膜下滴灌棉田水盐平衡及淋盐需水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴灌一般不产生深层渗透,难以利用灌溉水淋洗盐分,盐分仅在土体中转移而无法消除。基于绿洲灌区农业的可持续发展考虑,长期采用膜下滴灌可能会存在潜在的生态风险。因此膜下滴灌水盐平衡关系与淋盐水量定量化研究已成为绿洲区农业可持续发展的研究重点与热点问题。
     本文首先从农田水盐运移特性、水盐模型及水盐平衡、淋盐水量等方面分析了膜下滴灌水盐动态及平衡的研究现状。发现膜下滴灌条件下,土壤盐分呈逐渐积累的趋势;缺乏对滴灌条件下淋盐方式、淋盐水量及膜下滴灌技术的适宜性评价研究。为此,通过三年膜下滴灌田间试验,从水盐动态及平衡,棉花根系、地上部生物量累积对水分的响应入手,分析了膜下滴灌节水效果、淋盐效果、棉花耐盐指标及膜下滴灌技术的适宜性。
     对膜下滴灌棉田水分动态及平衡的研究表明:土壤水分的水平分布表现为宽行>窄行>膜间。垂直方向,滴灌只能影响0-100 cm的土壤含水量,而100 cm以下基本相同。在3926-4265 m~3/hm~2滴灌量下,湿润峰可达100 cm,2947-3600 m~3/hm~2滴灌量下,湿润峰可达60 cm,而2618 m~3/hm~2滴灌量下,湿润峰只能达到40 cm深度。南疆膜下滴灌棉花生育期需水量543.2 mm。苗期最小,占生育期总需水量的10.0 %;花铃期最大,占53.0 %;蕾期占15.4 %;吐絮期占21.6 %。休闲期耗水量238.1 mm。计算得出最佳耗水区间为506.0-536.7 mm。滴溉量达3464 m~3/hm~2时,棉花产量最高为6361 kg/ hm2。
     膜下滴灌棉花根系、地上部生物量及产量对水分响应的研究发现:各水分处理棉花根系主要分布在膜下,占根系总生物量的60.7 %-73.5 %,而膜间仅占39.4 %-26.6 %。水分亏缺可以增加根系下扎深度及根系水平分布范围。膜下距离棉株24.1 cm,12.9 cm深度处,棉花根长密度最大为26.5 mm/cm3。水分过量处理(4265 m~3·hm~(-2))的棉花株高、倒四叶宽、果枝数、蕾数均增加,干物质积累速率加快,根冠比及干物质在营养器官中的分配比例增大,生物产量提高。但同时蕾铃脱落率也增加,经济产量降低。3600 m~3/hm~2滴灌量下,棉花干物质在不同器官及生育期的累积与分配最合理,可以获得高产。对膜下滴灌棉田土壤盐分分布特征及平衡的研究表明:土壤盐分呈“Y”状的空间分布特征。膜下土壤盐分含量小于膜间,呈“两头小、中间大”的分布,而膜间从下层到表层呈逐渐增大的趋势。随滴灌量增加,膜下土壤盐分峰值位置下移。滴灌结束后,膜下0-60及0-100 cm土壤平均含盐量均减小,脱盐率随滴灌量增大而增加。0-60 cm土层脱盐率在6.0 %到34.8 %;而膜间土壤积盐,积盐程度随滴灌量减小而增大。随滴灌年限增加,0-60 cm土壤含盐量逐年增加。在综合分析膜下滴灌的土壤盐分分布特征、淋盐效果及棉花耐盐性的基础上,建立了基于水盐平衡的“测盐配方”淋盐水量估算模型。并通过该模型估算了淋盐水量。初步确立了膜下滴灌的适宜性评价指标。
Drip irrigation is not able to generate deep permeability. The salt in soil can not be removed by leaching of irrigation water. Considering the sustainable development of irrigation agriculture in oasis, long-term drip irrigation under mulch may induce potential ecological risk. Therefore, the sustainable development of oasis agriculture is concentrated on the water and salt balance under the condition of drip irrigation below mulch and quantity of the salt-leaching water.
