用户名: 密码: 验证码:
九龙江冲淡水在台湾海峡西部扩展特征的观测与动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实测CTD数据、卫星遥感浊度资料为基础,分析了九龙江冲淡水在台湾海峡西部的水文特征和扩展模式;在径流量和遥感风场数据的基础上,探讨了九龙江冲淡水扩展方式的主要影响因素,并结合流体力学的知识和热力学统计模型对九龙江冲淡水的动力特征进行了研究;同时,本文还利用ROMS模式模拟了不同背景沿岸流下,理想化九龙江冲淡水的扩展情况,进一步了解理想化九龙江冲淡水对沿岸流的响应过程和动力机制。
     通过对2009-2012年6-7月厦门湾口附近海域CTD资料的分析表明,2009年、2010年和2012年夏季九龙江冲淡水以射流的形式经厦门湾进入台湾海峡西部;进入台湾海峡后,九龙江冲淡水在扩展的过程中可能会发生淡水块的脱落,形成孤立的低盐区。通过分析厦门湾口附近海域2008年11月和2012年2月航次的CTD资料,结果显示:冬季厦门湾口附近海域被低温、低盐水覆盖,这些低盐水不仅来自九龙江,也有可能是浙闽沿岸流或闽江冲淡水;2008年冬季航次期间,九龙江冲淡水不以射流的形式进入台湾海峡。
     利用二维射流理论知识对实测资料进行分析结果表明,东山附近上升流区的低温、高盐水在某些航次期间会在西南风的驱动下,以射流的形式流经厦门湾口附近海域,与九龙江冲淡水射流相互作用,影响九龙江冲淡水的水文特征和扩展方式。
     根据MODIS浊度资料和CTD资料,统计出夏季九龙江冲淡水主要有四种扩展形态:(1)沿岸向东北扩展的形态;(2)同时向东北和西南扩展的双向扩展形态,其中,2010年和2012年夏季航次期间,九龙江冲淡水的扩展形态属于这一类型;(3)集中在厦门湾口向外扩展的形态,除上述两个夏季航次外,其他航次期间九龙江冲淡水的扩展方式属于该类型;(4)离岸向东北方扩展形态。分析表明径流量、风场、沿岸流和地形均对九龙江冲淡水的扩展有影响。
     由于流场数据的缺乏,沿岸流对冲淡水的扩展有何影响不能定量描述,本文通过利用ROMS模型,设计在不同背景沿岸流的作用下,对理想化的九龙江冲淡水进行模拟,结果表明:背景沿岸流对冲淡水的扩展是有影响的,当背景沿岸流小于0.05m/s时,理想化九龙江冲淡水主要沿岸向西南扩展;当背景沿岸流大于0.05m/s时,冲淡水主要向东北方扩展,扩展形态与岸线成一定的夹角;理论分析与模型结果显示,当背景沿岸流为0.05m/s左右时,冲淡水趋于垂直于岸线,达到稳定状态。动量分析和理论分析表明,随着背景沿岸流的增加,冲淡水叠加在背景沿岸流之上,形成一个两层的垂直流速结构,上层的冲淡水处于准地转平衡状态,下层是由正压驱动的单向水流,动量平衡为正压和垂直涡动粘滞项,科氏力的作用变小。
On the basis of the in-situ CTD data and the satellite remote-sensing turbidity data, the hydrological characteristics and the expanding patterns of the Jiulongjiang River diluted water (JDW) have been studied. The paper has also analyzed the influencing factors. Then the knowledge of fluid dynamics and a terrestrial dissolved organic matter (DOM) distribution model have been applied to reveal the dynamics of JDW. Meanwhile, the model of Regional Ocean Modeling System (ROMS) has been used to simulate the flowing patterns of the idealized JDW (IJDW) with different background coastal currents (BCCs), and investigate the dynamic response and mechanisms of the IJDW to the BCCs.
     After analysing the CTD data around the Xiamen Bay mouth in June and July from the year of2009to2012, the results show that during the summer cruises of2009,2010and2012, the JDW debouches into the west Taiwan Strait in the form of jets through the Xiamen Bay. Four summertime cruises data also show that during the process of expanding, there may be patch of diluted water detaching from the main route of JDW. The wintertime cruise data in November2008and February2012show that low temperature and low salinity water covers the area around the Xiamen Bay mouth in winter, however, the low salinity water is not only from the Jiulongjiang River, but also part of the Zhemin coastal current or the Minjiang River diluted water; The results also reveal that during the winter cruise of2008, JDW does not flow into the west Taiwan Strai in the form of jet.
