大米草耐盐基因SaNHX转化红麻及其耐盐性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是一个世界性问题,培育耐盐作物品种已成为一个日益紧迫而意义重大的研究课题。本研究选用福建农林大学作物遗传育种研究所从盐生植物大米草中克隆,并已经证实为大米草Na~+/H~+逆转运蛋白SaNHX基因作为遗传转化目的基因,利用花粉管通道法,将大米草耐盐基因SaNHX导入红麻新品种福红992,并获得了表达,其研究结果如下:
     (1)采用2种剂量和3种质粒浓度,通过子房注射法,对福红992进行转导,微注射处理共1933朵花,研究结果表明:两种不同转导剂量T_0结实率和出苗率差异不显著;3种不同质粒浓度T_0代结实率存在显著差异,其中Z-100-8结实率最佳,达65.5%;T_0的出苗率最好的是Z-300-8,为81.1%。
     (2)在转导的T_0代群体中,提取282份供试材料DNA,进行耐盐基因的PCR分子检测,检测到具有目的基因特征条带的阳性植株9份,实验转化率为3.19%,结果表明利用花粉管通道法对红麻转基因是行之有效的。
     (3)红麻幼苗耐盐性试验的结果表明,转基因红麻T_1代9个株系在0.71%的致死浓度处理下,种子发芽率和生长势明显优于对照红麻。苗高、苗重和根长分别平均比对照提高了2.04cm,0.23g和3.7cm。
     (4)三个不同时期的不同盐浓度处理试验的方差分析表明,耐盐转基因T_1代的株系幼苗成活率明显高于普通对照,差异均达极显著水平,其中编号176株系最佳,在0.3%、0.5%和0.71三种浓度下的幼苗成活率分别达100%,85%和60%;在盐胁迫(0.71%)处理下,生长10天的红麻幼苗比较苗高、苗重和根长,转基因耐盐植株与对照存在显著差异。在9个转基因株系中,176号植株最好,其苗高、苗重和根长的增长量分别比对照提高5.47cm、0.72g和4.54cm。
Soil salinization is a cosmopolitism problem. To cultivate and grow salt tolerant crop increasingly become an urgent and substantial research topic. This study selected the SaNHX gene which was cloned from Spartina anglica by Crop Genetics and Breeding Institute of Fujian Agriculture and Forestry University as a genetic transformation of the target gene, used pollen tube pathway, injected salt-tolerant gene SaNHX into new kenaf variety of fuhong992, and it has already expressed. The major results were as follow:
     (1) Using Ovary Injection, adopted 2 dosage and 3 concentration of plasmid transducted Fuhong 992, deal with 1933 flowers through microinjection treatment. The results indicated: in transgenic T_0 generation, there was no significant difference between the setting seed rate and the emergence rate of the 2 different dose. The setting seed rate and the emergence rate of T_0 generation of 3 concentration of plasmid have significant difference. The best setting seed was Z-100-8 to reach 65.5%; the best seedling emergence rate of T_0 generation is Z-300-8 to reach 81.1%.
     (2) Of transduction To generation, extracted DNA of 282 strains test materials to carry out salt tolerance PCR molecular detection, detected that 9 positive plants had objective gene characteristic bands, The transformation rate was 3.19% through this method. Under 0.71% concentration salt stress treatment, seed germination rate, and growth potential of these 9 positive plants were obviously better than the control, the increment of its seedling height , seedling weight and seedling root length were increased 2.04cm, 0.23g and 3.7cm. The results showed that pollen tube pathway was an effective way in kenaf transgene.
     (3) Variance analysis of different concentration of three different periods showed that seedling survival rate of Salt-toerance transgenic T_1 generation were obviously better than common control and differences all reached very significant level; the best was 176 strain, its seedling survival rate were 100%, 85% and 60% respectively under three concentrations: 0.3%、0.5% and 0.71%. Under Salt Stress (0.71%) , the height, the weight and the root length of seedling growth of 10 days were obviously better than the control.Of all the 9 transgenic strains, the best was No. 176 strain, the increment of its height, weight and root length were 5.47cm、0.72g and 4.54cm higher than those of control respectively.
引文
[1]程舟,鲛岛一彦等.日本的红麻研究加工和利用.中国麻业,2001,23(3),16-24
    [2]陈安国,李德芳等.红麻需求分析与育种技术发展趋势.中国麻业,2001,23(4):26-31
    [3]Rhoades JD,Loveday J.Salinity in irrigated agriculture.In American Society of Civil Engineers,Irrigation of Agricultural Crops(Monograph 30)(Steward BA and Nielsen DR,eds),1990.1089-1142,American Society of Agronomists.
