拮抗幽门螺杆菌益生菌的筛选及其干预机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幽门螺杆菌(Helicobacter pylori)感染能引起胃部疾病如胃炎、胃溃疡甚至是胃癌。H. pylori感染率高,在胃中定植会导致胃炎,但是仅有小部分被感染的人会出现临床病状,而大部分无报警症状的患者常被忽视。H. pylori引发的疾病目前主要采用三联法即质子泵抑制剂加两种抗生素的方法治疗,但此疗法存在副作用强烈、易导致抗药性、愈后复发率高等问题。有研究表明益生菌能够辅助治疗H. pylori感染引起的疾病,并能减轻不良反应。因此,本文为了研究利用食疗的方法干预无症状的H. pylori感染或未感染的人群,预防H. pylori的感染或是降低H. pylori的定植量并减轻炎症,筛选具有拮抗H. pylori作用的益生菌,并尝试阐述益生菌干预H. pylori感染的机制,最后研究筛选到的益生菌在乳品中的应用。
     利用乳酸菌的耐酸性、疏水性、自凝集和交互凝集作用以及抑制H. pylori生长和尿素酶活性试验,筛选到2株具有潜在拮抗H. pylori作用的乳酸菌,分别为Lactobacillus plantarum 18 (LP18)和L. gasseri Chen (LGChen)。LP18具有耐酸性,能抑制H. pylori生长并降低尿素酶活性。LGChen具有抑菌能力及较强的疏水性、自凝集和与H. pylori交互凝集作用。这两株菌除了可以抑制H. pylori SS1生长,还能抑制其他H. pylori菌株的生长。
     采用C57BL/6小鼠,建立H. pylori感染的小鼠模型。H. pylori感染的小鼠模型:先用抗生素预处理后,再以H. pylori SS1 (300μL 1×109CFU/mL)结合碳酸氢钠(250μL 0.2mol/L)处理每只C57BL/6小鼠,感染5次,6个月造模结束的方式,可以得到感染率比较高(80%),定植量稳定(106-107CFU/g)的H. pylori感染的小鼠模型。
     利用小鼠模型评价乳酸菌干预H. pylori感染小鼠的效果。乳酸菌分别为商业菌株L. rhamnosus GG(LGG,作为阳性对照菌)、L. bulgaricus 360(LB)和Streptococcus thermophilus TA460(ST)以及本文筛选出乳酸菌LP18和LGChen,并以药物治疗作为阳性对照。动物实验结果表明药物治疗后H. pylori的定植量及胃组织的尿素酶活性降低;乳酸菌(LGG、LP18和LGChen)干预组也能减轻H. pylori引起的炎症,其中LP18干预组可以显著降低H. pylori的定植量,而LGChen干预组显著降低血液中的抗H. pylori- IgG抗体水平,因此综合比较LP18和LGChen干预效果比LGG好;普通商业菌株LB和ST的作用不明显。同时发现H. pylori感染引起血清、肝脏和胃组织中活性氧自由基(ROS)的升高,谷胱甘肽(GSH)的降低以及丙二醛(MDA)的升高。而乳酸菌干预以及药物治疗后,则能够提高胃和肝脏组织的GSH含量同时降低MDA含量。因此,推测乳酸菌可能具有抗氧化作用而保护机体免受H. pylori感染所引起的氧化损伤。
     测定了LP18和LGChen的体外抗氧化能力,并用ICR小鼠模型再次评价LP18和LGChen干预H. pylori感染的效果。结果表明这两株乳酸菌都具有抗氧化的能力,LP18和LGChen的DPPH清除率分别为43%和62%,羟自由基的清除率分别为48%和18%,还原力分别相当于62μmol/L和82μmol/L的半胱氨酸的还原力。动物实验表明LGChen和LP18可以降低胃中H. pylori的定植量、尿素酶活性并减轻H. pylori引起的炎症,同时可以提高胃和肝组织中的GSH含量并降低MDA的含量,但没有降低血液中的抗H. pylori-IgG抗体水平。
     通过琼脂扩散法、共培养法研究乳酸菌对H. pylori的生长和尿素酶活性的影响,以及用细胞实验研究乳酸菌对H. pylori粘附人胃上皮细胞以及诱导细胞分泌IL-8的影响,来探讨乳酸菌干预H. pylori感染的体外机制。结果表明乳酸菌活菌和发酵上清液可以抑制H. pylori生长;上清液的抗菌能力依赖于上清液中的代谢产物(如有机酸和蛋白质类似物)并受pH值影响;共培养时,乳酸菌的活菌和发酵上清液都能抑制H. pylori的生长和尿素酶活性。细胞实验表明乳酸菌发酵上清液、活菌和死菌均能够通过排阻作用抑制H. pylori粘附于SGC7901细胞(抑制率达到50%),但是竞争和替代作用只能通过上清液和活菌起作用(抑制率达30-40%),死菌无作用或者作用非常小。同时,乳酸菌可以抑制由H. pylori诱导的SGC7901细胞分泌IL-8。
     通过抑菌试验和细胞实验以及两种品系的小鼠体内实验,LP18和LGChen干预H. pylori感染的可能机制:当乳酸菌与H. pylori直接接触时,一方面可以利用乳酸菌的代谢物抑制H. pylori的生长和尿素酶活性,从而让H. pylori失去在酸性环境中赖以生存的条件,另一方面可以通过乳酸菌的空间位阻作用阻碍H. pylori的定植,同时通过交互凝集作用把H. pylori共同沉淀排出体外;当乳酸菌与H. pylori没有接触时,乳酸菌可以通过其抗氧化作用和抑制H. pylori诱导上皮细胞分泌IL-8,保护机体避免因H. pylori感染引起的氧化损伤而造成的病变。
     研究LP18和LGChen在乳品中的应用,结果表明LP18和LGChen不能利用乳糖发酵,需添加葡萄糖方可在牛乳中生长,但LGChen在此条件下比LP18生长好;两株菌的发酵乳在4℃条件下可保存21d,不发生显著性变化;LP18或LGChen分别与商业菌株(LB和ST)复合发酵,对发酵乳不产生不良影响,表明LP18或LGChen可以应用在乳品中,开发新产品。
Helicobacter pylori may cause stomach diseases such as chronic gastritis, peptic ulcer, and gastric cancer. At present, traditional therapies in the treatment of H. pylori infection have some disadvantages, such as side effects, antibiotic resistance, and high recurrence rate. Several studies reported that lactobacilli have inhibitory effects on H. pylori. Therefore, the purpose of the study was to use the method of food therapy to intervene with the infection of H. pylori, maintain the low level of colonization of H. pylori, and alleviate inflammation caused by H. pylori for the asymptomatic infected or uninfected people. The contents of this research were to screen the probiotics with antagonistic activities against H. pylori, explain the mechanisms of probiotics intervening with the infection of H. pylori, and explore the potential application of the strains in the fermented milk.
     Thirty-eight Lactobacillus strains were screened for anti- H. pylori activity using in vitro methods, including survivability under the simulated gastric conditions, agar plate diffusion, urease activity, coaggregation, autoaggregation, and hydrocarbon analysis. The results indicated that two Lactobacillus strains showed potential anti- H. pylori activity in vitro, Lactobacillus plantarum 18 (LP18) and L. gasseri Chen (LGChen), respectively. LP18 had the largest zone of inhibition and significantly reduced the urease activity of H. pylori. LGChen had higher coaggregation rate and hydrophobicity than the other strains. The two lactobacilli not only can inhibit the indicator strain- H. pylori SS1, but also can inhibit other strains of H. pylori.
     The mouse model of H. pylori infection was established, and every C57BL/6 mouse pretreatment with antibiotics was gavaged with H. pylori (300μL at 1×109CFU/mL) and sodium bicarbonate (250μL at 0.2mol/L) for five times. This mouse model was able to obtain high infection rate (80%) and colonization counts of H. pylori (106-107CFU/g tissue).