     By using the knowledge of jet to analyze the CTD data, this paper indicates that: as driven by the summer southwesterly wind, the upwelling-related Dongshan low temperature and high salinity water flows northeastward in the form of jet as well. To a certain degree, the Dongshan low temperature and high salinity jet may interact with the jets formed by the JDW, and then affect the hydrological characteristics and expanding patterns of the JDW.
     Based on the turbidity and CTD data, there are mainly four types of spreading patterns in summer for the JDW, including (1) going northeastward along the coastline,(2) extending northeastward and southwestward at the same time,(3) just spreading out near the Xiamen Bay mouth, and (4) flowing northeastward offshore. The results also indicate that the Jiulongjiang runoff, wind, the BCCs and topography all have effect on the extending patterns.
     Due to the lack of current data, it is hard to quantitatively describe the influence of BCCs on the spreading of the JDW, so the ROMS is utilized to simulate the IJDW under the conditions of different BCCs. The results demonstrate that BCCs may modify the spreading patterns of IJDW. When the BCCs are less than0.10m/s, the IJDW largely flows southwestward along the coast; when the BCCs are greater than0.10m/s, the IJDW mainly spreads northeastward with an angle to the coastline. The results of model and theoretical analysis show that, when the BCCs equal to0.05m/s, the route of IJDW is almost perpendicular to the coastline, reaching a steady state. At the same time, the theoretical and momentum analysis results also indicate that with the increasing of BCCs, diluted water overlays on the BBCs and forms a two-layer vertical velocity structure with the upper layer in quasi-geostrophic balance and the lower layer in a one-way flow driven by barotropy which is balanced by the vertical viscosity term, while the effect of Coriolis term is diminished in the lower layer.
引文
[1]Arnau P., Liquete C., Canals M. River mouth plume events and their dispersal in the northwestern Mediterranean Sea [J]. Oceanography,2004,17(3):22-31.
    [2]Ahn Y.H., Shanmugam P., Moon J.E., et al. Satellite remote sensing of a low-salinity water in the East China Sea [J]. Annales Geophysicae,2008,26: 2019-2035.
    [3]Bang I., Lie H.J. A numerical experiment on the dispersion of the Changjiang River plume [J]. Journal of the Korean Society of Oceanography,1999,34(4): 185-199.
    [4]Beardsley R.C., Limeburner R., Yu H. et al. Discharge of the Changjiang (Yangtze River) into the East China Sea [J]. Continental Shelf Research,1985,4: 57-76.
    [5]Binding C.E., Bowers D.G. Measuring the salinity of the Clyde Sea from remotely sensed ocean colour [J]. Estuarine, Coastal and Shelf Science,2003,57: 605-611.
    [6]Chant R.J., Glenn S.M., Hunter E., et al. Bulge formation of a buoyant river outflow [J]. Journal of Geophysical Research,2008a,113:C01017.
    [7]Chant R.J., Wilkin J., Zhang W.F., et al. Dispersal of the Hudson River plume in the New York Bight:Synthesis of observational and numerical studies during LaTTE [J]. Oceanography,2008b,21(4):148-161.
    [8]Chao S.Y. River-forced estuarine plumes [J]. Journal of Physical Oceanography, 1988a,18(1):72-88.
    [9]Chao S.Y. Tidal modulation of estuarine plumes [J]. Journal of Physical Oceanography,1990,20(7):1115-1123.
    [10]Chao S.Y. Wind-driven motion of estuarine plumes [J]. Journal of Physical Oceanography,1988b,18(8):1144-1166.
    [11]Chao S.Y., Boicourt W.C. Onset of estuarine plumes [J]. Journal of Physical Oceanography,1986,16:2137-2149.
    [12]Chen C.S., Xue P.F., Ding P.X, et al. Physical mechanisms for the offshore detachment of the Changjiang diluted water in the East China Sea [J]. Journal of Geophysical Research,2008,113:C020024.
    [13]Cheng P., Valle-Levinson A., de Swart H.E. A numerical study of residual estuarine circulation induced by asymmetric tidal mixing in tidally domainated estuaries [J]. Journal of Geophysical Research,2011,116:C01017.
    [14]Choi B.J., Wilkin J.L. The effect of wind on the dispersal of the Hudson River plume [J]. Journal of Physical Oceanography,2007,37:1878-1897.
    [15]Csanady G.T. The arrested topographic wave [J]. Journal of Physical Oceanography,1978,8:47-62.