    [4]赵可夫,李法曾主编.中国盐生植物.北京:科学出版社,1999,pp1
    [5]张宪政主编,作物生理研究法,北京:农业出版社,1989,195-200
    [6]张福锁主编,环境胁迫与植物育种,北京:农业出版社,1993,92-93
    [7]陈壬生,淹水和盐份胁迫对红麻生长发育的影响,中国农业科学院研究生院硕士学位论文
    [8]Shinozaki K,yanmaguchi-Shinozakiy K,Sekiz M.Regulatory network of gene expression in the drought and cold stresss responses.Current Opinion in Plant Biology,2003,6:410-417
    [9]Apse MP,Blumwald E.Engineering salt tolerance in plants.Current Opinion in Biotechnology,2002,13:146-150.
    [10]中国农业科学院麻类研究所主编,中国麻类作物栽培学(M),北京:农业出版社,1993 332-336.
    [11]赵可夫,植物抗盐生理[M].中国科技出版社,北京,1993
    [12]陈瑞珊.果树植物的耐盐力.河北农学报,1981,8(5):73-76.
    [13]张红.植物耐盐基因工程的研究(J).德州学院学报,2004,20(4):73-75.
    [14]Lynch J,Cramer GR,Lauchli A.Plant Physiology.1987,83:390-394.
    [15]王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na、Ca浓度的变化[J].作物学报,1997,23(1):27-33
    [16]王宝山,邹奇,赵可夫NaCl胁迫对高粱成熟叶质外体和共质体种Na~+、Ca2~+浓度的影响[J].应用与环境生物学报,1997,3(4):309-312.
    [17]Silberbush和Ben-Asher2001 Silberbush M,Ben-Asher J.Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration.Plant and Soil,2001,233:59-69
    [18]Tester M and Davenport R.Na~+ Tolerance and Na~+Transport in Higher Plants.Annals of Botany,2003,91(5):503-527.
    [19]Serrano和Roddguez,2002,Serrano R,Roddguez PL.Plants,genes and ions:Workshop on the molecular basis of ionic homeostasis and salt tolerance in plants.EMBO Reports 2002,32):116-119
    [20]王宝山,赵可夫,邹奇.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997a,14(增刊):25-30.
    [21]赵可夫,邹奇,李德全等.盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993,35:519-525.
    [22]Chow WS,Ball MC,and Anderson JM.Photosynthetic properties of spinach grown with variation in potassium nutrition under high or low salinity.[J].Australian Journal Plant Physiology,1990,17:563-578.)
    [23]Wang H.ICK1,a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3,and its expression is induced by abscisic acid.Plant J,1998,15:501-510.
    [24]Serrano R.Salt tolerance in plants and microorganisms:toxicity targets and deference responses.International Review of Cytology.1996,165:1-52
    [25]Bhandal IS,Malik CP.Potassium estimation,uptake,and its role in the physiology and metabolism of flowering plants.International Review of Cytology.1988,110:205-254
    [26]Blaha G,Stelzl U,Spahn CMT,et al.Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy.Methods in Enzymology,2000,317:292-309
    [27]Rausell A,Rodolphe K,Lynne Y,et al.The translation initiation factor elF1A is an important determinant in the tolerance to NaCl stress in yeast and plants.Plant J,2003,34(3):257-267
    [28]魏振林.cNHX1基因的融合、功能鉴定和对转基因草莓耐盐性影响的研究,博士学位论文
    [29]Aro E M,Virgin I,Anderson B.Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiance[J].Plant Physiol,1993,103:835.)
    [30]Everard J D,Gucci R,Kann S C,et al.Gas exchange and carbon partitioning in the leaves of celery(Aptiwn Graveolens L.)at various level of root zone salinity[J].Plant Physiol,1994,106:281-292.
    [31]朱新广,张其德.NaC1胁迫对PSⅡ光能利用和耗散的影响[J].生物物理学报,199915(4):787-790.
    [32]刘友良,汪良驹,植物对盐胁迫的反应和耐盐性。余叔文,汤章城主编:植物生理与分子生物学(第二版),科学出版社,1998.752-769
    [33]Dracup M.Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms.Australian Journal of Plant Physiology,1991,18:1-15
    [34]Winicov I.New molecular approaches to improving salt tolerance in crop plants.Annals ofBotany,1998,82:703-710
    [35]Breckle.How do halophytes overcome salinity.In:KhanMA.Biology of Salt To lerant Plants.IAU ngar,1995.199-203.
    [36]Hogarth PJ.The Biology ofMangroves.New York:OxfordUniversity Press,1999.923-927.