     LGG (positive control), LP18, LGChen, LB (common commercial strain) and ST (common commercial strain) were evaluated for intervening with the infection of H. pylori in the C57BL/6 mouse model. The results showed that pretreatment with LGG, LGChen or LP18 and PPI treatment reduced the counts and urease activities of H. pylori in the stomach, and alleviated the inflammation of mice caused by H. pylori infection. Among the tested strains, the group of LP18 showed significant decreasing of H. pylori bacterial density and the group of LGChen showed significant reducing the level of anti- H. pylori - IgG in the serum. Therefore, the effects of LP18 and LGChen on H. pylori infection were better than LGG. However, common commercial strains had no obvious effects. At the same time, infection of H. pylori could increase the levels of ROS and MDA in tissues of liver and stomach as well as ROS in the serum, and reduce the levels of GSH in the tissues of liver and stomach. Pretreatment with LGG, LGChen or LP18 and PPI treatment could reduce the levels of ROS and MDA in tissues of liver and stomach as well as ROS in the serum, increase the levels of GSH in the tissues of liver and stomach. Therefore, the results suggested that inhibition of H. pylori infection with these two strains of lactobacilli in the mice may be related to anti-oxidative activities.
     Tests of the scavenging rates of DPPH and hydroxyl radical and the reducing activities of LGChen and LP18 were evaluated. The results showed that the scavenging rates of DPPH of LP18 and LGChen were 43% and 62%, scavenging rates of hydroxyl radical were 48% and 18%, and reducing activities were equivalent 62μmol/L and 82μmol/L cysteine, separately. The ICR mouse model was used to evaluate antagonistic abilities of the strains of LP18 and LGChen against H. pylori. The results showed that LGChen and LP18 could reduce the density and urease activities of H. pylori in the stomach, alleviate the inflammation of mice caused by H. pylori infection, increase the levels of GSH and reduce the levels of MDA in the tissues of liver and stomach. However, the strains could not reduce the levels of anti- H. pylori -IgG in the serum.
     In this study, the antagonistic activities of LGChen and LP18 were assessed by agar plate diffusion assay, and tests that determined the growth and urease activity of H. pylori cocultured with lactobacilli, and the adherence of H. pylori to human gastric epithelial cells in the presence of lactobacilli. The results showed that the Lactobacillus strains had significant anti- H. pylori activity, and this activity may be contributed by the cell-free supernatants (CFS) of lactobacilli and live Lactobacillus strains in vitro. The antagonistic activity of the CFS against H. pylori depended on the pH and the presence of metabolites, such as organic acids and proteases. In the coculture conditions, the cells of lactobacilli and the CFS both could reduce the number and the urease activity of H. pylori. In the adherent assays, the Lactobacillus strains containing CFS, live cells and dead cells could inhibit H. pylori adherence human gastric epithelial cells via the function of exclusion; CFS and live lactobacilli cells could inhibit H. pylori adherence human gastric epithelial cells via the function of competence and replacement, but dead cells had no these functions. In the cell assays also showed that lactobacilli were able to reduce the levels of IL-8 in the human gastric epithelial cells induced by H. pylori.
     According to the above assays, the mechanisms of LP18 and LGChen intervening with the infection of H. pylori were summarized as follows: when the lactobacilli came in contact with H. pylori, the metabolites of lactobacilli could inhibit the growth and urease activity of H. pylori, and live lactobacilli cells could inhibit the adherence of H. pylori and colonization in the host via steric hindrance, and/or remove H. pylori from the host stomach via co-aggregation; when the lactobacilli did not came in contact with H. pylori, lactobacilli with anti-oxidative activities and reducing the levels of IL-8 induced by H. pylori protected host against oxidative damage caused by H. pylori infection.
     LP18 and LGChen could not utilize lactose, and their growths in the milk need glucose. LP18 or LGChen could cocluture with commercial starters in the milk with glucose. The complex fermented milks and commercial starters fermented milk had no differences in titration, pH, viscosity, bacterial counts, construct and sensory. Therefore, LP18 and LGChen could be used as potential probiotics with antagonistic activities against H. pylori application in the fermented milk.
引文
[1] Nakamura A, Park A, Nagata K, et al. Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form [J]. Free Radic Biol Med, 2000, 28: 1611-1618.
    [2] Calvino Fernandez M, Parra Cid T. H. pylori and mitochondrial changes in epithelial cells. The role of oxidative stress [J]. Rev Esp Enferm Dig, 2010, 102: 41-50.
    [3] Go M F. Review article: natural history and epidemiology of Helicobacter pylori infection [J]. Aliment Pharmacol Ther, 2002, 16 Suppl 1: 3-15.
    [4] Ernst P B, Gold B D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer [J]. Annu Rev Microbiol, 2000, 54: 615-640.
    [5] Lesbros-Pantoflickova D, Corthesy-Theulaz I, Blum A.L. Helicobacter pylori and probiotics [J]. J Nutr, 2007, 137: 812-818.
    [6]陈云华,汪春莲,谢云.幽门螺杆菌致病机制及益生菌防治作用的研究进展[J].世界华人消化道杂志, 2007, 15: 2690-2697.
    [7] Merkx-Jacques A, Obhi R K, Bethune G, et al. The Helicobacter pylori flaA1 and wbpB genes control lipopolysaccharide and flagellum synthesis and function [J]. J Bacteriol, 2004, 186: 2253-2265.
    [8] McGee D J, Mobley H L. Pathogenesis of Helicobacter pylori infection [J]. Curr Opin Gastroenterol, 2000, 16: 24-31.
    [9] Radosz-Komoniewska H, Bek T, Jozwiak J, et al. Pathogenicity of Helicobacter pylori infection [J]. Clin Microbiol Infect, 2005, 11: 602-610.
    [10] Fujii R, Morihara F, Oku T, et al. Epitope mapping and features of the epitope for monoclonal antibodies inhibiting enzymatic activity of Helicobacter pylori urease [J]. Biotechnol Bioeng, 2004, 86: 434-444.
    [11] Brisslert M, Enarsson K, Lundin S, et al. Helicobacter pylori induce neutrophil transendothelial migration: role of the bacterial HP-NAP [J]. FEMS Microbiol Lett, 2005, 249: 95-103.
    [12] Dundon W G, Nishioka H, Polenghi A, et al. The neutrophil-activating protein of Helicobacter pylori [J]. Int J Med Microbiol, 2002, 291: 545-550.
    [13]洪愉,邹全明.幽门螺杆菌粘附素的研究进展[J].中国人兽共患病杂志, 2004, 20: 59-61.
    [14] Carlsohn E, Nystrom J, Bolin I, et al. HpaA is essential for Helicobacter pylori colonization in mice [J]. Infect Immun, 2006, 74: 920-926.
    [15] de Bernard M, Cappon A, Del Giudice G, et al. The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori [J]. Int J Med Microbiol, 2004, 293: 589-597.
    [16] Fischer W, Gebert B, Haas R. Novel activities of the Helicobacter pylori vacuolating cytotoxin: from epithelial cells towards the immune system [J]. Int J Med Microbiol, 2004, 293: 539-547.
    [17] Lu H, Yamaoka Y, Graham D Y. Helicobacter pylori virulence factors: facts and fantasies [J]. Curr Opin Gastroenterol, 2005, 21: 653-659.
    [18] Shimoyama T, Fukuda S, Tanaka M, et al. Serum anti-Lewis X antibody is associated with VacA seropositivity but not atrophic gastritis in patients with Helicobacter pylori infection [J]. Eur J Gastroenterol Hepatol, 2001, 13: 227-231.
    [19] Brandt S, Kwok T, Hartig R, et al. NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein [J]. Proc Natl Acad Sci U S A, 2005, 102: 9300-9305.
    [20] Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein [J]. Nat Rev Cancer, 2004, 4: 688-694.
    [21] van Doorn NE N F, Sparrius M, Stoof J, et al. Helicobacter pylori-associated gastritis in mice is host and strain specific [J]. Infect Immun, 1999, 67: 3040-3046.
    [22] Rocha G A, Queiroz D M, Mendes E N, et al. Helicobacter pylori acute gastritis: histological, endoscopical, clinical, and therapeutic features [J]. Am J Gastroenterol,1991, 86: 1592-1595.
    [23] Harris P R, Ernst P B, Kawabata S, et al. Recombinant Helicobacter pylori urease activates primary mucosal macrophages [J]. J Infect Dis, 1998, 178: 1516-1520.