    [16]De Boer G.J., Pietrzak J.D., Winterwerp J.C. SST observations of upwelling induced by tidal straining in the Rhine ROFI [J]. Continental Shelf Research, 2009,29:263-277.
    [17]De Kok J.M. A two-layer model of the Rhine plume [J]. Journal of Marine Systems,1996,8(3-4):269-284.
    [18]De Kok J.M. Baroclinic eddy formation in a Rhine plume model [J]. Journal of Marine Systems,1997,12(1-4):35-52.
    [19]De Kok J.M., de Valk C., Van Kester J.H.Th., et al. Salinity and temperature stratification in the Rhine plume [J]. Estuarine, Coastal and Shelf Science,2001, 53:467-475.
    [20]Del Vecchio, R., Blough, N.V. Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight [J]. Marine Chemistry,2004,89:169-187.
    [21]Dzwonkoski B., Yan X.H. Tracking of a Chesapeake Bay estuarine outfow plume with satellite-based ocean color data [J]. Continental Shelf Research,2005, 25(16):1942-1958.
    [22]Fong D.A, Geyer W.R. Response of a river plume during an upwelling favorable wind event [J]. Journal of Geophysical Research,2001,106 (C1):1067-1084.
    [23]Fong D.A., Geyer W.R. The alongshore transport of freshwater in a surface-trapped river plume [J]. Journal of Physical Oceanography,2002,32: 957-972.
    [24]Fong D.A., Geyer W.R., Signell R.P. The wind-force response on a buoyant coastal current:Observations of the western Gulf of Maine plume [J]. Journal of Marine System,1997,12:69-81.
    [25]Gan J.P., Li L., Wang D.X., et al. Interaction of a river plume with coastal upwelling in the northeastern South China Sea [J]. Continental Shelf Research, 2009,29:728-740.
    [26]Garcia-Berdeal I., Hickey B.M., Kawase M. Infuence of wind stress and ambient fow on a high discharge river plume [J]. Journal of Geophysical Research,2002, 107 (C9):3130.
    [27]Garvine R.W. A dynamical system for classifying buoyant coastal discharges [J]. Continental Shelf Research,1995,15(13):1585-1596.
    [28]Garvine R.W. A simple model of estuarine subtidal fluctuations forced by local and remote wind stress [J]. Journal of Geophysical Research,1985,90(C6): 11945-11948.
    [29]Garvine R.W. Dynamicas of small-scall oceanic fronts [J]. Journal of Physical Oceanography,1974a,4(4):557-569.
    [30]Garvine R.W. Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment [J]. Journal of Physical Oceanography,1999,29: 1892-1909.
    [31]Garvine R.W. Physical features of the Connecticut River outflow during high discharge [J]. Journal of Geophysical Research,1974b,79 (6):831-846.
    [32]Garvine R.W. The impact of model configuration in studies of buoyant coastal discharge [J]. Journal of Marine Research,2001,59,193-225.
    [33]Guo W.D., Yang L.Y., Hong H.S., et al. Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis [J]. Marine Chemistry,2011,124:125-133.
    [34]Harmelin-Vivien M., Dierking J., Banaru D., et al. Seasonal variation in stable C and N isotope ratios of the Rhone River inputs to the Mediterranean Sea (2004-2005) [J]. Biogeochemistry,2010,100:139-150.
    [35]Hickey B., Geier S., Kachel N., et al. A bi-directional river plume:The Columbia in summer [J]. Continental Shelf Research,2005,25:1631-1656.
    [36]Hong H.S., Zheng Q.A., Hu J.Y., et al. Three-dimensional structure of a low salinity tongue in the southern Taiwan Strait observed in the summer of 2005 [J]. Acta Oceanologica Sinica,2009,28(4):1-7.
    [37]Horner-Devine A.R. The bulge circulation in the Columbia River plume [J]. Continental Shelf Research,2009,29:234-251.
    [38]Horner-Devine A.R., Fong D.A., Monismith, S.G., et al. Laboratory experiments simulating a coastal river inflow [J]. Journal of Fluid Mechanics,2006,555: 203-232.
    [39]Hu J.Y., Fu Z.L., Wu L.X. Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait [J]. Chinese Journal of Oceanology and Limnology,1990,8(4):319-327.
    [40]Hu J.Y., Hong H.S., Li Y., et al. Variable temperature, salinity and water mass structures in the southwestern Taiwan Strait in summer [J]. Continental Shelf Research,2011,31:13-23.
