两种薄子木属植物的引种栽培及耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对引进的桃花薄子木(Leptospermum squarrosum)、尖叶薄子木(Leptospermumparvifolium)两种薄子木属植物种子萌发、种子耐盐性、苗期生长表现、幼树物候、移栽生长表现等方面进行了试验及观测。初步掌握其在上海地区的生长规律、探讨了NaCl胁迫对其种子萌发和幼苗生长影响的生理生化机理。结论如下:
     (1)两种薄子木的生态适应性较强。在上海地区,大部分1年生小苗可安全越冬;在干热的初夏或湿热的夏末,苗木叶片及植株表现较为正常;在pH值达7.8的碱土上生长旺盛,可正常开花。两种薄子木可作绿篱、花篱,是观花树种,可在上海地区园林绿化、低湿滩地及生态景观造林中推广应用。其中,桃花薄子木(Leptospermum squarrosum)是稀缺的冬季观花树种。
     (2)随着浸种时间的延长,两种植物的浸种液电导率都呈逐渐增高趋势。桃花薄子木种子和尖叶薄子木种子的最佳浸种时间分别是21h和19h。
     (3)薄子木种子萌发时,胚根首先突破种皮,随后是下胚轴显著伸长。桃花薄子木种子和尖叶薄子木种子分别在第5d和第7d开始萌发,两种植物种子都是在萌发后的第3d达到最大萌发率。
     (4)随着NaCl浓度的升高,种子的萌发率随之下降。尖叶薄子木在1.5%的NaCl浓度下不萌发,而桃花薄子木在2%的盐浓度下不萌发;随着NaCl浓度的升高,种子的发芽势也随之下降。当NaCl浓度接近0.5%时,尖叶薄子木的发芽势一直低于桃花薄子木。
     (5)NaCl胁迫下,尖叶薄子木的发芽指数和发芽时间受到的影响更大,发芽指数下降得更明显且发芽时间推迟得更长;随着盐浓度的升高,芽长也随之下降。桃花薄子木的芽长出现较大下降趋势的盐浓度范围是1%~1.5%,而尖叶薄子木则是0.5%~1%。
     (6)NaCl胁迫下,桃叶薄子木幼苗株高在NaCl浓度为0.10%~0.30%时,相比对照组基本差别不大,略有升高,随着NaCl浓度继续升高,株高明显下降。但在0.30%的高盐浓度下仍能较好生长,因此,桃叶薄子木为优良的耐盐性植物。
     (7)随着NaCl浓度的升高,桃叶薄子木叶绿素含量逐渐升高;当NaCl浓度高于0.30%时,叶绿素含量则开始下降。脯氨酸和可溶性糖含量随着盐浓度的升高而升高,借以来维持细胞的渗透平衡。POD、SOD酶活性显著提高,当盐浓度过高时,酶活性迅速下降。MDA含量呈现先降低后升高的趋势。
In the paper, the traits of introduced Leptospermum squarrosum and Leptospermumparvifolium,including seed germination,salt tolerance of seeds,seedling growth,young treesphenology,seedlings transplanting were observed and tested. Also the growing rule ofLeptospermum spp. in Shanghai area was mastered preliminarily. At the same time, the effectof NaCl stress on seed germination and seedling growth was investigated. The results were asfollows:
     (1)Two species Leptospermum. were shown stronger ecological adaptability. In thewinter of Shanghai area, most of one-year–old seedlings could safely overwinter. In early drysummer and at the end of humid summer,leaves of seedlings and plants could normally grow,in the soil with pH7.8, the plants could normally blossom and bear fruit. L.squarrosum and L.parvifolium could not only be used as green hedges, flower hedges and ornamental plants, butalso be spread in landscaping wetland and ecological landscape afforestation in Shanghai area,among them, L. squarrosum was a rare plant which flowers could be seen in the winter.
     (2)The longer soaking time was,the lager soaking solution conductivity was. Theoptimal soaking time of the seed of L. squarrosum was21hours,while that of L. pavifoliumwas19hours.
     (3)Radicle broke through the seed coat,followed by a significant elongation ofhypocotyls during seed germination. L. squarrosum seed began to germinate at the5th daysafter seeding,and L. pavifolium seed geminated at7th days. Both of them reached the maximalgermination rate at the3th days after seed germination.