    [24] Kim T I, Lee Y C, Lee K H, et al. Effects of nonsteroidal anti-inflammatory drugs on Helicobacter pylori-infected gastric mucosae of mice: apoptosis, cell proliferation, and inflammatory activity [J]. Infect Immun, 2001, 69: 5056-5063.
    [25] Kido M, Tanaka J, Aoki N, et al. Helicobacter pylori promotes the production of thymic stromal lymphopoietin by gastric epithelial cells and induces dendritic cell-mediated inflammatory Th2 responses [J]. Infect Immun, 2010, 78: 108-114.
    [26] Kusters J G, van Vliet A H, Kuipers E J. Pathogenesis of Helicobacter pylori infection [J]. Clin Microbiol Rev, 2006, 19: 449-490.
    [27] Mori M, Suzuki H, Suzuki M, et al. Catalase and superoxide dismutase secreted from Helicobacter pylori [J]. Helicobacter, 1997, 2: 100-105.
    [28] Lamarque D, Moran A P, Szepes Z, et al. Cytotoxicity associated with induction of nitric oxide synthase in rat duodenal epithelial cells in vivo by lipopolysaccharide of Helicobacter pylori: inhibition by superoxide dismutase [J]. Br J Pharmacol, 2000, 130: 1531-1538.
    [29] Bereswill S, Neuner O, Strobel S, et al. Identification and molecular analysis of superoxide dismutase isoforms in Helicobacter pylori [J]. FEMS Microbiol Lett, 2000, 183: 241-245.
    [30] Klinowski E, Broide E, Varsano R, et al. Superoxide dismutase activity in duodenal ulcer patients [J]. Eur J Gastroenterol Hepatol, 1996, 8: 1151-1155.
    [31] Spiegelhalder C, Gerstenecker B, Kersten A, et al. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene [J]. Infect Immun, 1993, 61: 5315-5325.
    [32] Nagata K, Yu H, Nishikawa M, et al. Helicobacter pylori generates superoxide radicals and modulates nitric oxide metabolism [J]. J Biol Chem, 1998, 273: 14071-14073.
    [33] Seyler R W, Jr., Olson J W, et al. Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization [J]. Infect Immun, 2001, 69: 4034-4040.
    [34] Hazell S L, Evans D J, Jr., et al. Helicobacter pylori catalase [J]. J Gen Microbiol, 1991, 137: 57-61.
    [35] Harris A G, Hinds F E, Beckhouse A G, et al. Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated 'KatA-associated protein', KapA (HP0874) [J]. Microbiology,2002, 148: 3813-3825.
    [36] Suzuki N, Wakasugi M, Nakaya S, et al. Catalase, a specific antigen in the feces of human subjects infected with Helicobacter pylori [J]. Clin Diagn Lab Immunol, 2002, 9: 784-788.
    [37] Mahawar M, Tran V, Sharp J S, et al. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase [J]. J Biol Chem, 2011, 286: 19159-19169.
    [38] Odenbreit S, Wieland B, Haas R. Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain [J]. J Bacteriol, 1996, 178: 6960-6967.
    [39] Radcliff F J, Hazell S L, Kolesnikow T, et al. Catalase, a novel antigen for Helicobacter pylori vaccination [J]. Infect Immun, 1997, 65: 4668-4674.
    [40] Nilius M, Malfertheiner P. Helicobacter pylori enzymes [J]. Aliment Pharmacol Ther, 1996, 10 Suppl 1: 65-71.
    [41] Bauerfeind P, Garner R, Dunn B E, et al. Synthesis and activity of Helicobacter pylori urease and catalase at low pH [J]. Gut, 1997, 40: 25-30.
    [42] Ramarao N, Gray-Owen S D, Meyer T F. Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity [J]. Mol Microbiol, 2000, 38: 103-113.
    [43] Allen L A. The role of the neutrophil and phagocytosis in infection caused by Helicobacter pylori [J]. Curr Opin Infect Dis, 2001, 14: 273-277.
    [44]胡伏莲,成虹.幽门螺杆菌粪便抗原检测及其与胃粘膜抗原检测的对比研究[J].中华医学杂志, 2000, 80: 820-822.
    [45] Okuda M, Nakazawa T, Booka M, et al. Evaluation of a urine antibody test for Helicobacter pylori in Japanese children [J]. J Pediat, 2004, 144: 196-199.
    [46]余幼民,陈林,凌如娟.幽门螺杆菌粪便抗原检测的评价[J].国际医药卫生导报, 2006, 12: 80-81.
    [47] Higuchi K, Maekawa T, Nakagawa K, et al. Efficacy and safety of Helicobacter pylori eradication therapy with omeprazole, amoxicillin and high- and low-dose clarithromycin in Japanese patients: a randomised, double-blind, multicentre study [J]. Clin Drug Investig, 2006, 26: 403-414.
    [48] Lee J H, Shim J S, Chung M S, et al. In vitro anti-adhesive activity of green tea extract against pathogen adhesion [J]. Phytother Res, 2009, 23: 460-466.
    [49] Pastene E, Speisky H, Garcia A, et al. In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori [J]. J Agric Food Chem, 2010, 58: 7172-7179.
    [50] Ables A Z, Simon I, Melton E R. Update on Helicobacter pylori treatment [J]. Am Fam Physician, 2007, 75: 351-358.
    [51] Yoon H, Kim N, Kim J Y, et al. Effects of multistrain probiotic-containing yogurt on second-line triple therapy for Helicobacter pylori infection [J]. J Gastroenterol Hepatol, 2011, 26: 44-48.
    [52]李莉.乳酸茵联合三联疗法根除幽门螺杆菌的临床观察[J].交通医学, 2009, 23: 378.
    [53]潘彤彤,朱欢,卢华.益生菌辅助三联疗法治疗儿童幽门螺杆菌感染疗效观察[J].海峡药学, 2010, 22: 109-110.
    [54] Lee A, O'Rourke J, De Ungria M C, et al. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain [J]. Gastroenterology, 1997, 112: 1386-1397.
    [55] Lee A, Fox J G, Otto G, et al. A small animal model of human Helicobacter pylori active chronic gastritis [J]. Gastroenterology, 1990, 99: 1315-1323.
    [56] Marchetti M, Arico B, Burroni D, et al. Development of a mouse model of Helicobacter pylori infection that mimics human disease [J]. Science, 1995, 267: 1655-1658.
    [57] Fuller R. Probiotics in human medicine [J]. Gut, 1991, 32: 439-442.
    [58] Rolfe R D. The role of probiotic cultures in the control of gastrointestinal health [J]. J Nutr, 2000, 130: 396S-402S.
    [59] Gill H S, Guarner F. Probiotics and human health: a clinical perspective [J]. Postgrad Med J, 2004, 80: 516-526.
    [60] Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics [J]. Bioessays, 2011, 33: 574-581.
    [61] Yasar B, Abut E, Kayadibi H, et al. Efficacy of probiotics in Helicobacter pylori eradication therapy [J]. Turk J Gastroenterol, 2010, 21: 212-217.
    [62] Song M J, Park D I, Park J H, et al. The effect of probiotics and mucoprotective agents on PPI-based triple therapy for eradication of Helicobacter pylori [J]. Helicobacter, 2010, 15: 206-213.
    [63] Kamiya S. Helicobacter pylori infection and probiotics [J]. Nihon Saikingaku Zasshi, 2007, 62: 271-277.
    [64] Coconnier M H, Lievin V, Bernet-Camard M F, et al. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB [J]. Antimicrob Agents Chemother, 1997, 41: 1046-1052.
    [65] Coconnier M H, Lievin V, Hemery E, et al. Antagonistic activity against Helicobacterinfection in vitro and in vivo by the human Lactobacillus acidophilus strain LB [J]. Appl Environ Microbiol, 1998, 64: 4573-4580.
    [66] Michetti P, Dorta G, Wiesel P H, et al. Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans [J]. Digestion, 1999, 60: 203-209.
    [67] Sgouras D N, Panayotopoulou E G, Martinez-Gonzalez B, et al. Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice [J]. Clin Diagn Lab Immunol, 2005, 12: 1378-1386.