    [41]Hu J.Y., Kawamura H., Hong H.S., et al. A review of research on the upwelling in the Taiwan Strait [J]. Bulletin of Marine Science,2003,73(3):605-628.
    [42]Hu J.Y., Kawamura H., Li C.Y., et al. Review on current and seawater volume transport through the Taiwan Strait [J]. Journal of Oceanography,2010,66: 591-610.
    [43]Hunter E.J., Chant R.J., Wilkin J.L., et al. High-frequency forcing and subtidal response of the Hudson River plume [J]. Journal of Geophysical Research,2010, 115:C07012.
    [44]Huq P. The role of Kelvin Number on bulge formation from estuarine buoyant outflows [J]. Estuarines and Coastal,2009,32:709-719.
    [45]Huq P., Avicola G. The characteristics of the recirculating bulge region in coastal buoyant outflows [J]. Journal of Marine Research,2003a,61(4):435-463.
    [46]Huq P., Avicola G. The role of outflow geometry in the formation of the recirculating bulge region in coastal buoyant outflows [J]. Journal of Marine Research,2003b,61(4):411-434.
    [47]Isobe A. Ballooning of river plume bulge and its stabilization by tidal currents [J]. Journal of Physical Oceanography,2005,35:2337-2351.
    [48]Jurisa J.T. Impact of cross-shelf winds and estuarine/coastal ocean coupling on buoyant plume systems [D]. PhD Dissertation, Rutgers University,2012.
    [49]Kasai A., Hill A.E., Fujiwara T., et al. Effect of the earth's rotation on the circulation in regions of freshwater influence [J]. Journal of Geophysical Research,2000,107(C7):16961-16969.
    [50]Kourafalou V.H. River plume development in semi-enclosed Mediterranean regions:North Adriatic Sea and Northwestern Aegean Sea [J]. Journal of Marine Systems,2001,30:181-205.
    [51]Kourafalou V.H., Lee T.H., Oey L.Y., et al. The fate of river discharge on the continental shelf 2. Transport of coastal low-salinity waters under realistic wind and tidal forcing [J]. Journal of Geophysical Research,1996,101 (C2): 3435-3455.
    [52]Kundu P.K. Fluid Mechanics [M]. San Diego:Academic Press,1990,478-481.
    [53]Lee J., Valle-Levinsion A. Bathymetric effects on estuarine plume dynamics [J]. Journal of Geophysical Research,2013,118:1969-1981.
    [54]Li M., Rong Z.R. Effects of tides on freshwater and volume transports in the Changjiang River plume [J]. Journal of Geophysical Research,2012,117: C06027.
    [55]Libes S. Introduction to Marine Biogeochemistry [M]. San Diego:Academic Press,2009,208.
    [56]Lie H.J., Cho C.H., Lee J.H., et al. Structure and eastward extension of the Changjiang River plume in the East China Sea [J]. Journal of Geophysical Research,2003,108 (C3):3077.
    [57]Lihan T., Saitoh S., Iida T., et al. Satellite-measured temporal and spatial variability of the Tokachi River plume [J]. Estuarine, Coastal and Shelf Science, 2008,78:237-249.
    [58]Liu B.C., Feng L.C. An observational analysis of the relationship between wind and the expansion of the Changjiang River diluted water during summer [J]. Atmospheric and Oceanic Science Letters,2012,5(5):384-388.
    [59]Liu Y.G., Weisberg R.H. Ocean currents and sea surface heights estimated across the West Florida Shelf [J]. Journal of Physical Oceanography,2007,37(6), 1697-1713.
    [60]Lu L.F., Shi J.Z. The dispersal and mixing processes within the plume of the Changjiang River estuary:Infuences of the M2, S2, Ki, and O1 tidal constituents in the flood and dry seasons [J]. Geophysical Research Abstracts,2008,10.
    [61]Lu L.F., Shi J.Z. The dispersal processes within the tide-modulated Changjiang River plume, China [J]. International Journal of Numerical Method in Fluids, 2007,55:1143-1155.
    [62]Luo Z.B., Pan W.R., Li L., et al. The study on three-dimensional numerical model and fronts of the Jiulong Estuary and the Xiamen Bay [J]. Acta Oceanol ogica Sinica,2012,31(4):55-64.
    [63]MacCready P., Banas N.S., Hickey B.M., et al. A model study of tide-and wind-induced mixing in the Columbia River Estuary and plume [J]. Continetal Shelf Research,2009,29:278-291.