    [37]Levitt J.Responses of Plant to Environmental Stress Chilling,Freezing,and High Temperature Stresses,second ed.New York:Academic Press,1980.17-20.
    [38]廖岩,彭友贵,陈桂珠等.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2088.
    [39]BotellaM A,QuesadaM A,KononowiczAK,BressanR A,PliegoF,Hasegawa PM,ValpuestaV.Characterization and in-situ localization of a salt-induced tomato peroxidase messenger-RNA.Plant Mol.Biol.,1994,25:105-114.
    [40]Walbot V,Cullis C A.Rapid genomic change in higher plants.Annu.Rev.Plant Physiol.1985,36:367-396.
    [41]Bohnert HJ,Nelson DE,Jensen RG.Adaptations to environmental stresses.Plant Cell 1995,7(7):1099-1111.
    [42]Rus A,Yokoi S,Sharkhuu A,Reddy M,Lee BH,Matsumoto TK,Koiwa H,Zhu JK,Bressan RA.,and Hasegawa PM.AtHKT1 is a salt tolerance determinant that controls Na~+ entry into plant roots.Proc Natl Acad Sci USA,2001,98(24):14150-14155
    [43]Zhu JK.Genetic analysis of plant salt tolerance using Arabidopsis.Plant Physiol,2000,124:941-948
    [44]Zhu JK.Salt and drought stress signal transduction in plants.Annu Rev Plant Biol,2002,53:247-273
    [45]Mimura T,Kura-Hotta M,Tsujimura T,Ohnishi M,Miura M,Okazaki Y,Mimura M,Maeshima M,Washitani-Nemoto S.Rapid increase of vacuolar volume in response to salt stress.Planta,2003,216:397-402
    [46]Blumwald E,Aharon GS,Apse MP.Sodium transport in plant cells.Biochim Biophys Acta,2000,1465:140-151
    [47]Barkla B J,Zingarelli L,Blumwald E,Smith J.Tonoplast Na~+/H~+ Antiport Activity and Its Energization by the Vacuolar H~+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.Plant Physiol,1995,109(2):549-556
    [48]Mark Taster,Romola Davenport.Na~+ tolerance and Na~+ transport in high plants.Annals of Botanv.2003,91:503-527
    [49]Blumwald E.Sodium transport and salt tolerance in plants.Curr Opin Cell Biol,2000,12:431-434.
    [50]Dietz KJ,Tavakoli N,Kluge C,MimuraT,Sharma SS,Harris GC,Chardonnens AN,Golldack D.Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level Experimental Botany,2001,52(363):1969-1980.
    [51]Maeshima M.Tonoplast transporters:organization and function.Annu Rev Plant Physiol.Plant Mol.Biol.2001,52:469-497.
    [52]Shomer-Ilan A,Jones GP,Paleg LG.In vitro thermal and salt stability of pyruvate kinase are increased by proline analogues and trigonelline.Australian Journal of Plant Physiology 1991,18:279-286.
    [53]Hu YC,Schnyder H,Schmidhalter U.Carbohydrate deposition and partitioning in elongating leaves of wheat under saline soil conditions.Australian Journal of Plant Physiology 2000,27:363-370.
    [54]Seneoka H,Nagasaka C,Hahn DT,et al.Yang W-J,Premachandra GS,Joly RJ,Rhodes D.Salt tolerance of Glycinebetaine Deficient and Containing maize lines.Plant Physiol.1995,107:631-638
    [55]Flowers TJ,Dalmond,D.Protein synthesis in halophytes:the influence of potassium,sodium and magnesium in vitro.Plant and Soil 1992,146:153-161.
    [56]Solomon A,Beer S,Waisel Y,Jones GP,Paleg LG.Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes.Physialogia Plantarum 1994,90:198-204.
    [57]Ingram J,Bartels D.The molecular basis of dehydration tolerance in plants.Annual Review of Plant Physiology and Plant Molecular Biology.1996,47:377-403.
    [58]Campbell SA,Close TJ.Dehydrins:genes,proteins,and association with phenotypic traits.New Phytologia 1997,137:61-74
    [59]Xu D,Duan X,Wang B,Hong B,Ho T,Wu R.Expression of a Late Embryogenesis Abundant Protein Gene,HVA1,from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice.Plant Physiol.1996,110(1):249-257
    [60]Sugino M,Hibino T,Tanaka Y,Nii N,Takabe T,Takabe T.Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants.Plant Science 1999,146:81-88
    [61]Mansour MMF.Nitrogen containing compounds and adaptation of plants to salinity stress.Biologia Plantarum 2000,43:491-500.