    [68] Kabir A M, Aiba Y, Takagi A, et al. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model [J]. Gut, 1997, 41: 49-55.
    [69] Ryan K A, O'Hara A M, van Pijkeren J P, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori [J]. J Med Microbiol, 2009, 58: 996-1005.
    [70] Aiba Y, Suzuki N, Kabir A M, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model [J]. Am J Gastroenterol, 1998, 93: 2097-2101.
    [71] Myllyluoma E, Ahlroos T, Veijola L, et al. Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota [J]. Int J Antimicrob Agents, 2007, 29: 66-72.
    [72] Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy [J]. Aliment Pharmacol Ther, 2001, 15: 163-169.
    [73] Armuzzi A, Cremonini F, Ojetti V, et al. Effect of Lactobacillus GG supplementation on antibiotic-associated gastrointestinal side effects during Helicobacter pylori eradication therapy: a pilot study [J]. Digestion, 2001, 63: 1-7.
    [74] Myllyluoma E, Veijola L, Ahlroos T, et al. Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy--a placebo-controlled, double-blind randomized pilot study [J]. Aliment Pharmacol Ther, 2005, 21: 1263-1272.
    [75] Sgouras D, Maragkoudakis P, Petraki K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Appl Environ Microbiol, 2004, 70: 518-526.
    [76] Cats A, Kuipers E J, Bosschaert M A, et al. Effect of frequent consumption of a Lactobacillus casei-containing milk drink in Helicobacter pylori-colonized subjects [J]. Aliment Pharmacol Ther, 2003, 17: 429-435.
    [77] Sahagun-Flores J E, Lopez-Pena L S, de la Cruz-Ramirez Jaimes J, et al. Eradication of Helicobacter pylori: triple treatment scheme plus Lactobacillus vs. triple treatment alone [J]. Cir Cir, 2007, 75: 333-336.
    [78] Sakamoto I, Igarashi M, Kimura K, et al. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans [J]. J Antimicrob Chemother, 2001, 47: 709-710.
    [79] Surasak Boonyaritichaikij K K, June Nagano, Kiyoshi Kobayashi, et al. Long-term Administration of Probiotics to Asymptomatic Pre-school Children for Either the Eradication or the Prevention of Helicobacter pylori Infection [J]. Helicobacter 2009, 14: 202-207.
    [80] Tamura A, Kumai H, Nakamichi N, et al. Suppression of Helicobacter pylori-induced interleukin-8 production in vitro and within the gastric mucosa by a live Lactobacillus strain [J]. J Gastroenterol Hepatol, 2006, 21: 1399-1406.
    [81] Imase K, Tanaka A, Tokunaga K, et al. Lactobacillus reuteri tablets suppress Helicobacter pylori infection--a double-blind randomised placebo-controlled cross-over clinical study [J]. Kansenshogaku Zasshi, 2007, 81: 387-393.
    [82] Mukai T, Asasaka T, Sato E, et al. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri [J]. FEMS Immunol Med Microbiol, 2002, 32: 105-110.
    [83] Ruggiero Francavilla E L, Stefania Paola Castellaneta, et al. Inhibition of Helicobacter pylori Infection in Humans by Lactobacillus reuteri ATCC 55730 and Effect on Eradication Therapy: A Pilot Study [J]. Helicobacter, 2009, 13: 127–134.
    [84] Tsai C C, Huang L F, Lin C C, et al. Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39 [J]. Int J Food Microbiol, 2004, 96: 1-12.
    [85] Kang J H, Lee M S. In vitro inhibition of Helicobacter pylori by Enterococcus faecium GM-1 [J]. Can J Microbiol, 2005, 51: 629-636.
    [86] Pinchuk I V, Bressollier P, Verneuil B, et al. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics [J]. Antimicrob Agents Chemother, 2001, 45: 3156-3161.
    [87] Wang K Y, Li S N, Liu C S, et al. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori [J]. Am J Clin Nutr, 2004, 80: 737-741.
    [88] Collado M C, Gonzalez A, Gonzalez R, et al. Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori [J]. IntJ Antimicrob Agents, 2005, 25: 385-391.
    [89] Chenoll E, Casinos B, Bataller E, et al. Novel Probiotic Bifidobacterium bifidum CECT 7366 Strain Active against the Pathogenic Bacterium Helicobacter pylori [J]. Appl Environ Microbiol, 2011, 77: 1335-1343.
    [90] Ryan K A, Daly P, Li Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. J Antimicrob Chemother, 2008, 61: 831-834.
    [91] Boyanova L, Stephanova-Kondratenko M, Mitov I. Anti-Helicobacter pylori activity of Lactobacillus delbrueckii subsp bulgaricus strains: preliminary report [J]. Lett Appl Microbiol, 2009, 48: 579-584.
    [92] Greene J D, Klaenhammer T R. Factors involved in adherence of lactobacilli to human Caco-2 cells [J]. Appl Environ Microbiol, 1994, 60: 4487-4494.
    [93] Rojas M, Conway P L. Colonization by lactobacilli of piglet small intestinal mucus [J]. J Appl Bacteriol, 1996, 81: 474-480.
    [94] Del Re B, Sgorbati B, Miglioli M, et al. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum [J]. Lett Appl Microbiol, 2000, 31: 438-442.
    [95]刘勇.植物乳杆菌益生特性及产共轭亚油酸能力研究[D]: [硕士学位论文],呼和浩特:内蒙古农业大学, 2010.
    [96] Collado M C, Meriluoto J, Salminen S. Adhesion and aggregation properties of probiotic and pathogen strains [J]. Eur Food Res Technol, 2008, 226: 1065-1073.
    [97] Spencer R J, Chesson A. The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes [J]. J Appl Bacteriol, 1994, 77: 215-220.
    [98] Servin A L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens [J]. FEMS Microbiol Rev, 2004, 28: 405-440.
    [99] Tong J L, Ran Z H, Shen J, et al. Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy [J]. Aliment Pharmacol Ther, 2007, 25: 155-168.
    [100]Felley C P, Corthesy-Theulaz I, Rivero J L, et al. Favourable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man [J]. Eur J Gastroenterol Hepatol, 2001, 13: 25-29.
    [101]Pantoflickova D, Corthesy-Theulaz I, Dorta G, et al. Favourable effect of regular intake of fermented milk containing Lactobacillus johnsonii on Helicobacter pylori associated gastritis [J]. Aliment Pharmacol Ther, 2003, 18: 805-813.
    [102]Linsalata M, Russo F, Berloco P, et al. The influence of Lactobacillus brevis on ornithinedecarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa [J]. Helicobacter, 2004, 9: 165-172.
    [103]Boirivant M, Strober W. The mechanism of action of probiotics [J]. Curr Opin Gastroenterol, 2007, 23: 679-692.
    [104]Kamiya S. Helicobacter pylori infection and probiotics [J]. Nippon Saikingaku Zasshi, 2007, 62: 271-277.
    [105]Midolo P D, Lambert J R, Hull R, et al. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria [J]. J Appl Bacteriol, 1995, 79: 475-479.
    [106]Nam H H M, Bae O, Lee Y. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori [J]. Appl Environ Microbiol 2002, 68: 4642–4645.
    [107]Kim T S, Hur J W, Yu M A, et al. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria [J]. J Food Prot, 2003, 66: 3-12.
    [108]Byrd JC Y C, Xu QS, Sternberg LR, et al. Inhibition of gastric mucin synthesis by Helicobacter pylori [J]. Gastroenterology, 2000, 118: 1072–1079.
    [109]Mack DR M S, Wei S, McDougall L, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression [J]. Am J Physiol, 1999, 276: 941–950.
    [110]Mack DR A S, Hyde L, Wei S, et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro [J]. Gut, 2003, 52: 827–833.
    [111]Gotteland M C S, Verbeke S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indomethacin in humans [J]. Aliment Pharmacol Ther, 2001, 15: 11-17.
    [112] Arakawa T W T, Kobayashi K. Regulation of acid secretion and peptic ulcer formation by in?ammatory cytokines [J]. Ernst PB M P, Smith PD ed. In: The immunology of H. pylori: From pathogenesis to prevention [M]. Lippincott-Raven Philadelphia, 1997 :183–199.