     (4)The seed germination rate went done with NaCl concentration increased. L.pavifolium had no seed germination under1.5%NaCl concentration stress, while the NaClconcentration of L. squarrosum with no seed germination was2%. With the NaClconcentration increasing, the germination potential decreased. And when the NaClconcentration closed to0.5%,the value of L. squarrosum was always lager than that of L.pavifolium.
     (5)Under NaCl stress, both the germination index and the50%germination time of L.pavifolium were affected greater than that of L. squarrosum. The germination index of L.pavifolium decreased faster and the50%germination time of it delayed longer.Shoot length ofLeptospermum pavifolium had a greater decline under the NaCl concentration range of1%to1.5%,while the range of L. pavifolium was0.5%to1%.
     (6)Under NaCl stress, the seedling height was as the same as CK, even taller than itwhen the concentration of NaCl was between0.10%~0.30%. With the concentration of salt increased, the plant height obviously decreased. However, L. squarrosum was a good salttolerance of plant because it growthed still good in the0.30%NaCl concentration stress.
     (7)With the concentration of NaCl increased, the content of chlorophyll graduallyincreased. When NaCl concentration was in a high condition, liked0.30%, the content ofchlorophyll decreased. The Pro and soluble sugar contents went up as the stress increased, formaintaining the penetration balance. And the POD and SOD activity enhanced obviously.When the NaCl concentration was in a high condition, the enzyme activity quickly reduced,but the content of MDA first increased, then decreased.
引文
[1]谢孝福.植物引种学[M].北京:科学出版社,1994.
    [2]刘克辉.中国古代植物引种的时间和理论[J].福建农业科技,1983,5:41-43.
    [3]张日清、何方.植物引种驯化理论与实践述评[J].广西林业科学,2001,30(1):1-5
    [4]刘胜祥.植物资源学[M].湖北:科学出版社,1994.
    [5]达尔文(方宗熙、叶晓译).动物和植物在家养下的变异[M].北京:科学出版社,1963.
    [6]王宁.澳大利亚和马来西亚引种植物在西双版纳的适应性研究[D].中国科学院研究生院(西双版纳热带植物园),2008.
    [7]吴岚.六种美国沙生灌木引种试验的初步研究[D].内蒙古农业大学,2004.
    [8]徐华金.几种彩叶植物的引种栽培及适应性研究[D].北京林业大学,2007.
    [9]陈俊愉.植物的引种驯化与栽培繁殖[J].植物引种驯化集刊,1966,2:1-6.
    [10]吴中伦主编.国外树木引种概况[M].北京:中国林业出版社,1983,10-11.
    [11]王豁然、江泽平.论澳大利亚植被与中国林木引种的关系[J].热带地理,1994,14(1):73-82.
    [12]王志春,梁正伟.植物耐盐研究概况与展望[J].生态环境,2003,12(1):106-109.
    [13]于海武,李莹.植物耐盐性研究进展[J].北华大学学报,2003,5(3):257-362.
    [14]宋丹,张华新.植物耐盐种质资源评价及耐盐生理研究进展[J].世界林业研究,2006,19(3):27-32.
    [15]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.
    [16]王波,宋凤斌植物耐盐性研究进展[J].农业系统科学与综合研究,2007,23(2):212-216.
    [17]陈秀兰.提高棉花抗盐性的途径[J].棉花学报,1998,10(2):64-67.
    [18]陈景明.植物耐盐逆性的研究概况[J].安徽农业科学,2006,3(414):3277-3278.
    [19]Chowdhury,M.A.M.,Moskei. Molecular biology of salt tolerance in the context of whole plant physiology[J].Plant andSoil,1995,171:317-322.
    [20]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40(9):1-2.
    [21]杨晓慧,蒋卫杰,魏珉.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305.
    [22]Maslenkova L T,Zanev Y,Popova L P. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barleythylakoids[J]. Plant Physiology,1993,142:629-634.
    [23]李艳华,杨敏生,王海英.树木抗盐生理研究进展[J].河北林果研究,2000,15(2):189-196.
    [24]马焕成.植物抗盐生理研究[J].西南林学院学报,1995,15(1):59-64.
    [25]Khatun S,Flowers T J. Effects of salinity on seed set in rice[J]. Plant Cell and Environment,1995,18:61-87.
    [26]Mateushita N,Matoh T. Chatscterrization of Na+exclusion mechanisms of salt-tolerant reed plantsin comparision withsalt-sensitive rice plants[J]. Physiologia Plantarum,1991,83:170-176.