     Based on characteristics of water and salt transport of farmland, water and salt model, water and salt balance and leaching water quantity, the dynamics and balance of water and salt under the condition of drip irrigation under mulch were reviewed. Previous studies showed that soil salt accumulated gradually in drip irrigation under mulch, and the mode, salt-leaching water quantity and suitability assessment under such conditions were scarce. Therefore, through three-year field experiment on the water and salt dynamics and balance, the response of root system and aboveground biomass accumulation of cotton to soil moisture, the effects of water-saving and salt-leaching in drip irrigation under mulching and the salt-tolerant index of cotton were analyzed by which the water-saving mechanism of drip irrigation under mulching was revealed .
     Water dynamics and balance in cotton field under the condition of drip irrigation below mulch were studied. The results showed that the horizontal distribution of soil water content followed the order: width row land > narrow row land > bare land. The effects of drip irrigation on soil water content was limited within top 100 cm soils below which soil water content are similar. The wetting front was able to reach 100 cm in depth with the drip irrigation amount between 3926 and 4265 m3/hm2, and 60 cm between 2947 and 3600m3/hm2, 40 cm for 2618 m3/hm2. The growth period of cotton under the condition of drip irrigation below mulch in South Xinjiang.required 543.2 mm water. The water requirement in seedling, budding, flowering and bolling accounted for 10.0 %, 15.4 %, 53.0 % and 21.6 % of the total, respectively, minimum in seedling period and maximum in flowering and bolling period. The water consumption in fallow period was 238.1 mm. The optimal water consumption ranged between 506.0 and 536.7 mm. The cotton yield reached the highest, 6361 kg/hm2, when irrigation amount was 3464 m~3/hm~2.
     The root biomass under different irritation treatments was mainly distributed at mulched area, occuping 60.7 %-73.5 % of the total and correspondingly, 39.4 %-26.6 % at inter-mulch areas. Water stress increased the rooting depth, root biomass and the extent of lateral rooting. The maximum root length density is 26.5 mm/cm3, appearing at 24.1 cm away from the plants, 12.9 cm under the mulch. Over-irrigation increased the height, width of the inverse-fourth leaf, amounts of branch and square, thus accelerating the biomass accumulation rate. It also increased the root/shoot ratio and the proportion of biomass allocated to vegetative organs. However, over-irrigation increased the rate of fruit abscission and therefore reduced the economic yield. These results suggested that both excessive soil moisture and water stress could affect the biomass accumulation and allocation in different organs in various life stages. Under the conditions of the current experiments, 3600 m3·hm-2 seemed to be the optimal irrigation amount.
     Soil salt presented a Y-shaped distribution in space. The soil salt content under mulch was less than inter-mulch lands, presenting a characteristic of’low at two ends and high at the middle’within of the soil profiles. Differently, it increased gradually from the lower soil layers to soil surface at inter-mulch lands. The peak position of soil salt under mulch moved downward with the increases of drip irrigation amount. The average salt content in 0-60 cm and 0-100 cm soil layer decreased after drip irrigation. The desalinization rate increased with the increase of drip irrigation amount. In 0-60 cm soil layer, desalinization rate ranged between 6.0 % to 34.8 %. Soil salt of inter-mulch lands trended to accumulate, with the accumulation rate decreasing with the increase of drip irrigation amount. The average salt content in 0-60 cm soil layer increased with the time of drip irrigation. Based on water-salt balance, estimation method of salt content-dependent water requirement of salt-leaching was proposed, which was applied in current study. Furthermore, preliminary index system for suitability assessment of drip irrigation under mulch was established.
引文
[1]张军民,新疆绿洲的生态环境特点及区域开发规律研究.兵团教育学院学报,2004,14(1):1-4.
    [2]王少丽,杨继富,李杰,等.新疆盐渍化灌区水盐平衡现状及对策[J].中国农村水利水电,2006,(4):12-15.
    [3]寇俊卿,李自珍.干旱绿洲农业区水资源优化利用研究[J].干旱区地理,2007,30(3):370-374.
    [4] Goldberg D, GomatB, Rimon D. Drip Irrigation-Principle, Design and Agriculture Practices [M]. Israel: Drip Irrigation Scientific Publications, 1976.
    [5]姚振宪,何松林.滴灌设备与滴液系统规划设计[M].北京中国农业出版社,1999:2-3.