    [113]Noach L A, Bosma N B, Jansen J, et al. Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection [J]. Scand J Gastroenterol, 1994, 29: 425-429.
    [114] Harris PR, Smith PD. The role of the mononuclear phagocyte in H. pylori-associated infection [J]. Ernst PB M P, Smith PD. In: The immunology of H pylori: From pathogenesis to prevention [M]. Philadelphia: Lippincott-Raven,1997:127–137.
    [115]Gill H S. Probiotics to enhance anti-infective defences in the gastrointestinal tract [J]. Best Pract Res Clin Gastroenterol, 2003, 17: 755-773.
    [116]Murosaki S, Muroyama K, Yamamoto Y, et al. Antitumor effect of heat-killed Lactobacillus plantarum L-137 through restoration of impaired interleukin-12 production in tumor-bearing mice [J]. Cancer Immunol Immunother, 2000, 49: 157-164.
    [117]von der Weid T, Bulliard C, Schiffrin E J. Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10 [J]. Clin Diagn Lab Immunol, 2001, 8: 695-701.
    [118]Vitini E, Alvarez S, Medina M, et al. Gut mucosal immunostimulation by lactic acid bacteria [J]. Biocell, 2000, 24: 223-232.
    [119]Haller D, Bode C, Hammes W P, et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures [J]. Gut, 2000, 47: 79-87.
    [1] Dunn B E, Cohen H, Blaser M J. Helicobacter pylori [J]. Clin Microbiol Rev, 1997, 10:720-741.
    [2] Lehours P, Yilmaz O. Epidemiology of Helicobacter pylori infection [J]. Helicobacter, 2007, 12 Suppl 1: 1-3.
    [3] Kuipers E J, Meuwissen S G. Helicobacter pylori and gastric carcinogenesis [J]. Scand J Gastroenterol Suppl, 1996, 218: 103-105.
    [4] Sun Q, Liang X, Zheng Q, et al. High efficacy of 14-day triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication [J]. Helicobacter, 2010, 15: 233-238.
    [5]杨林青,窦逾常,李霞等.胃复春联合益生菌治疗幽门螺杆菌感染的慢性萎缩性胃炎疗效分析[J].吉林医学, 2010, 31:1816-1817.
    [6] Yasar B, Abut E, Kayadibi H, et al. Efficacy of probiotics in Helicobacter pylori eradication therapy [J]. Turk J Gastroenterol, 2010, 21: 212-217.
    [7] Song M J, Park D I, Park J H, et al. The effect of probiotics and mucoprotective agents on PPI-based triple therapy for eradication of Helicobacter pylori [J]. Helicobacter, 2010, 15: 206-213.
    [8] Kamiya S. Helicobacter pylori infection and probiotics [J]. Nihon Saikingaku Zasshi, 2007, 62: 271-277.
    [9]朱婉萍,孔繁智,陈小囡.牛乳铁蛋白对幽门螺杆菌感染大鼠的治疗实验[J].中国现代应用药学, 2008, 25: 85-87.
    [10]熊伍军,刘菲,邱德凯.乳铁蛋白抗幽门螺杆菌感染研究进展[J].胃肠病学, 2006, 11: 367-369.
    [11] Lee J H, Shim J S, Chung M S, et al. In vitro anti-adhesive activity of green tea extract against pathogen adhesion [J]. Phytother Res, 2009, 23: 460-466.
    [12] Pastene E, Speisky H, Garcia A, et al. In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori [J]. J Agric Food Chem, 2010, 58: 7172-7179.
    [13] Bergonzelli G E, Granato D, Pridmore R D, et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori [J]. Infect Immun, 2006, 74: 425-434.
    [14] Sgouras D N, Panayotopoulou E G, Martinez-Gonzalez B, et al. Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice [J]. Clin Diagn Lab Immunol, 2005, 12: 1378-1386.
    [15] Gotteland M, Andrews M, Toledo M, et al. Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children [J].Nutrition, 2008, 24: 421-426.
    [16] Aiba Y, Suzuki N, Kabir A M, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model [J]. Am J Gastroenterol, 1998, 93: 2097-2101.
    [17] Kabir A M, Aiba Y, Takagi A, et al. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model [J]. Gut, 1997, 41: 49-55.
    [18] Sgouras D, Maragkoudakis P, Petraki K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Appl Environ Microbiol, 2004, 70: 518-526.
    [19] Shimizu T, Haruna H, Hisada K, et al. Effects of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in children [J]. J Antimicrob Chemother, 2002, 50: 617-618.
    [20] Sakamoto I, Igarashi M, Kimura K, et al. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans [J]. J Antimicrob Chemother, 2001, 47: 709-710.
    [21] Imase K, Tanaka A, Tokunaga K, et al. Lactobacillus reuteri tablets suppress Helicobacter pylori infection--a double-blind randomised placebo-controlled cross-over clinical study [J]. Kansenshogaku Zasshi, 2007, 81: 387-393.
    [22] Collado M C, Gonzalez A, Gonzalez R, et al. Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori [J]. Int J Antimicrob Agents, 2005, 25: 385-391.
    [23] Ryan K A, Daly P, Li Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. J Antimicrob Chemother, 2008, 61: 831-834.
    [24] Boyanova L, Stephanova-Kondratenko M, Mitov I. Anti-Helicobacter pylori activity of Lactobacillus delbrueckii subsp bulgaricus strains: preliminary report [J]. Lett Appl Microbiol, 2009, 48: 579-584.
    [25] Boirivant M, Strober W. The mechanism of action of probiotics [J]. Curr Opin Gastroenterol, 2007, 23: 679-692.
    [26] Gotteland M, Brunser O, Cruchet S. Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? [J]. Aliment Pharmacol Ther, 2006, 23: 1077-1086.
    [27] Lesbros-Pantoflickova D, Corthesy-Theulaz I, Blum A L. Helicobacter pylori and probiotics [J]. J Nutr, 2007, 137: 812-818.
    [28] Gill H S. Probiotics to enhance anti-infective defences in the gastrointestinal tract [J].Best Pract Res Clin Gastroenterol, 2003, 17: 755-773.
    [29] Vitini E, Alvarez S, Medina M, et al. Gut mucosal immunostimulation by lactic acid bacteria [J]. Biocell, 2000, 24: 223-232.
    [30] Liong M T, Shah N P. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains [J]. J Dairy Sci, 2005, 88: 55-66.
    [31] Ding W K, Shah N P. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage [J]. J Food Sci, 2009, 74: M53-61.
    [32] Zhou X X, Pan Y J, Wang Y B, et al. In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides [J]. J Zhejiang Univ Sci B, 2007, 8: 686-692.
    [33] Collado M C, Meriluoto J, Salminen S. Adhesion and aggregation properties of probiotic and pathogen strains [J]. Eur Food Res Technol, 2008, 226: 1065-1073.
    [34] Kos B, Suskovic J, Vukovic S, et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92 [J]. J Appl Microbiol, 2003, 94: 981-987.
    [35] Chou L S, Weimer B. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus [J]. J Dairy Sci, 1999, 82: 23-31.
    [36] Ryan K A, Jayaraman T, Daly P, et al. Isolation of lactobacilli with probiotic properties from the human stomach [J]. Lett Appl Microbiol, 2008, 47: 269-274.
    [37] Greene J D, Klaenhammer T R. Factors involved in adherence of lactobacilli to human Caco-2 cells [J]. Appl Environ Microbiol, 1994, 60: 4487-4494.
    [38] Rojas M, Conway P L. Colonization by lactobacilli of piglet small intestinal mucus [J]. J Appl Bacteriol, 1996, 81: 474-480.
    [39] Nam H, Ha M, Bae O, et al. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori [J]. Appl Environ Microbiol, 2002, 68: 4642-4645.
    [40] Oh Y, Osato M S, Han X, et al. Folk yoghurt kills Helicobacter pylori [J]. J Appl Microbiol, 2002, 93: 1083-1088.
    [41] Servin A L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens [J]. FEMS Microbiol Rev, 2004, 28: 405-440.