    [27]朱进,别之龙.植物耐盐机理研究进展[J].长江大学学报,2008,5(4):87-91.
    [28]Voikmar K M,Hu Y, Steppuhn H. Physiological responses of plant salinity[J]. Can J Plant Sci,1998,78(1):19-27.
    [29]Michelet B,Boutry M. The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiologicalfunctions[J]. Plant Physiology,1995,108:1-6.
    [30]Volkmar K M,Hu Y,Steppuhn H. Physiological responses of plantsto salinity:a review[J]. Can J Plant Science,1998,78:19-27.
    [31]Apse M P,Aharon G S,Snedden W A,et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport inarabidopsis[J]. Science,1999,285:1256-1258.
    [32]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,85:752-769.
    [33]陈少良,李金克,毕望富.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    [34]赵可夫,范海.盐胁迫下盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报,2000,6(2):99-105.
    [35]Yoshbia Y,Kiyosue T,Nakashima K,et al. Regulation of levels of praline sa an osmolyyte in plants under water stress[J].Plant Cell Physical,1997,38:1095-1102.
    [36]许祥明,叶和春,李国风.植物抗盐机理的研究进展[J].应用与环境生报,2000,6(4):79-87.
    [37]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    [38]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,21(2):177-182.
    [39]邹天才,刘海燕,周洪英等.12种澳大利亚特优观赏植物的种子繁殖试验研究[J].种子,2007,26(12):1-4
    [40]国家林业局国有林场和林木种苗工作总站(陈俊愉译审,主译包志毅)世界园林乔灌木[M].北京:中国林业出版社,2004.
    [41]John Wrigley and Murray Fagg John Wrigley.Australian Native Plants.published by Reed Books, November1996.
    [42]张京伟,张德顺,刘庆华.上海从澳大利亚引种园林植物的种源地选择[J].中国园林,2010,7:83-85.
    [43]刘述河,丁朋松,金丽凤等.上海地区国外树种引种调查分析[J].中国农学通报,2011,27(31):305-309.
    [44]李颖,王恒明.不同浸种时间对辣椒种子发芽的影响[J].上海蔬菜,2003(1):23-27.
    [45]张兴志,张菊平.辣椒种子活力的研究进展[J].陕西农业科学,2006(5):74-76.
    [46]张文明,郑文寅.电导法测定大豆种子活力的初步研究[J].种子,2003,2:38-40.
    [47]张玲菊,黄胜利.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].江西农业大学学报,2008,30(5):834-835.
    [48]汪晓峰,丛滋金.种子活力的生物学基础及提高和保持种子活力的研究进展[J].种子,1997(6):36-39.
    [49]李剑峰.关于种子质量指标中加入发芽势的讨论[J].种子世界,2007(5):37.
    [50]钱春荣,王俊河.不同浸种时间对水稻种子发芽势和发芽率的影响[J].中国农学通报,2008,24(9):18-20.
    [51]张玲菊,黄胜利.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].西农业大学学报,2008,30(5):43-46.
    [52]景亚杰,韩益民.浅谈种子活力[J].种子世界,1999,(3):20.
    [53]张百俊,蒋学杰,张志安.不同浸种时间对辣椒种子活力的影响[J].河南职业技术师范学院学报,2003(1):22-25.
    [54]中国农学会遗传资源学会、中国农业科学院作物品种资源研究主编.作物抗逆性鉴定的原理与技术[M].北京农业大学出版社,1989,279-281.
    [55]闫先喜,马小杰.盐胁迫对大麦种子细胞膜透性的影响[J].植物学报,1995,12(增刊):53-54.
    [56]李树华,米海莉. NaCl胁迫对小麦发芽的影响试验研究[J].宁夏农林科技,2000,6:11-13.
    [57]叶梅荣,刘玉霞. NaCl胁迫对小麦发芽和幼苗生长的影响[J].安徽农业技术师范学院学报,2000,14(2):35-36.
    [58]李昀,沈禹颖. NaCl胁迫下5种牧草种子萌发的比较研究[J].草业科学,1997,14(2):50-54.
    [59]姜卫兵,马凯.无花果耐盐性生理指标的探讨[J].江苏农业学报,1991,7(3):29-33.
    [60]王建华,刘鸿先.超氧化物歧化酶在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,(5):1-7.
    [61]郑文菊,张承烈.盐生和中生环境中宁枸杞叶显微和超微结构的研究[J].草业科学,1998,7(3):72276.
