90]Lee SF.Lin JK, Inhibitory effects of phytopolyphenols on TPA-induced transformation, PKC activation, and c-jun expression in mouse fibroblast cells[J],Nutr Cancer,1997,28(2); 177-183.
    [91]Singhal RL,Prajda N,Weber G.et al, Intracellular signalling:Phosphatidylinositol lipid metabolism in cancer cells [J].Indian Biochem Biophys,1997, 34(1-2);25-28.
    [92]Zhang Y,Shen X, Heat shok protein 27 protects L929 cells from cisplatin-induced apoptosis by enhancing Akt activation and abating suppression of thioredoxin reductase activity[J].Clin Cancer Res.2007.13(10):2855-2864.
    [93]Aghdassi A,Phillips P,Dudeja V,et al, Heat shock protein 70 increades tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma[J],Cancer Res,2007,67(2);616-625.
    [94]Annaert PP,Brouwer KL, Assessment of drug interactions in hepatobiliary transport using rhodamine 123 in sandwich-cultured rat hepatocytes[J],Drug Metab Dispos,2005,33(3);388-394.
    [95]Leslie EM,Mao Q,Oleschuk CJ,et al, Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids[J],Mol Pharmacol,2001,59(5);1171-1180.
    [96]Vernhet L,Seite MP,Allain N,et al, Arsenic induces expression of the multidrug resistance-associated protein 2 (MRP2) gene in primary rat and human hepatocytes[J],J Pharmacol Exp Ther,2001,298(1);234-239.
    [97]A Sengupta,S Ghosh,S Das, Modulation of DMBA induced genotoxicity in bone marrow by quercetin during skin carcinogenesis[J],J Exp Clin Cancer Res,2001,20;131-134.
    [98]Duthie SJ,Johnson W,Dobson VL,et al, The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells[J],Mutat Res,1997,390(1-2);141-151.
    [99]Luo H,Jiang BH.King SM, et al, Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids[J], Nutri Can,2008,60(6);800-809.
    [100]Choi EJ,Bae SM,Ahn WS, Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells[J],Arch Pharm Res,2008,31(10);1281-1285.
    [101]Brisdelli F.Coccia C,Cinque B,et al, Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells[J],Mol Cell Biochemist.2007.296(1-2);137-149.
    [102]张珂,王萍,张庆,等,槲皮素对BGC-823胃癌细胞caspase-3、Bcl-2表达影响与抑癌作用研究[J],蚌埠医学院学报,2009.34(5);379-383.
    [103]Yuan H,Pan Y,Young CY, Overexpression of c-Jun induced by quercetin and resverol inhibits the expression and function of the androgen receptor in human prostate cancer cells[J],Cancer Lett,2004.213(2);155-163.
    [104]Yuan H,Young CY.Tian Y,et al, Suppression of the androgen receptor function by quercetin through protein-protein interactions of Spl, c-Jun, and the androgen receptor in human prostate cancer cells[J],Mol Cell Biochem,2010, 339(1-2);253-262.
    [105]Jung YH,Heo J,Lee YJ.et al, Quercetin enhances TRAIL-induced apoptosis in prstate cancer cells via increased protein stability of death receptor 5 [J].Life Sci,2010,86 (9-10); 351-357.
    [106]Kim YH,Lee DH Jeong JH.et al, Quercetin augments TRAIL-induced apoptosis death:involvement of the ERK signal transduction pathway[J],Biochem Pharmacol,2008,75(10);1946-1958.
    [107]Drewa G,Wozqak A,Palgan K.et al, Influence of quercetin on B16 melanotic melanoma growth in C57BL/6 mice and on activity of some acid hydrolases in melanoma tissue[J].Neoplasma.2001,48(1);12-18.
    [108]Piantelli M,Tatone D.Castrilli G. et al.Quercetin and tamoxifen sensitize human melanoma cells to hyperthemia[J]-Melanoma Res.2001.11(5);469-476.
    [109]Cheong E.Ivory K.Doleman J.et al. Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest[J].Carcinogenesis, 2004.25(10);1945-1952.
    [110]Salucci M,Stivala LA.Maiani G,et al, Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2);Br J Cancer,2002. 86(10);1645-1651.
    [111]Kudo M.Naito Z.Yokoyama M.et al. Effects of quercetin and sunphenon on responses of cancer cells to heat shock damage[J].Exp Mol Pathol, 1999.66(1);66-75.
    [112]罗进勇,李林,尹一兵,槲皮素对人肺腺癌A549细胞增殖和凋亡的影响[J],重庆医学,2005,34(4);551-552.
    [113]Kuo PC,Liu HF,Chao JI,Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells[J],J Biol Chem,2004,279(53);55875-55885.
    [114]Lee HS, Oh WK,Kim BY,et al, Inhibition of phospholipase C gamma 1 activity by amentoflavone isolated from Selaginella tamariscina[J],Planta Med, 1996,62(4)293-296.
    [115]Lin RC.Skaltsounis AL,Seguin E,et al. Phenolic Constituents of Selaginella doederleinii[J],Planta Med,1994,60(2);168-170.
    [116]郑兴,垫状卷柏化学成分研究[J],中草药,2001,32(1);17-18.
    [117]Lee IS,Nishikawa A,Furukawa F,et al, Effects of Selaginella tamariscina on in vitro tumor cell growth, p53 expression, G1 arrest and in vivo gastric cell proliferation[J],Cancer Lett,1999,144(1);93-99.