    [42] Collado M C, Hernandez M, Sanz Y. Production of bacteriocin-like inhibitory compounds by human fecal Bifidobacterium strains [J]. J Food Prot, 2005, 68: 1034-1040.
    [43]刘勇.植物乳杆菌益生特性及产共轭亚油酸能力研究[D]: [硕士学位论文],呼和浩特,内蒙古农业大学, 2010.
    [44] Castagliuolo I, Galeazzi F, Ferrari S, et al. Beneficial effect of auto-aggregatingLactobacillus crispatus on experimentally induced colitis in mice [J]. FEMS Immunol Med Microbiol, 2005, 43: 197-204.
    [45] Del Re B, Sgorbati B, Miglioli M, et al. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum [J]. Lett Appl Microbiol, 2000, 31: 438-442.
    [46] Spencer R J, Chesson A. The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes [J]. J Appl Bacteriol, 1994, 77: 215-220.
    [47] Schachtsiek M, Hammes W P, Hertel C. Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens [J]. Appl Environ Microbiol, 2004, 70: 7078-7085.
    [48] Todorov S D, Botes M, Guigas C, et al. Boza, a natural source of probiotic lactic acid bacteria [J]. J Appl Microbiol, 2008, 104: 465-477.
    [49] Vlkova E, Rada V, Smehilova M, et al. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia [J]. Folia Microbiol (Praha), 2008, 53: 263-269.
    [50]田俊编.多因素分析与SAS应用[M] .福建:福建科学技术出版社, 1997.122-195.
    [51]陈洁.中温发酵酸乳品质的研究[D]: [硕士学位论文],无锡:江南大学, 2008.
    [1] Kusters J G, van Vliet A H, Kuipers E J. Pathogenesis of Helicobacter pylori infection [J]. Clin Microbiol Rev, 2006, 19: 449-490.
    [2] Lee A, O'Rourke J, De Ungria M C, et al. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain [J]. Gastroenterology, 1997, 112: 1386-1397.
    [3] Crabtree J E, Ferrero R L, Kusters J G. The mouse colonizing Helicobacter pylori strainSS1 may lack a functional cag pathogenicity island [J]. Helicobacter, 2002, 7: 139-140; author reply 140-131.
    [4] Go M F. Review article: natural history and epidemiology of Helicobacter pylori infection [J]. Aliment Pharmacol Ther, 2002, 16 Suppl 1: 3-15.
    [5] Ernst P B, Gold B D. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer [J]. Annu Rev Microbiol, 2000, 54: 615-640.
    [6] Kuipers E. Review article: exploring the link between Helicobacter pylori and gastric cancer [J]. Aliment Pharma Therap, 1999, 13: 3-11.
    [7] Richter J E. H pylori: the bug is not all bad [J]. Gut, 2001, 49: 319-320.
    [8] Khulusi S, Mendall M A, Patel P, et al. Helicobacter pylori infection density and gastric inflammation in duodenal ulcer and non-ulcer subjects [J]. Gut, 1995, 37: 319-324.
    [9] Yasar B, Abut E, Kayadibi H, et al. Efficacy of probiotics in Helicobacter pylori eradication therapy [J]. Turk J Gastroenterol, 2010, 21: 212-217.
    [10] Song M J, Park D I, Park J H, et al. The effect of probiotics and mucoprotective agents on PPI-based triple therapy for eradication of Helicobacter pylori [J]. Helicobacter, 2010, 15: 206-213.
    [11] Kamiya S. Helicobacter pylori infection and probiotics [J]. Nihon Saikingaku Zasshi, 2007, 62: 271-277.
    [12]刘翔,卢放根. SPF级BALB/c小鼠感染幽门螺杆菌的造模方法研究[J].临床和实验医学杂志, 2007, 6: 3-5.
    [13]杨瑞丽.高脂氧化应激对生长抑素分泌及肠,肝基因表达的影响[D]: [硕士学位学位论文],无锡:江南大学, 2008.
    [14]苗君莅,吴正钧,王荫榆等.两株乳酸菌在小鼠体内对幽门螺杆菌抑制作用的初探[J].工业微生物, 2009, 39: 39-41.
    [15] Esfandiari N, Sharma R K, Saleh R A, et al. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa [J]. J Androl, 2003, 24: 862.
    [16] Sutton P, Wilson J, Lee A. Further development of the Helicobacter pylori mouse vaccination model [J]. Vaccine, 2000, 18: 2677-2685.
    [17]Yamaoka Y, Kodama T, Gutierrez O, et al. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries [J]. J Clin Microbiol, 1999, 37: 2274-2279.
    [18] Clayton C, Kleanthous H, Coates P, et al. Sensitive detection of Helicobacter pylori byusing polymerase chain reaction [J]. J Clini Microbiol, 1992, 30: 192-200.
    [19]汪春莲.益生菌CL22治疗Balb/c小鼠慢性胃炎动物模型的实验研究[D].南昌:[博士学位论文],中南大学, 2007.
    [20]张亚历.胃肠疾病内镜、病理与超声内镜诊断彩色对照图谱[M].北京:军事医学科学出版社, 2000, 195-196.
    [21] Marchetti M, Arico B, Burroni D, et al. Development of a mouse model of Helicobacter pylori infection that mimics human disease [J]. Science, 1995, 267: 1655-1658.
    [22] Ghiara P, Marchetti M, Blaser M J, et al. Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease [J]. Infect Immun, 1995, 63: 4154-4160.
    [23]Johnson-Henry K C, Mitchell D J, Avitzur Y, et al. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice [J]. Digest Dis Sci, 2004, 49: 1095-1102.
    [24] Ferrero R L, Thiberge J M, Huerre M, et al. Immune responses of specific-pathogen-free mice to chronic Helicobacter pylori (strain SS1) infection [J]. Infect Immun, 1998, 66: 1349-1355.
    [25] Dunn B E, Cohen H, Blaser M J. Helicobacter pylori [J]. Clin Microbiol Rev, 1997, 10: 720-741.
    [26]Perez-Perez G I, Dworkin B M, Chodos J E, et al. Campylobacter pylori antibodies in humans [J]. Ann Intern Med, 1988, 109: 11.
    [27] Go M. Natural history and epidemiology of Helicobacter pylori infection [J]. Aliment Pharma Therap, 2002, 16: 3-15.
    [28] Loy C, Irwig L, Katelaris P, et al. Do commercial serological kits for Helicobacter pylori infection differ in accuracy? A meta-analysis [J]. Am J Gastroenterol, 1996, 91: 1138-1144.
    [29] Sgouras D, Maragkoudakis P, Petraki K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Appl Environ Microbiol, 2004, 70: 518-526.
    [30] Sakamoto I, Igarashi M, Kimura K, et al. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans [J]. J Antimicrob Chemother, 2001, 47: 709-710.
    [31]Lesbros-Pantoflickova D, Corthesy-Theulaz I, Blum A L. Helicobacter pylori and probiotics [J]. J Nutr, 2007, 137: 812-818.
    [32] Ryan K A, Daly P, Li Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. J Antimicrob Chemother, 2008, 61:831-834.
    [33]秦成勇.慢性胃炎与溃疡病[M].山东:山东科学技术出版社. 1998, 45-49.
    [34]马锋振,马洪升,余倩等.乳酸杆菌对H. pylori SS1诱导SGC7901细胞NF-κB活化和分泌IL-8的调节作用[J].四川大学学报:医学版, 2007, 38: 795-798.
    [35] Valle J, Sepp l K, Sipponen P, et al. Disappearance of gastritis after eradication of Helicobacter pylori: a morphometric study [J]. Scand J Gastroenterol, 1991, 26: 1057-1065.
    [36]陶惠,朱道银,邹全明等.自由基损伤在幽门螺杆菌相关胃病中的作用[J].世界华人消化杂志, 2003, 11: 1068-1072.
    [37] Chuang C H, Sheu B S, Huang A H, et al. Vitamin C and E Supplements to Lansoprazole-Amoxicillin-Metronidazole Triple Therapy May Reduce the Eradication Rate of Metronidazole-Susceptible Helicobacter pylori Infection [J]. Helicobacter, 2002, 7: 310-316.