    [62]MASL EN KOVA L T,ZANEV Y,POPOVA L P. Adaptation to salinity as monitored by PS Ⅱoxygen evolving reactionsin barley thylakoids[J]. Plant Physiology,1993,142:6292634.
    [63]Rao G C,Rao G R.Pigment composition and chlorophyllase activity in pigment pea and Gingelley under NaClSalinity[J].Indian.Journal Experimental Biology,1986,19:768-770
    [64]董晓霞,赵树慧,孔令安等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1988,15(5):10-13.
    [65]Strogonov B.P.. Structure and function of plant cell in saline habitats[M],New Yoke,Halsted Press,1973,78-83
    [66]尹增芳,何祯祥,王丽霞等.NaCl胁迫下海滨锦葵种子萌发和幼苗生长过程的生理特征性变化[J].植物资源与环境,2006(1):14-17
    [67]Strogonov,P.etal Structure and function of plant cells under salinity [M].Moscow Nawku,1970
    [68]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993:24-27,230,231
    [69]Romero Aranda R,Soria T,Cuartero J.Tomoto plant water up take and plant water relationships under saline growthconditions[J].Plant Science,2001,160:265-272
    [70]王羽梅,任安祥,潘春香等.长时间盐胁迫对苋菜叶片细胞结构的影响[J].植物生理学通讯,2004,40(3):289-292
    [71]王学征,韩文灏,于广建.盐分胁迫对番茄幼苗生理生化指标影响的研究[J].北方园艺,2004,22(1):41-45
    [72]任天应,张乃生,张进发.黄花菜耐盐能力的研究与生产应用[J].山西农业大学,1991,(9):13-15
    [73]杨涓,许兴.盐胁迫下植物有机渗透调节物质积累的研究进展[J].宁夏农学院学报,2003,24(4):86-91
    [74]吴能表,叶腾丰,王小佳.NaCl胁迫对豌豆幼苗生理生化指标的动态影响[J].西南农业大学学报(自然科学版),2006,(2):37-39
    [75]Kerepesi,Galiba G. Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings[J].BiolPlant,2000,(40):482-487
    [76]贺道耀,余叔文.水稻高脯氨酸愈伤组织变异体的选择及其耐盐性[J].植物生理学报,1995,21(1):65-72
    [77]黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报,1997,27(4):509-513
    [78]李如升,石德成. NaCl胁迫对甘草幼苗的生长及相关生理指标的影响[J].江苏农业科学,2010(2):257-258
    [79]姜卫兵,马凯.无花果耐盐性生理指标的探讨[J].江苏农业学报,1991,7(3),29-33
    [80]赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报,2005,31(1):103-106.
    [81]谭大海,沙伟,张莹莹.芦苇盐胁迫下渗透调节物质含量变化研究.齐齐哈尔大学学报(自然科学版),2006,22(2):84-86.
    [82]张建锋,孙启祥.盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响.水土保持学报,2005,19(3):125-129.
    [83]郑国琦,许兴.耐盐份胁迫的生物学机理及其基因工程研究进展.宁夏大学学报,2002,23(1):79-85.
    [84]陈坚,章宁,金桂英等.高温及盐胁迫对萍体电解质与脯氨酸的影响及其与抗盐性的关系[J].福建省农科院学报,1994,9(2):28-33.
    [85]Sreenivasulu N., Grimm B., Wobus U., and Weschke W.,2000,Differential response of antioxidant compounds tosalinity stress in salt-tolerant and salt-sensitive seedings of foxtail millet, Phsiol. Plant.,109:435-442.
    [86]郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].厦门大学学报,1998,37(2):278-282
    [87]刘琛,丁能飞.盐胁迫对三种蔬菜幼苗抗氧化酶活性的影响[J].安徽农业科学,2010,38(1):115-116
    [88]孙方行,孙明高.NaCl胁迫对紫荆幼苗保护酶系统的影响[J].中南林学院学报,2005,(6):34-37
    [89]郑丽锦.NaCl胁迫下草莓生理生化特性研究[J].河北农业大学硕士论文,2003,18-21
    [90]孙贵.盐胁迫对沙枣种子萌发以及幼苗生长的效应[M].山东师范大学硕士论文,2000,5-6
    [91]王建华,刘鸿先,戴若兰.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,(1):1-7
    [92]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(04):124-128.
    [93]王爱国.丙二醛作为脂质过氧化指标的探讨[J].植物生理学通讯,1986,2:55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700