    [62]Santa-Cruz et al.,Santa-Cruz A,Acosta M,Rus A,Bolarin MC.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species.Plant Physiol Biochem,1999,37(1):65-71.
    [63]Zhu JK.Plant salt tolerance[J].Trends in Plant Science.2001,6:66-71
    [64]Bohnert HJ,Ayoubi P,Song CP.et al.A genomie approach towards salt stress tolerance.Plant Physiology and Biochemistry.2001,39:295-311.
    [65]Bohnert HJ.Evolutionary conservation and uniqueness of salinity stress responses.In:Blumwald E,Rodriguez-Navarro A,eds.Workshop on molecular basis of ionic homeostasis and salt tolerance in plants.Madrid:Instituto Juan,2001,Match,49.
    [66]Wei J-Z,Tirajoh A.Effendy J,Plant AJ.Characterization of salt-induced changes in gene expression in tomato(Lycopersicon esculentum)roots and the role played by abscisic acid.Plant Science.2000,159:135-148.
    [67]Garciadeblas B,Banuelos MA,et al.Sodium transport and HKT transporters:the rice model.Plant Journal,2002,34(6):788-801.
    [68]Lauchli A.Salt exclusion:an adaptation of legumes for crop and pastures under saline conditions.In Salinity Tolerance in Plants(Staples RC and Toenniessen GH,eds),New York:John Wiley and Sons,1984,171-187
    [69]Lacan D,Durand M.Na~+/K~+ exchange at the xylem/symplast boundary(Its significance in the salt sensitivity of soybean).Plant Physiology,1996,110(22):705-711.
    [70]Clarkson DT,Hanson JB.Proton fluxes and the activity of a stelar proton pump in onion roots.Journal of Experimental Botany.1986,37:1136-1150.
    [71]Perez-Alfocea F,Balibrea ME,Alarcon J J,Bolarin MC.Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species.Journal of Plant Physiology,2000,156:367-374.
    [72]Matsushita N,Matoh T.Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in compareison with salt-sensitive rice plants.Physilolgia Plantarum,1991,83:170-176
    [73]Lohaus G,Hussmann M,Pennewiss K,et al.Solute balance of a maize(Zea mays L.)source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching.Journal of Experimental Botany.2000,51:1721-1732
    [74]Marcum KB.Salinity tolerance mechanisms of grasses in the subfamily Chlorodoideae.Crop Science.1999,39:1153-1160.
    [75]贾玉珍,朱禧月,唐予迪等.棉花出苗及苗期耐盐性指标的研究[J].河南农业大学学报,1987,21(1):30-40
    [76]傅秀云,崔光泉,林恒.冬小麦耐盐力与脯氨酸含量的关系[J].山东农业科学,1988(2)5-7
    [77]赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价[J].西北农业大学学报.1998,26(6):80-83.
    [78]袁海涛,博秀云,郝鲁湘,等.耐盐小麦主要农艺性状的表现及其与产量的关系[J].国外农学—麦类作物,1996(5):26-28.
    [79]余玲,田增荣,朱连嶂,等.小麦、黑麦及小黑麦的耐盐性研究[J].西北农业学报,1996,5(3):39-42
    [80]刘志生,鲁德.1号冬小麦耐盐力分析[J].中国农学通报,1996,12(3):21-22
    [81]周宜君,冯金朝,马文文等.植物抗逆分子机制研究进展[J].中央民族大学学报(自然科学版),2006,15(2):169-176.
    [82]杨晓慧,蒋卫杰,魏珉,等.提高植物抗盐能力的技术措施综述[J].中国农学通报,2006,22(1):88-91.