    [118]]Lin RC, Phenolic constituents of Selaginella doederlenii[J],Planta Med,1994, 60(2);168-170
    [119]Silva GL,Chai H,Gupta MP,et al, Cytotoxic biflavonoids from Selaginella willdenowii[J],Phytochemistry,1995,40(1);129-134.
    [120]Chen JJ.Duh.CY,Chen JF, New cytotoxic biflavonoids from Selaginella delicatula[J].Planta Med,2005,71(7);659-665.
    [121]Sun CM,Syu WJ,Huang YT,et al, Selective cytotoxicity of ginkgetin from Selaginella moellendorffii[J],J Nat Prod,1997,60(4);382-384.
    [122]Lin LC,Kuo YC,Chou CJ, Cytotoxic biflavonoids from Selaginella delicatula[J], J Nat Prod,2000,63(5);627-630.
    [123]毕跃峰,郑晓柯,冯卫生,等,卷柏抗肿瘤药理作用研究[J].2003.18(106),12-13.
    [124]Lee EJ.Min HY,Park HJ,et al, G2/M cell cycle arrest and induction of apoptosis by a stilbenoid.3,4,5-trimethoxy-4'-bromocis-stilbene, in human lung cancer cells[J],Life Sci ,2004,75(23);2829-2839.
    [125]Cheng YL,Chang WL.Lee SC.et al, Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via inducing cell cycle arrest and apoptosis[J],Life Sci,2004,75(13);1579-1594.
    [126]Guinea MC.Parellada J.Lacaille-Dubois MA.et al. Biologically active triterpene Saponins from Bupleurum fruticosum[J].Planta Med,1994,60(2);163-167.
    [127]Pillai GR,Srivastava AS,Hassanein TI.et al, Induction of apoptosis in human lung cancer cells by curcumin[J].Cancer Lett.2004.208(2);163-170.
    [128]Boklan J.Nanjangud G,MacKenzie KL.et al. Limited proliferation and telomere dysfunction following telomerase inhibition in immortal murine firoblasts[J],Cancer Res,2002.62(7),2104-2114.
    [129]Cheng YL.Chang WL.Lee SC,et al, Acetone extract of Bupleurum scorzonerifolium inhibits proliferation of A549 human lung cancer cells via inducing apoptosis and suppressing telomerase activity[J].Life Sci.2003,73 (18);2383-2394.
    [130]Shin DY,Kim GY.Li W.et al. Implication of intracellular ROS formation. caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells[J].Biomed Pharmacother.2009.63(2);86-94.
    [131]Zhou Y.Yiliang EL.Cao J.et al, Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth[J].Clin Cancer.2009,15(16); 5161-5169.
    [132]Tang YJ.Yang JS.Lin CF. et al. Houttuynia cordata Thurb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells[J],2009,22(5); 1051-1056.
    [133]Yun HR.Yoo HS.Shin DY.et al, Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum bufonis) through activation of caspases[J]JAMS J Acupunct Meridian Stud.2009,2(3);210-217.
    [134]Tsang CM.Lau EPW.Di W.et al, Berherine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells[J].Int J Mol Med.2009.24(1);131-138.
    [135]Park SC,Yoo HS,Park C,et al, Induction of apoptosis in human lung carcinoa cells by the water extract of Panax notoginseng is associated with the activation of caspase-3 through downregulation of Akt[J],Int J Oncol,2009,35(1);121-127.
    [136]Xu X,Liu Y,Wang L,et al, Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells[J],Int J Dermatol,2009,48(2);186-192.
    [137]Wang Y,Ma X,Yan S,et al,17-Hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells[J],Cancer Res,2009, 69(18);7302-7310.
    [138]Wong BYY,Nguyen DL,Lin T,et al, Chinese medicinal herb Scutellaria barbata modulates apoptosis and cell survival in murine and human prostate cancer cells and tumor development in TRAMP mice[J],Eur J Cancer Prev,2009, 18(4);331-341.
    [139]Xiao X,Bai P,Bui Nguyen TM,et al, The antitumoral effect of Paris SaponinⅠassociated with the induction of apoptosis through the mitochondrial pathway[J],Mol Cancer Ther,2009,8(5);1179-1188.
    [140]Hou YY,Wu ML,Hwang YC,et al, The natural diterpenoid ovatodiolide induces cell cycle arrest and apoptosis in human oral squamous cell carcinoma Ca9-22 cells[J],Life Sci,2009,85(1-2):26-32.
    [141]Chan JY,Tan BKH,Lee SC, Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation[J].Anticancer Res,2009,29(8);3043-3047.
    [142]Hsu YL,Kuo PL,Lin CC, The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells[J],Life Sci,2004,75(10);1231-1242.
    [143]Lee JH,Kang GH,Kim KC,et al, Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells[J],Int J Oncol,2002.21(6); 1239-1244.
    [144]Wang J,Wang X,Jiang S.et al. Growth inhibition and induction of apoptosis and differentiation of tanshinone ⅡA in human glioma cells[J].J Neurooncol, 2007,82;11-21.
    [145]Zong MR, Zhao YH, Zhamg K,et al. Inhibitory effects of natural compound alantolactone on human non-small cell lung cancer A549 cells[J],Chem.Res. Chinese unviersities,2011,27(2);241-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700