    [38] Akyon Y. Effect of antioxidants on the immune response of Helicobacter pylori [J]. Clin Microbiol Infec, 2002, 8: 438-441.
    [39] Rocha G A, Queiroz D M, Mendes E N, et al. Helicobacter pylori acute gastritis: histological, endoscopical, clinical, and therapeutic features [J]. Am J Gastroenterol, 1991, 86: 1592-1595.
    [40] Harris P R, Ernst P B, Kawabata S, et al. Recombinant Helicobacter pylori urease activates primary mucosal macrophages [J]. J Infect Dis, 1998, 178: 1516-1520.
    [41] Kim T I, Lee Y C, Lee K H, et al. Effects of nonsteroidal anti-inflammatory drugs on Helicobacter pylori-infected gastric mucosae of mice: apoptosis, cell proliferation, and inflammatory activity [J]. Infect Immun, 2001, 69: 5056-5063.
    [42] Kido M, Tanaka J, Aoki N, et al. Helicobacter pylori promotes the production of thymic stromal lymphopoietin by gastric epithelial cells and induces dendritic cell-mediated inflammatory Th2 responses [J]. Infect Immun, 2010, 78: 108-114.
    [43] Beil W, Obst B, Sewing K F, et al. Helicobacter pylori reduces intracellular glutathione in gastric epithelial cells [J]. Dig Dis Sci, 2000, 45: 1769-1773.
    [44] Fosslien E. Mitochondrial medicine-molecular pathology of defective oxidative phosphorylation [J]. Ann Clin Lab Sci, 2001, 31: 25-67.
    [45] Pignatelli B, Bancel B, Plummer M, et al. Helicobacter pylori eradication attenuates oxidative stress in human gastric mucosa [J]. Am J Gastroenterol 2001, 96: 1758-1766.
    [46] Gilliland S E. Health and nutritional benefits from lactic acid bacteria [J]. FEMS Microbiol Rev, 1990, 7: 175-188.
    [47] Ito M, Sawada H, Ohishi K, et al. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice [J]. J dairy Sci, 2001, 84: 1583-1589.
    [48] Kullisaar T, Zilmer M, Mikelsaar M, et al. Two antioxidative lactobacilli strains as promising probiotics [J]. Int J food Microbiol, 2002, 72: 215-224.
    [49] Saide J, Gilliland S. Antioxidative Activity of Lactobacilli Measured by Oxygen Radical Absorbance Capacity [J]. J Dairy Sci, 2005, 88: 1352-1357.
    [50] Kapila S. Antioxidative and hypocholesterolemic effect of Lactobacillus casei ssp casei (biodefensive properties of lactobacilli) [J]. In J Med Sci, 2006, 60: 361.
    [51] Lin M Y, Yen C L. Antioxidative ability of lactic acid bacteria [J]. J Agr Food Chem, 1999, 47: 1460-1466.
    [52] Ou C C, Lu T M, TSAI J, et al. Antioxidative Effect of Lactic Acid Bacteria: Intact Cells vs. Intracellular Extracts [J]. J Food Drug Anal, 2009, 17: 209-216.
    [53] Wang A, Yi X, Yu H, et al. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing- finishing pigs [J]. J Appl Microbiol 2009, 107: 1140-1148.
    [54] Dickinson D A, Forman H J. Glutathione in defense and signaling: lessons from a small thiol [J]. Ann N Y Acad Sci, 2002, 973: 488-504.
    [55] Meister A. Methods for the selective modification of glutathione metabolism and study of glutathione transport [J]. Method Enzymol, 1985, 113: 571-585.
    [56] Kimura M, Goto S, Ihara Y, et al. Impairment of glutathione metabolism in human gastric epithelial cells treated with vacuolating cytotoxin from Helicobacter pylori [J]. Microb Pathog, 2001, 31: 29-36.
    [57] Shibayama K, Wachino J, Arakawa Y, et al. Metabolism of glutamine and glutathione via gamma-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism [J]. Mol Microbiol, 2007, 64: 396-406.
    [1] Fuller R. Probiotics in human medicine [J]. Gut, 1991, 32: 439-442.
    [2] Rolfe R D. The role of probiotic cultures in the control of gastrointestinal health [J]. J Nutr, 2000, 130: 396-402.
    [3] Kabir A M, Aiba Y, Takagi A, et al. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model [J]. Gut, 1997, 41: 49-55.
    [4] Coconnier M H, Lievin V, Bernet-Camard M F, et al. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB [J]. Antimicrob Agents Chemother, 1997, 41: 1046-1052.
    [5] Sgouras D, Maragkoudakis P, Petraki K, et al. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota [J]. Appl Environ Microbiol,2004, 70: 518-526.
    [6] Bergonzelli G E, Granato D, Pridmore R D, et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori [J]. Infect Immun, 2006, 74: 425-434.
    [7] Armuzzi A, Cremonini F, Bartolozzi F, et al. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy [J]. Aliment Pharmacol Ther, 2001, 15: 163-169.
    [8] Ouwehand A C, Isolauri E, Kirjavainen P V, et al. The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp. bulgaricus [J]. Lett Appl Microbiol, 2000, 30: 10-13.
    [9] Sakamoto I, Igarashi M, Kimura K, et al. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans [J]. J Antimicrob Chemother, 2001, 47: 709-710.
    [10] Rokka S, Pihlanto A, Korhonen H, et al. In vitro growth inhibition of Helicobacter pylori by lactobacilli belonging to the Lactobacillus plantarum group [J]. Lett Appl Microbiol, 2006, 43: 508-513.
    [11] Aiba Y, Suzuki N, Kabir A M, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model [J]. Am J Gastroenterol, 1998, 93: 2097-2101.
    [12] Barrett E, Hayes M, O'Connor P, et al. Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius [J]. Appl Environ Microbiol, 2007, 73: 3719-3723.
    [13] Deraz S F, Karlsson E N, Khalil A A, et al. Mode of action of acidocin D20079, a bacteriocin produced by the potential probiotic strain, Lactobacillus acidophilus DSM 20079 [J]. J Ind Microbiol Biotechnol, 2007, 34: 373-379.
    [14] Vandenbergh P A. Lactic acid bacteria, their metabolic products and interference with microbial growth [J]. FEMS Microbiol Rev, 1993, 12: 221-238.
    [15] Nam H H M, Bae O, Lee Y. Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori [J]. Appl Environ Microbiol 2002, 68: 4642–4645.
    [16] Ryan K A, Daly P, Li Y, et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli [J]. J Antimicrob Chemother, 2008, 61: 831-834.
    [17] Boirivant M, Strober W. The mechanism of action of probiotics [J]. Curr Opin Gastroenterol, 2007, 23: 679-692.
    [18] Kamiya S. Helicobacter pylori infection and probiotics [J]. Nippon Saikingaku Zasshi,2007, 62: 271-277.
    [19] Lesbros-Pantoflickova D, Corthesy-Theulaz I, Blum A L. Helicobacter pylori and probiotics [J]. J Nutr, 2007, 137: 812S-818S.
    [20] I.M. Helander, A.von Wright and T-M.Mattila-Sandholm. Potential of lactic acid bacteria and novel antimicrobials against Gram negative bacteria [J]. Molecular and Microbial Polymer Imprinting Technology, 1997, 8: 146-150.
    [21] Gill H S. Probiotics to enhance anti-infective defences in the gastrointestinal tract [J]. Best Pract Res Clin Gastroenterol, 2003, 17: 755-773.
    [22] Haller D, Bode C, Hammes W P, et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures [J]. Gut, 2000, 47: 79-87.
    [23] Cremonini F, Di Caro S, Covino M, et al. Effect of different probiotic preparations on anti-helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study [J]. Am J Gastroenterol, 2002, 97: 2744-2749.
    [24]潘素华,余倩,别明江. 4株人源乳酸杆菌体外黏附及抑制幽门螺杆菌黏附SGC-7901细胞的效果研究[J].卫生研究, 2007, 36: 618-621.
    [25] Lin W H, Lin C K, Sheu S J, et al. Antagonistic activity of spent culture supernatants of lactic acid bacteria against Helicobacter pylori growth and infection in human gastric epithelial AGS cells [J]. J Food Sci, 2009, 74: M225-230.