    [83]刘强,赵南明,K.Yamaguch-Shinozaki,K.Shinozaki.DREB转录因子在提高植物抗逆性中作用.科学通报,2000,45(1):11-16
    [84]Burckhardt G,Di Sole F,Helmle-Kolb C.The Na~+/H~+ exchanger gene family.J Nephrol.2002Mar-Apr;15 Suppl 5:S3-21
    [85]Blumwald E,Poole RJ.Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgarius,plant physiol.1985,78:163-167
    [86]Xiu-ling Ma,Quan Zhang,Hua-zhong Shi,Jian-kang Zhu,Yan-xiu Zhao,Chang-le Ma,Hui Zhang.Molecular cloning and expression analysis of the antiporter in Suaeda salsa.(accepted by Biologia Plantrum,will be published)
    [87]马秀灵.2002.盐地碱蓬SsNHX1基因的克隆及转基因拟南芥的培育(博士毕业论文)
    [88]Akira Hamada,Xia T,et al.Isolation and characterization of a Na~+/H~+ antiporter gene from the halophyte Atriplex gmelini.Plant Mol.Biol.2001,46:35-42
    [89]Staal M,Maathuis FJM,Elzenga TM,Overbeek HM,Prins HBA.Na~+/H~+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media.Physiologia plantarum.1991,82:179-184
    [90]Apse M P,Aharon G S,Apse M P.1999.Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis.Science,285:1256-1258
    [91]兰涛.大米草Na+/H+泵基因的克隆及其表达和功能分析.2005,博士学位论文
    [92]Wu SJ,Lei D,Zhu JK.SOS1,a genetic locus essential for salt tolerance and potassium acquisition[J].Plant Cell,1996,8:617-627
    [93]Liu J,Zhu JK.An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerence.Proc Natl Acad Sci USA,1997,94:14960-14964
    [94]Zhu JK,Liu J,Xiong L.Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition.Plant Cell,1998,10:1181-1191
    [95]王俊丽.植物转基因研究进展.中国民族大学学报(自然科学版)[J].2006,15(1):57-65
    [96]向阳,朱冬雪,夏雨等.植物基因工程中Ti质粒的研究与应用进展.生物学通报,2003,38(2):7-9]
    [97]王玉富等.亚麻外源DNA导入后代的氧化物同工酶分析.中国麻作,1996,(3):6-8
    [98]刘燕等.亚麻外源DNA导入后代的适宜时机与方法的研究.中国麻作,1997,(3):13-15
    [99]祁建民,李维明等.红麻种质资源创新的理论与实践,中国麻作,1999,21(1):43-44
    [100]林荔辉,祁建民,方平平等.红麻无刺新型品种金光1号的选育,中国麻作,2004,26(4):157-16
    [101]曹德菊,程备久等.红麻基因组提纯方法研究.中国麻作,1999,21:(1),9-12
    [102]曹德菊,李爱青等.花粉管法将外源抗除草剂基因导入红麻的有效方法及参数研究.中国麻作,2000,22:(1)1-5,
    [103]徐建堂.红麻Bt基因遗传转化及其遗传稳定性研究.2006,硕士学位论文
    [104]张莹,张永军,吴孔明等.转基因植物的检测策略和检测技术.植物保护,2007,33(1):11-14.
    [105]武长剑,范云六.水稻广亲和品种“02428”抗除草剂转基因植株的获得.农作物遗传工程,中国农业出版社,1996
    [106]毛慧珠,唐惕,曹湘玲等.抗虫转基因甘蓝及其后代的研究[J].中国科学(C辑),1996,26(4):339-347
    [107]Nilgun,E.T.M.keith,S.N.Richard,R.S.Patricia,N.B.Roger,T.F.Robert,and M.S.Dilip.Expression of alfalfa mosaic virus coat protein gene confers cross protection in transgenic tobacco and tomato plant[J].The EMBO Journal.1987,6(5):1181-1188.
    [108]萨姆布鲁克等.分子克隆实验指南(第二版)[M].金冬雁等译.北京:科学出版社.1998,19-27
    [109]卢圣拣主编.现代分子生物学实验技术[M].北京:中国协和医科大学出版社.1999,19-116,236-237
    [110]彭秀玲,袁汉英.基因工程实验技术[M].长沙:湖南科学技术出版社
    [111]朱玉贤,李毅.现代分子生物学(第二版).北京:高等教育出版社.2002,170
    [112]顾红雅,翟礼嘉等主编.植物基因与分子操作tM].北京大学出版社,1998,19-25
    [113]F.奥斯伯等编.颜子颖等译.精编分子生物学实验指南[M].科学出版社,1998,29-38,100-103
    [114]Clark M S主编.顾红雅,翟礼嘉主译.植物分子生物学——实验手册[M].高等教育出版社,1998,3-13
    [115]Paglia,et al.PCR-based multiplex DNA fingerprinting technques for the analysis of conifer genomes[J].1998.Molecrlar Breeding 4(2)April:173-177
    [116]Honeycutt RJ,keim P.and Irvine JE.A Rapid DNA extraction method of sugarcane and its relatives.Plant Mol.Biol.Rep.1992,10(1):60-67
    [117]Guillemaut P,Drouard L.M.Isolation of plant DNA:A fast,enexpensive,and reliable method [J].Plant Mol Bio Rep,1992,10(1):60-65
    [118]Zhou GY,Weng J,Zeng Y,et al.Introduction of exogenous DNA into ctton embryos[J].Meth Enzymol,1983,101:433-481.
    [119]马盾,黄乐平,黄全生,李建平,王浩,李晓荣等,花粉管通道法在棉花转基因上的应用.新疆农业科学,2004,41(1):29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700