    [64]Marsaleix P., Estournel C., Kondrachoff V., et al. A numerical study of the formation of the Rhone River plume [J]. Journal of Marine Systems,1998,14: 99-115.
    [65]Masse A.K., Murthy C.R. Observations of the Niagara River plume [J]. Journal of Physical Oceanography,1990,95:16097-16109.
    [66]Matano R.P., Palma E.D. The upstream spreading of bottom-trapped plumes [J]. Journal of Physical Oceanography,2010,40:1631-1650.
    [67]Mestres M., Sierra J.P., Sanchez-Arcilla A. Factors influencing the spreading of a low-discharge river plume [J]. Continental Shelf Research,2007,27:2116-2134.
    [68]Moffat C., Lentz S. On the response of a buoyant plume to downwelling-favorable wind stress [J]. Journal of Physical Oceanography,2012, 42:1083-1098.
    [69]Moon J.H., Hirose N., Yoon J.H., et al. Offshore detachment process of the low-salinity water around Changjiang Bank in the East China Sea [J]. Journal of Physical Oceanography,2010,40:1035-1053.
    [70]Moon J.H., Pang I.C., Yoon J.H. Response of the Changjiang diluted water around Jeju Island to external forcings:A modeling study of 2002 and 2006 [J]. Continental Shelf Research,2009,29:1549-1564.
    [71]Munchow A., Garvine R.W. Buoyancy and wind forcing of a coastal current [J]. Journal of Marine Research,1993,51:293-322.
    [72]Piola A.R., Romero S.L., Zajaczkovski U. Space-time variability of the Plata plume inferred from ocean color [J]. Continental Shelf Research,2008,28: 1556-1567.
    [73]Rennie S.E., Largier J.L., Lentz S.J. Observations of a pulsed buoyancy current downstream of Chesapeake Bay [J]. Journal of Geophysical Research,1999, 104(C8):18227-18240.
    [74]Reyes-Hernandez, C., Valle-Levinson, A. Wind modification to density-driven flows in sernienclosed, rotation basins [J]. Journal of Physical Oceanography, 2010,40:1473-1487.
    [75]Rong Z.R., Li M. Tidal effects on the bulge region of Changjiang River plume [J]. Estuarine, Coastal and Shelf Science,2012,97:149-160.
    [76]Ruddick K.G., Deleersnijder E., Mulder T.D.E., et al. A model study of the Rhine discharge front and downwelling circulation [J]. Tellus,1994a,46(2):149-159.
    [77]Ruddick K.G., Lahousse L., Donnay E. Location of the Rhine plume front by airborne remote sensing [J]. Continental Shelf Research,1994b,14(4): 325-332.
    [78]Saldias G.S., Sobarzo M., Largier J., et al. Seasonal variability of turbid river plumes off central Chile based on high-resolution MODIS imagery [J]. Remote Sensing of Environment,2012,123:220-233.
    [79]Schiller R.V., Kourafalou V.H., Walker N.D. The dynamics of the Mississippi River plume-impact of topography, wind and offshore forcing on the fate of plume waters [J]. Journal of Geophysical Research,2011,116:C06029.
    [80]Shi J.Z., Lu L.F. A short note on the dispersion, mixing, stratification and circulation within the plume of the partially-mixed Changjiang River estuary, China [J]. Journal of Hydro-environment Research,2011,5(2):111-126.
    [81]Shi W., Wang M. Satellite observations of flood-driven Mississippi River plume in the spring of 2008 [J]. Geophysical Research Letters,2009,36:L07607.
    [82]Shi Z., Lu L.F., Liu Y.N. The hydrodynamics of an idealized estuarine plume along a straight coast:A numerical study [J]. Environmental model Assess,2010, 15:487-502.
    [83]Shu Y.Q., Wang D.X., Zhu J., et al. The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model [J]. Ocean Modeling,2011,36:228-241.
    [84]Simpson J.H., Brown J., Matthews J., et al. Tidal straining, density currents, and stirring the control of estuarine stratification [J]. Estuaries,1990,13:125-132.
    [85]Sletten M.A., Marmorino G.O., Donato T.F., et al. An airborne, real aperture radar study of the Chesapeake Bay outflow plume [J]. Journal of Geophysical Research,1999,104(C1):1211-1222.
    [86]Thomas A.C., Weatherbee R.A. Satellite-measured temporal variability of the Columbia River plume [J]. Remote Sensing of Environment,2006,100:167-178.