    [26] Kazuko. Shimada K F, Keiko. Yahara, Takashi. Nakamura. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil [J]. J Agric Food Chem, 1992, 40: 945–948.
    [27] de Avellar I G, Magalhaes M M, Silva A B, et al. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage [J]. Biochim Biophys Acta, 2004, 1675: 46-53.
    [28] Lin M Y, Yen C L. Antioxidative ability of lactic acid bacteria [J]. J Agric Food Chem, 1999, 47: 1460-1466.
    [29]周方方,吴正钧,王荫榆等.数学模型法研究L. casei LC2W对H. pylori SS1黏附MKN-45细胞的抑制作用[J].中国微生态学杂志, 2008, 20: 558-561.
    [30] Rokka S, Myllykangas S, Joutsjoki V. Effect of specific colostral antibodies and selected lactobacilli on the adhesion of Helicobacter pylori on AGS cells and the Helicobacter-induced IL-8 production [J]. Scand J Immunol, 2008, 68: 280-286.
    [31] Midolo P D, Lambert J R, Hull R, et al. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria [J]. J Appl Bacteriol, 1995, 79: 475-479.
    [32] Kullisaar T, Zilmer M, Mikelsaar M, et al. Two antioxidative lactobacilli strains as promising probiotics [J]. Int J Food Microbiol, 2002, 72: 215-224.
    [33] Kullisaar T, Songisepp E, Mikelsaar M, et al. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects [J]. Br J Nutr, 2003, 90: 449-456.
    [34] Amanatidou A, Smid E J, Bennik M H, et al. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations [J]. FEMS Microbiol Lett, 2001, 203: 87-94.
    [35] Songisepp E, Kullisaar T, Hutt P, et al. A new probiotic cheese with antioxidative and antimicrobial activity [J]. J Dairy Sci, 2004, 87: 2017-2023.
    [36] Ben-Shaul V, Sofer Y, Bergman M, et al. Lipopolysaccharide-induced oxidative stress in the liver: comparison between rat and rabbit [J]. Shock, 1999, 12: 288-293.
    [37] Ito M, Sawada H, Ohishi K, et al. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice [J]. J Dairy Sci, 2001, 84: 1583-1589.
    [38]张天博,宁喜斌.乳酸菌对自由基清除能力的研究[J].中国乳品工业, 2007, 35: 10-12.
    [39] Lin M Y, Chang F J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356 [J]. Dig Dis Sci, 2000, 45: 1617-1622.
    [40] Halliwell B, Gutteridge J M. Role of free radicals and catalytic metal ions in human disease: an overview [J]. Methods Enzymol, 1990, 186: 1-85.
    [41] Michetti P, Dorta G, Wiesel P H, et al. Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans [J]. Digestion, 1999, 60: 203-209.
    [42] Bernet M F, Brassart D, Neeser J R, et al. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria [J]. Gut, 1994, 35: 483-489.
    [43] Tsai C C, Huang L F, Lin C C, et al. Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39 [J]. Int J Food Microbiol, 2004, 96: 1-12.
    [44] Mukai T, Asasaka T, Sato E, et al. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri [J]. FEMS Immun Med Microbiol, 2002, 32: 105-110.
    [45] Mukai T, Kaneko S, Matsumoto M, et al. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin [J]. Int J food Microbiol, 2004, 90: 357-362.
    [46] Jankowska A, Laubitz D, Antushevich H, et al. Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells [J]. J Biomed Biotechnol, 2008, 2008: 357964.
    [47] MT Y A, Kabir A M A, Takagi A, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model [J]. Am J Gastroenterol, 1998, 93: 2097-2101.
    [48] Tamura A, Kumai H, Nakamichi N, et al. Suppression of Helicobacter pylori-induced interleukin-8 production in vitro and within the gastric mucosa by a live Lactobacillus strain [J]. J Gastroenterol Hepatol, 2006, 21: 1399-1406.
    [49]马锋振.体外研究乳酸杆菌对幽门螺杆菌SS1株生长及其诱导SGC7901细胞急性炎症反应的调节作用[D]: [硕士学位论文],成都:四川大学, 2006.
    [50]马锋振,马洪升,余倩等.乳酸杆菌对H. pylori SS1诱导SGC7901细胞NF-κB活化和分泌IL-8的调节作用[J].四川大学学报:医学版, 2007, 38: 795-798.
    [51] Nakachi N, Klein T W, Friedman H, et al. Helicobacter pylori infection of human gastric epithelial cells induces IL-8 and TNFalpha, but not TGFbeta1 mRNA [J]. FEMS Immunol Med Microbiol, 2000, 29: 23-26.
    [52] Matsumoto S, Washizuka Y, Matsumoto Y, et al. Appearance of a metronidazole-resistant Helicobacter pylori strain in an infected-ICR-mouse model and difference in eradication of metronidazole-resistant and -sensitive strains [J]. Antimicrob Agents Chemother, 1997, 41: 2602-2605.
    [53]李建芳,彭正华,肖红剑等.幽门螺杆菌napA基因在乳酸菌中的表达及免疫原性分析[J].中国生物工程杂志, 2008, 28(6): 77-83.
    [54] McCathey S N, Shomer N H, Schrenzel M D, et al. Colonization and tissue tropism of Helicobacter pylori and a novel urease-negative Helicobacter species in ICR mice are independent of route of exposure [J]. Helicobacter, 1999, 4: 249-259.
    [55] Johnson-Henry K C, Mitchell D J, Avitzur Y, et al. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice [J]. Dig Dis Sci, 2004, 49: 1095-1102.
    [56] Go M F, Crowe S E. Virulence and pathogenicity of Helicobacter pylori [J]. Gastroenterol Clin North Am, 2000, 29: 649-670.
    [57] Janssen Y, Van Houten B, Borm P, et al. Cell and tissue responses to oxidative damage [J]. Lab Invest, 1993, 69: 261-274.
    [58]胡伏莲,周殿元.幽门螺杆菌感染的基础与临床.北京:中国科学技术出版社.2002,147-148.
    [59] Chenoll E, Casinos B, Bataller E, et al. Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori [J]. Appl Environ Microbiol, 2011, 77: 1335-1343.
    [60] Sgouras D N, Panayotopoulou E G, Martinez-Gonzalez B, et al. Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6mice [J]. Clin Diagn Lab Immunol, 2005, 12: 1378-1386.
    [61] Ryan K A, O'Hara A M, van Pijkeren J P, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori [J]. J Med Microbiol, 2009, 58: 996-1005.
    [1] Guarner F, Schaafsma G J. Probiotics [J]. Int J Food Microbiol, 1998, 39: 237-238.
    [2] Samona A, Robinson R. Enumeration of bifidobacteria in dairy products [J]. Int J Dairy Technol, 1991, 44: 64-66.
    [3] Vinderola C G, Prosello W, Ghiberto T D, et al. Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese [J]. J Dairy Sci, 2000, 83: 1905-1911.
    [4]郭本恒.酸奶[M].北京:中国轻工业出版社, 2001.
    [5]郭本恒.功能性乳制品[M].北京:中国轻工业出版社, 2001.57-63.
    [6] Cats A, Kuipers E J, Bosschaert M A, et al. Effect of frequent consumption of a Lactobacillus casei-containing milk drink in Helicobacter pylori-colonized subjects [J]. Aliment Pharmacol Ther, 2003, 17: 429-435.
    [7]卢小平.筛选乳酸杆菌优良菌株的研究[J].中国饲料, 2001,9:21-22.
    [8]郭壮,王记成,闫丽雅等.益生菌Lactobacillus casei Zhang对酸奶风味,质地及感官特性的影响[J].中国乳品工业, 2009, 37: 14-20.
    [9]毛健,宁佳,赵建新等.不同酸奶发酵剂菌株发酵性质的评价[J].中国乳品工业, 2011: 8-11.
    [10]陈洁.中温发酵酸乳品质的研究[D]: [硕士学位论文],无锡:江南大学, 2008.
    [11]张凤敏.抗氧化益生乳酸菌的筛选[D]: [硕士学位论文],无锡:江南大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700