    [6]冯广龙,刘昌明,王立.土壤水分对作物根系生长及分的调控作用[J].生态农业研究,1996,4(3):5-9.
    [7]吕殿青,王全九,王文焰,等.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2000,20(1):28-31.
    [8]吕殿青,王文焰,王全九.滴灌条件下土壤水盐运移特性的研究[J].灌溉排水,2000,19(1):16-21.
    [9]李毅,王文焰,王全九.温度势梯度下土壤水平一维水盐运动特征的实验研究[J].农业工程学报,2002,18(6):4-8.
    [10]王新平,李新荣,康尔泅.干早沙区滴灌条件下水盐运移过程试验研究[J].干早地区农业研究,2002,20(3):44-48.
    [11]王全九,王文焰,汪志荣.盐碱地膜下滴灌技术参数的确定[J].农业工程学报,2001,17(2):47-50.
    [12]吕殿青,王全九,王文焰.膜下滴灌水盐运移影响因素研究[J].土壤学报,2002,39(6):794-802.
    [13]张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004,9:123-126.
    [14]吕殿青,王全九,王文焰,等.膜下滴灌土壤盐分特性及影响因素的初步研究[J].灌溉排水,2001,20(1):28-31.
    [15]苏莹,王全九,叶海燕,等.微咸水不同入渗水量土壤水盐运移特征研究[J].干旱地区农业研究,2005,23(4):43-48.
    [16]王全九,叶海燕,史晓南,等.土壤初始含水量对微咸水入渗特征影响[J].水土保持学报,2004,18(1):51-53.
    [17]周宏飞,马金玲.塔里木灌区棉田的水盐动态和水盐平衡问题探讨[J].灌溉排水学报,2005,24(6):10-14.
    [18]刘新永,田长彦.棉花膜下滴灌盐分动态及平衡研究[J].水土保持学报,2005,19(6):82-85.
    [19]王振华,吕德生,温新明,等.新疆棉田地下滴灌土壤水盐运移规律的初步研究[J].灌溉排水学报,2005,24(5):22-28.
    [20]马东豪,王全九,来剑斌.膜下滴灌条件下灌水水质和流量对土壤盐分分布影响的田间试验研究[J].农业工程学报,2005,21(3):42-46.
    [21]巨龙,王全九,王琳芳,等.灌水量对半干旱区土壤水盐分布特征及冬小麦产量的影响[J].农业工程学报,2007,23(1):86-90.
    [22]郭太龙,迟道才,王全九,等.入渗水矿化度对土壤水盐运移影响的试验研究[J].农业工程学报,2005,21增刊:84-87.
    [23]曾路生,石元亮,王晶,等.碱性矿化水灌溉对土壤溶质运移的影响[J].土壤与环境,2002,11(4):367-369.
    [24]李海峰,杨劲松,陈德明.植条件下不同调控措施对土壤盐分动态的影响特征[J].土壤通报, 2001,32(6):64-67.
    [25]徐力刚,杨劲松,张妙仙,等.作物种植条件下的土壤水盐动态变化研究[J].土壤通报,2003, 34(3):170-174.
    [26]徐力刚,杨劲松,张妙仙,等.微区作物种植条件下不同调控措施对土壤水盐动态的影响特征[J].土壤,2003,35(3):227-231.
    [27]姚荣江,杨劲松,刘广明.土壤盐分和含水量的空间变异性及其CoKriging估值—以黄河三角洲地区典型地块为例[J].水土保持学报,2006,20(5):133-138.
    [28]黄绍文,金继运.土壤特性空间变异研究进展[J].土壤肥料,2002(1):8-12.
    [29]徐英,陈亚新,周明耀.不同时期农田土壤水分和盐分的空间变异性分析[J].灌溉排水学报,2005,24(3):30-34.
    [30]徐英,陈亚新,史海滨,等.土壤水盐空间变异尺度效应的研究[J].农业工程学报,2004,20(2):1-5.
    [33 ]徐力刚,杨劲松,徐南军,等.农田土壤中水盐运移理论与模型的研究进展[J].干旱区研究,2004,21(3):254-258.