    [87]Thomas L., David D., Malik C. Daily and seasonal dynamics of suspended particles in the Rhone River plume based on remote sensing and field optical measurements [J]. Geo-marine Letters,2012,32(2):89-101.
    [88]Vahatalo A.V., Wetzel R.G. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures [J]. Marine Chemistry,2004,89:313-326.
    [89]Visser A.W., Souza A.J., Hessner K., et al. The influence of water column stratification on tidal current profiles in a ROFI system [J]. Oceanologica Acta, 1994,17:369-381.
    [90]Walker N.D. Satellite assessment of Mississippi River plume variability:Causes and predictability [J]. Remote Sensing of Environment,1996,58(1):21-35.
    [91]Wang D.F., Zheng Q.A., Hu J.Y. Jet-like features of Jiulongjiang River plume discharging into the west Taiwan Strait [J]. Frontier of Earth Science,2013,7(3): 284-294.
    [92]Wang, X.C, Chen, R.F, Gardner, G.B. Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico [J]. Marine Chemistry,2004,89:241-256.
    [93]Warner J.C., Sherwood C.R., Arango H.G., et al. Performance of four turbulence closure models implemented using a generic length scale method [J]. Ocean Modeling,2005,8(1-2):81-113.
    [94]Weaver A.J., Hsieh W.W. The influence of buoyancy flux from estuaries on continental shelf circulation [J]. Journal of Physical Oceanography,1987,17: 2127-2140.
    [95]Weingartner T.J., Danielson S., Sasaki Y., et al. The Siberian Coastal Current:A wind and buoyancy-forced Arctic coastal current [J]. Journal of Geophysical Research,1999,104(29):697-713.
    [96]White J.R., Fulweiler R.W., Li C.Y., et al. Mississippi River flood of 2008: Observation of a large freshwater diversion on physical, chemical, and biological characteristics of a shallow estuarine lake [J]. Environmental Science & Technology,2009,43(15):5559-5604.
    [97]Wiseman W., Garvine R.W. Plumes and coastal currents near large river mouths [J]. Estuaries,1995,18 (3):509-517.
    [98]Wong L.A., Chen J.C., Dong L.X. A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season [J]. Continental Shelf Research,2004,24:1779-1795.
    [99]Wu Z.H., Huang N.E. A study of the characteristics of white noise using the empirical model decomposition method [J]. Proceedings of the Royal of Society A:Mathematical Physical & Engineering Sciences,2004,460:1597-1611.
    [100]Xing J., Davies A.M. Influence of shelf topography upon along shelf flow and across shelf exchange in the region of the Ebro Delta [J]. Continental Shelf Research,2002a,22 (10):1447-1475.
    [101]Xing J., Davies A.M. Influence of topographic features and along shelf fow upon the Ebro plume [J]. Continental Shelf Research,2002b,22(2):199-228.
    [102]Yan X.L., Zhai W.D., Hong H.S., et al. Distribution, fluxes and decadal changes of nutrients in the Jiulong River Estuary, Southwest Taiwan Strait [J]. Chinese Science Bulletin,2012,57(18):2307-2318.
    [103]Yankovsky A.E, Hickey B., Munchow A. Impact of variable inflow on the dynamics of a coastal buoyant plume [J]. Journal of Geophysical Research,2001, 106(C6):19809-19824.
    [104]Yankovsky A.E. The cyclonic turning and propagation of buoyant coastal discharge along the shelf [J]. Journal of Marine Research,2000,58(4):585-607.
    [105]Yankovsky A.E., Chapman, D.C. A simple theory for the fate of buoyant coastal discharges [J]. Journal of Physical Oceanography,1997,27:1386-1401.
    [106]You S.H., Eom H.M., Ryoo S.B. Numerical study of Typhoon effects on the Changjiang diluted water using an Operational Ocean Forecasting System [J]. Journal of Coastal Research,2011, Special Issue 64:1927-1930.
    [107]Zhang C.Y., Hong H.S., Hu C.M., et al. Evolution of a coastal upwelling event during summer 2004 in the southern Taiwan Strait [J]. Acta Oceanologica Sinica, 2011,30(1):1-6.
    [108]Zhang Q.H., Janowitz G.S., Pietrafesa L.J. The interaction of estuarine and shelf waters:A model and applications [J]. Journal of Physical Oceanography,1987, 17:455-469.
    [109]Zhang W.G., Wilkin J.L., Chant R.J. Modeling the pathways and mean dynamics of river plume dispersal in the New York Bight [J]. Journal of Physical Oceanography,2009,39:1167-1183.
    [110]Zheng Q.A., Chen Q., Zhao H.H., et al. A statistic-thermodynamic model for the DOM degradation in the estuary [J]. Geophysical Research Letters,2008,35: L06604.
    [111]Zheng Q.A., Clemente-Colon P., Yan X.H., et al. Satellite synthetic aperture radar detection of Delaware Bay plumes:Jet-like feature analysis [J]. Journal of Geophysical Research,2004,109:C03031.
    [112]Zhu J.R., Qi D.M., Xiao C.Y. Simulated circulations off the Changjiang (Yangtze) River mouth in spring and autumn [J]. Chinese Journal of Oceanology and Limnology,2004,22(3):286-291.
    [113]陈华,胡建宇,潘伟然,等.台湾海峡1999年8月表层温盐的走航式观测[J].海洋通报,2001,20(6):25-31.
    [114]陈金泉,傅子琅,何发祥,等.厦门湾潮、余流及其对泥沙、污染物质迁移的影响[J].台湾海峡,1985,1(4):16-19.
    [115]陈金泉,傅子琅,李法西.关于闽南-台湾浅滩渔场上升流的研究[J].台湾海峡,1982,2(1):5-13.
    [116]陈小红,胡建宇,邳青岭,等.厦门-泉州近岸海域海表温-盐度密集走航观测[J].地球科学进展,2009,24(6):629-635.
    [117]陈新忠.台湾海峡及其两岸沿海的潮流[J].海洋通报,1983,2(2):16-24.
    [118]丁文兰.台湾海峡潮汐和潮流的分布特征[J].台湾海峡,1983,2(1):1-8.
    [119]广东省海岸带和海涂资源综合调查人队.广东省海岸带和海涂资源综合调查报告[R].北京:北京海洋出版社,1987.
    [120]国家海洋局第三海洋研究所.厦门港海洋环境综合调查报告(Ⅰ)[J].台湾海峡,1987,4(6):337-357.
    [121]郭民权,江毓武.九龙江河口洪水期悬沙及冲於变化的数值模拟[J].厦门大学学报(自然科学版),2010,49(5):688-693.
    [122]郭婷婷,高文洋,高艺,等.台湾海峡气候特点分析[J].海洋预报,2010,27(1):53-58.
    [123]郭占荣,黄磊,袁晓婕,等.用镭同位素评价九龙江河口区的地下水输入[J].水科学进展,2011,22(1):118-125.
    [124]顾玉荷.长江冲淡水转向原因的探讨[J].海洋与湖沼,1985,16(5):154-163.
    [125]黄海宁,林彩,暨卫东,等.九龙江河口区营养盐分布特征及其影响因素分析[J].海洋通报,2012,31(3):290-296.
    [126]黄秀琴.九龙江流域水文特性[J].水利科技,2008,(1):16-20.
    [127]黄以琛,李炎,邵浩,等.北部湾夏冬季海表温度-叶绿素和浊度的分布特征及调控因素[J].厦门大学学报(自然科学版),2008,47(6):856-863.
    [128]黄自强,暨卫东.用水文化学要素聚类分析台湾海峡西部水团[J].海洋学报,1995,17(1):40-51.
    [129]胡建宇.台湾海峡及其邻近海区海洋动力环境特征的研究[D].博士毕业论文,厦门大学,2002.
    [130]胡建宇,刘敏士.夏季台湾海峡南部海区的海流结构[J].热带海洋,1992,11(4):42-47.
    [131]江毓武,陈宗团.厦门港三维潮流数值模拟[J].海洋工程,1998,16(4):66-73.
    [132]柯雪惠,胡建宇.台湾海峡南部的风场特征.见:闽南-台湾浅滩渔场上升流区生态系统研究[C].北京:科学出版社,1991:113-120.
    [133]乐肯堂.长江冲淡水路径的初步研究Ⅰ.模式[J].海洋与湖沼,1984,15(2):157-167.
    [134]乐肯堂.长江冲淡水路径问题的初步研究Ⅱ.风场对路径的作用[J].海洋与湖沼,1989,20(2):139-148.
    [135]乐肯堂.黄河口的变迁对黄河冲淡水分布的影响[J].海洋科学集刊,1995,36:81-92.
    [136]李法西,吴瑜端,王隆发,等.河口硅酸盐物理化学过程研究Ⅰ.活性硅含量分布变化及其影响因素的初步探讨[J].海洋与湖沼,1964,4(6):311-321.