    [34] T. N. Narasimhan. Hydraulic characterization of aquifers, reservoir rocks and soils: A history of ideas [J]. Water Resources Research, Vol.34, No.1, 33-46, January 1998.
    [35]雷志栋.土壤水动力学[M].北京:清华大学出版社,1988.
    [36]李保国.农田土壤水的动态模拟及应用[M].北京:科学出版社,2000.
    [37]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.
    [38]戚隆溪,陈启生.土壤盐渍化的监测与预报研究[J].土壤学报,1997,34(2):189-199.
    [39]张展羽,郭相平.作物水盐动态响应模型[J].水利学报,1998,12:66-69.
    [40]张展羽,郭相平,乔保雨,等.作物生长条件下农田水盐运移模型[J].农业工程学报,1999,15(2):69-73.
    [41]姚德良,李新.干旱区绿洲棉田土壤水盐运动数值模拟[J].干旱区地理,1999,22(2):26-34
    [42]姚德良,朱进生,谢正桐,等.土壤水盐运动模式研究及其在干旱区农田的应用[J].中国沙漠, 2001,21(3):286-290.
    [43]徐力刚,杨劲松,张妙仙.土壤水盐运移的简化数学模型在水盐动态预报上的应用研究[J].土壤通报,2004,35(1):8-11.
    [44]徐力刚,杨劲松,张妙仙.种植作物条件下粉砂壤质土壤水盐运移的数值模拟研究[J].土壤学报,2004,41(1):50-55.
    [45]徐力刚,杨劲松,张奇.冬小麦种植条件下土壤水盐运移特征的数值模拟与预报[J].土壤学报,2005,42(6):923-929.
    [46]陈小兵,杨劲松,张奋东,等.基于水盐生产函数的绿洲灌区水盐调控研究[J].灌溉排水学报,2007,26(4):75-78.
    [47]孟江丽,董新光,周金龙,等.HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用[J].新疆农业大学学报,2004,27(1):45-49.
    [48]曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报,2003,9(2):139-145.
    [49]王福利.土壤水盐运动数学模型及水盐动态预报方法[A].俞仁培,尤文瑞.土壤盐化与碱化的防治[C].北京:科学出版社,1993.
    [50]杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J].水科学进展,1994,5(1):9-17.
    [51]胡安焱,高瑾,贺屹,等.干旱内陆灌区土壤水盐模型[J].水科学进展,2002,13(6):726-729
    [52]张妙仙,毛任钊.蒸发条件下农田土壤水盐动态简化模型[J].中国生态农业学报,2003,11(3):102-105.
    [53]徐力刚,杨劲松,张妙仙.土壤水盐运移的简化数学模型在水盐动态预报上的应用研究[J].土壤通报,2004,35(1):8-11.
    [54]董新光,姜卉芳,邓铭江,等.内陆盆地的盐分布与平衡分析研究[J].水科学进展,2005,16(5):638-642.
    [55]粟晓玲,康绍忠.生态需水的概念及其计算方法[J].水科学进展,2003,14(6):740-744.
    [56]王浩,秦大庸,郭孟卓.干旱区水资源合理配置模式与计算方法[J].水科学进展,2004,15(6):689-694.
    [57] Tennant DL. 1976. Instream flow regimens for fish, wildlife, recreation, and related environmental resources. In: Orsbom AJF and Atlman CH eds. Proceedings of Symposium and Specility Conference on Instream Flow NeedsⅡ[J]. Ame Fish Soci C. Bethesda, Maryland, (18): 800-812.
    [58] Lamb BL. 1989. Quantifying instream flows: matching policy and technology.Instream Flow Protection in the West M [M]. Covelo Island Press, CA: 23-29.
    [59] Mosely MP. 1982. The effect of changing discharge on channal morphology and in stream uses and in a bride river, Ohau River, New Zealand [J]. J Water Resour Resear, 18: 800-812.
    [60] Bovee KD. 1982. A guide to stream habitat analyses using the instream flow incremental methodology [J]. Instream F1ow Information.Washington: US Fish and Wildlife Service: 67-73.
    [61] Tharme RE. 1996. A review of the international methodologies for the quantification of the instream flow requirements of rivers[R]. Water Law Review Pollcy for Policy Development. Report to Department of Water Affairs and Forestry.116pp.
    [62]姜德娟,王会肖.生态环境需水量研究进展[J].应用生态学报,2004,15(7):1271-1275.
    [63]姜德娟,王会肖,李丽娟.生态环境需水量分类及计算方法综述[J].地理科学进展,2003,22(4):369-378.
    [64]张妙仙,杨劲松.灌溉入渗条件下农田土壤水盐动态简化模型及应用[J].土壤学报,2002,39(1): 81-87.
    [65]李取生,吴乐知,刘长江.中度苏打盐碱化土壤微咸水淋洗改良利用模式研究[J].干旱地区农业研究,2006,24(4):164-167.
    [66] Oster JD, Jayawardane NS. Agricultural management of sodic soils [A]. Sumner ME, Naidu R. Sodic Soils: Distribution, Management and Environmental Consequences[C]. New York: Oxford University Press, 1998. 126-147.
    [67]李现平,石国元,韩晓玲,等.棉花膜下滴灌土壤水盐运移规律浅析[J].中国农村水利水电,2004,8:14-15.
    [68]曹峰,徐勋,何玉梅.棉田秋冬灌洗盐压碱技术调查[J].中国棉花,2002,29(5):31-32.
    [69]宫兆宁,宫辉力,邓伟,等.浅埋条件下地下水-土壤-植物-大气连续体中水分运移研究综述[J].农业环境科学学报,2006,25(增刊):365-373.
    [70]刘广明,杨劲松.土壤蒸发量与地下水作用条件的关系[J].土壤,2002,3:141-144.
    [71]袁剑舫.土壤水分的蒸发及其影响因素[J].土壤学报,1964,12(4):471-481.
    [72] Gardner, W. R., Milton Fireman. Laboratory studies of evaporation from soil columns in the presence of a water table [J]. Soil Sci, 85: 244-249, 1958.
    [73] You Wen-rui, Meng Fan-hua, Xiao Zhen-hua. Study on salt-water dynamics in unsaturated silt loamy soils under evaporated condition in Huang-huai-hai plain, China: Current progress in soil research in People,s Republic of China[M]. 1986, Jiangsu Science and Technology Publishing House, 657-668.
    [74]尤文瑞,孟繁华,肖振华.蒸发条件下非饱和粉砂壤土水盐动态.见:俞仁培主编.土壤水盐动态和盐碱化防治[M].北京:科学出版社,1987,1-14.
    [75]尤文瑞,欧阳丽,孟繁华,王学锋.蒸发条件下非饱和粉砂壤土水盐动态.见:俞仁培主编.土壤水盐动态和盐碱化防治[M].北京:科学出版社,1987,40-49.
    [76]尉庆丰,王益权.无机盐和有机质对毛管水上升高度的影响[J].土壤学报,1989,26 (2): 193-198.
    [77]谢承陶,主编.盐渍土改良原理与作物抗性[M].北京:中国农业科技出版社,1993,157-173.
    [78]刘广明,杨劲松,李冬顺.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2005,39(3): 384-389.
    [79]孟繁华,尤文瑞,王复利.蒸发条件下非饱和黏土水盐动态的研究.见:俞仁培,尤文瑞,主编,土壤盐化、碱化的监测与防治[M],北京:科学出版社,1993,74-82.
    [80]欧阳丽,孟繁华,肖振华,等.蒸发条件下有黏土夹层粉砂壤土水盐动态.见:俞仁培,尤文瑞主编,土壤盐化、碱化的监测与防治[M],北京:科学出版社,1993,61-73.
    [81]刘福汉,王遵亲.潜水蒸发条件下不同质地剖面的土壤水盐运动[J].土壤学报,1993,30(2):173-181.
    [82]张妙仙,杨劲松.地下水埋深对土壤及地下水盐分影响的信息统计分析[J].土壤,2001,5:239-242.
    [83]乔冬梅,史海滨,霍再林.浅地下水埋深条件下土壤水盐动态BP网络模型研究[J].农业工程学报,2005,21(9):42-46.
    [84]唐海行,苏逸深,张和平.潜水蒸发的实验研究及其经验公式的改进[J].水利学报,1989,(10): 37-44.