    [137]李荣欣,王雨,康建华,等.九龙江河口水体叶绿素a含量和初级生产力的时空变化[J].台湾海峡,2011,30(4):551-558.
    [138]李伟锋,刘海峰,龚欣.工程流体力学[M].上海:华东理工大学,2009,119-132.
    [139]林建伟.ECOMSED模式在厦门湾海域潮流场模拟中的应用[J].福建水产,2008,(2):60-64.
    [140]刘广平,胡建宇,陈照章,等.九龙江口-厦门湾表层盐度分布特征及其与潮汐的关系[J].厦门大学学报(自然科学版),2008,47(5):710-713.
    [141]刘凤岳.黄河冲淡水及其混合锋面的观测研究[J].海洋科学,1989,5:33-36.
    [142]骆智斌,潘伟然,张国荣,等.九龙江口-厦门湾三维潮流数值模拟[J].厦门大学学报(自然科学版),2008,47(6):864-868.
    [143]卢丽锋.长江河口羽状流扩散与混合过程的数值模拟[D].博士论文,上海交通大学,2008.
    [144]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼,1963,5(3):183-206.
    [145]邳青岭,胡建宇,陈照章,等.2006年8月下旬福建沿海表层温-盐度分析[J].台湾海峡,2008,27(4):515-520.
    [146]浦泳修.关于东海北部表层的水系和环流[J].海洋科技资料,1981,5:23-25.
    [147]浦泳修,黄韦艮,许建平.长江冲淡水扩展方向的周、旬时段变化[J].东海海洋,2002,20(2):1-5.
    [148]王兵,李晓东.基于EEMD分解的欧洲温度序列的多尺度分析[J].北京大学学报(自然科学版),2011,47(4):626-635.
    [149]王伟强,黄尚高,顾德宇,等.福建九龙江口河海水混合特征[J].台湾海峡,1986,5(1):10-17.
    [150]王伟强,杨嘉东,黄尚高,等.九龙江口的比电导、盐度、氯度和活性硅酸盐[J].台湾海峡,1984,2(3):151-158.
    [151]王伟强,张远辉,黄自强.九龙江口-厦门港河口盐度锋面的特征[J].台湾海峡,2000,19(1):82-88.
    [152]王志豪.台湾海峡的潮汐[J].台湾海峡,1985,4(2):120-128.
    [153]温生辉,汤军健,黄自强,等.厦门港退潮锋面的动力分析[J].台湾海峡,1999,18(4):437-444.
    [154]袁耀初,苏纪兰,赵金三.东中国海陆架环流的单层模式[J].海洋学报,1982,4(1):1-11.
    [155]张福星,林建伟,崔培,等.九龙江河口区三维盐度数值计算及分析[J].台湾海峡,2008,27(4):521-525.
    [156]张庆华,Pietrafesa, L.J., Janowitz, G.S.河口卷流与沿岸流海水的相互作用[J].中国科学,A辑,1988,(6):610-624.
    [157]张远辉,王伟强,黄自强.九龙江口盐度锋面及其营养盐的化学行为[J].海洋环境科学,1999,18(4):1-7.
    [158]曾刚.厦门港海流分布特征[J].台湾海峡,1987,6(1):1-5.
    [159]郑文振,陈福年,陈新忠.台湾海峡的潮汐和潮流[J].台湾海峡,1982,1(2):1-4.
    [160]中国科学院南海海洋研究所.南海海区综合调查研究报告[R].北京:北京科技出版社,1985.
    [161]庄伟,胡建宇,贺志刚,等.2000年7-8月台湾海峡南部至珠江口附近海域表层温、盐度分析[J].热带海洋学报,2003,22(4):68-76.
    [162]朱佳.台湾海峡及邻近海域潮汐数值模拟与特征分析[D].硕士论文,厦门大学,2006.
    [163]朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测[J].海洋与湖沼,2003,34(3):249-255.
    [164]朱建荣,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟[J].海洋与湖沼,1997a,28(1):72-79.
    [165]朱建荣,沈焕庭.长江冲淡水扩展机制[M].上海,华东师范大学出版社,1997.
    [166]朱建荣,沈焕庭,周健.夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟[J].华东师范大学学报(自然科学版),1997b,(2):62-67.
    [167]朱建荣,沈焕庭,朱首贤.三维陆架模式及其应用——一个三维陆架模式及其在长江口外海区的应用[J].青岛海洋大学学报,1997c,27(2):145-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700