    [85] Hide J C. Observation on factors influencing the evaporation of soil moisture [J]. Soil Sci Soc Amer Proc, 1954, 18: 234-239.
    [86]阿维里扬诺夫CΦ.防治灌溉土地盐渍化的水平排水设施[M].北京:中国工业出版社,1985.
    [87]瞿兴业,张友义,苏锦星,等.地下水蒸发与埋深关系指数n=3的非稳定渗流排水计算[J].水利学报,1983,(9):48-53.
    [88]赵华,张友义.地下水蒸发影响下农田排水沟(管)间距的非稳定渗流数值解[J].水利学报,1986,(11):35-38.
    [89]雷志栋,杨诗秀,谢森传.潜水稳定蒸发的分析与经验公式[J].水利学报,1984,(8):19-23.
    [90]来剑斌,王永平,蒋庆华,等.土壤质地对潜水蒸发的影响[J].西北农林科技大学学报(自然科学版),2003,31(6):153-157.
    [91] AryaL M, Paris J F. A physicoemp iricalmodel to predict the soil moisture characteristic from particle size distribution and bulk density data [J]. Soil Sci Soc Am J, 1981, 45: 1023-1030.
    [92] Wu L, Vomocil J A, Childs SW.Pore size, particle size, aggregate size, and water retention [J]. SoilSci Soc Am J, 1990, 54: 952- 956.
    [93]王文焰,张建峰.黄土的粒度组成与运动参数的相关性[J].水利学报,1991,(1):40-45.
    [94]王全九,邵明安.非饱和土壤导水特性分析[J].土壤侵蚀与水土保持学报,1998,(6): 16-22.
    [95]赵成义,胡顺军,刘国庆,等.潜水蒸发经验公式分段拟合研究[J].水土保持学报,2000,14(5):122-126.
    [96]史文娟,沈冰,汪志荣,等.夹砂层状土壤潜水蒸发特性及计算模型[J].农业工程学报,2007,23(2):17-20.
    [97]苏浩,单丽.辽宁中部平原区潜水蒸发影响因素及变化规律[J].东北水利水电,2007,25(278): 32-35.
    [98]杨建锋,万书勤.地下水对作物生长影响研究[J].节水灌溉,2002,(2):36-38.
    [99] Wesselings S R, Copper J D. The variability of recharge of the English Chalk Aquifer [J]. Agri Water management, 1983, 6: 243- 253.
    [100]戚尚恩,王侠,孙惠合.宿县浅层地下水变化规律及其对小麦、夏大豆产量的影响[J].中国农业气象,1994,15(6):34-35.
    [101]赵成义,黄俊梅,王玉潮,等.植物根系吸水特性研究[J].干旱区地理,1999,22(2):88-96.
    [102] Molz F J, Irwin Remson.Application of an extraction term model to study of moisture flow to plant roots [J]. Agronomy Journal, 1971, 63, 62-77.
    [103] Molz F J, Irwin Remson. Models of water transport in the soil2pant system: a review [J]. Water Resources Res, Oct, 1991, 17(5): 1245 - 1260.
    [104] Feddes R A, Bresler A E, Neuman S P. Field test of a modified numerical model for water uptake by root system [J]. Water Resources Res., 1974, 10, 1199-1206.
    [105] Hillel D, Talpaz H, Van Keulen. A macroscopic scale model of water uptake by a no uniform root system and of water and salt movement in the soil profile [J]. Soil Sci., 1976, 121, 242-255.
    [106] Rowse H R, Stone D A, Gerwitz A. Simulation of the water distribution in soil the model for the cropped soil and its comparison with experiment [J ]. Plant Soil, 1978, 49, 534-550.
    [107]邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型[J].土壤学报, 1987,24 (4):295-305.
    [108]赵成义.作物根系吸水特性研究进展[J].中国农业气象,2004,25(2):39-46.
    [109]罗毅,于强,欧阳竹,等.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进[J].水利学报,2004,4:73-80.
    [110]宋郁东,樊自立.中国塔里木河水资源与生态问题研究[M].乌鲁木齐:新疆人民出版社,2000,249-262.
    [111]张天曾.中国干旱区水资源利用与生态环境[J].资源科学,1981,(1):62-70.
    [112]李明思,康绍忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-35.
    [113]蔡焕杰,邵光成,张振华.荒漠气候区膜下滴灌棉花需水量和灌溉制度的试验研究[J].水利学报,2002,11:119-123.
    [114]慕蔡芸,马富裕,郑旭荣,等.覆膜滴灌棉田蒸散量的模拟研究[J].农业工程学报,2005,21(4): 25-29.
    [115]胡顺军,艾尼瓦尔.吾买尔,宋郁东,等.南疆棉田实际蒸散量的计算模式[J].干旱区研究,2001,18(1):40-42.
    [116]胡顺军,王举林,宋郁东.阿拉尔灌区棉田蒸散量计算模型[J].干旱区地理,2002,25(3) 241-244.
    [117]刘新永,田长彦,马英杰,等.南疆膜下滴灌棉花耗水规律以及灌溉制度研究[J].干旱地区农业研究,2006,24(1):108-112.
    [118] Smith M. Report on the expert consultation on revision of FAO methodologies for crop water requirement[R]. FAO Rome, 1991.
    [119]赵聚宝,徐祝龄,钟兆站,等.中国北方旱地农田水分平衡[M].北京:中国农业出版社,2000: 59.
    [120]陈效民,潘根兴,王德建,等.太湖地区农田生态环境中土壤饱和导水率研究[J].水土保持通报,2000,20(5):11-12.
    [121]刘思春,张一平,朱建楚,等.温度对非饱和水分运动的影响[J].西北农业大学学报,2000, 28(4):30-33.
    [122]陈效民,茆泽圣,刘兆普,等.大丰王港实验站滨海盐泽土饱和导水率的研究[J].南京农业大学学报,1994,17(4):134-137.
    [123]吕殿青,邵明安,刘春平.容重对土壤饱和水分运动参数的影响[J].水土保持学报,2006, 20(3):154-157.
    [124]方堃,陈效民,张佳宝,等.红壤地区典型农田土壤饱和导水率及其影响因素研究[J].灌溉排水学报,2008,27(4):67-69.
    [125]陈效民,峁泽圣,徐中详.滨海盐渍化土非饱和导水率的研究[J].南京农业大学学报,1995,18(3):68-71.
    [126]邵明安.非饱和土壤导水参数的推求理论[A].中国科学院西北水土保持研究所集刊,1991,13:13-25.
    [127]胡伟,邵明安,王全九,等.取样尺寸对土壤饱和导水率测定结果的影响[J].土壤学报,2005,42(6):1040-1043.
    [128] LY/T 1218-1999.森林土壤渗透性的测定.
    [129]王全九,王文焰,沈冰,等.田间非饱和土壤水分运动参数测定[J].农业工程学报,1998,14(2): 149-153.
    [130]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,(2):68-76.
    [131] Shao M A, Robert H, Integral method for estimating soil hydraulic properties [J]. Soil Sci. Soc. Am. J., 1998, 62: 585-592.
    [132]邵明安,王全九,Horton R.推求土壤水分运动参数的简单人渗法I.理论分析[J].土壤学报,2000,37(1): 9-16.邵明安,王全九,Horton R.推求土壤水分运动参数的简单入渗法II.实验验证.土壤学报,2000,37(2):18.
    [133]王金生,杨志峰,陈家军.包气带土壤水分滞留特征研究[J].水利学报,2000,1(2):1-6.
    [134]魏义长,刘作新,康玲玲.土壤持水曲线van Genuchten模型求参的Matlab实现[J].土壤学报,2004,41(3):380-386.
    [135]刘贤赵,李嘉竹,张振华.土壤持水曲线van Genuchten模型求参的一种新方法[J].土壤学报,2007,44(6):1135-1138.
    [136] Ayars J E, Phene C J, Hutmacher R B et. Al. Sub-surface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory [J]. Agricultural water Management, 1999, 42(1): 1-27.
    [137]李映强.赤红壤非饱和土壤水分扩散率及其影响因素[J].华南农业大学学报,1998,19(2):71-75.
    [138]谢森传,杨诗秀,雷志栋.水平人渗条件下溶质含量对土壤水分运动的影响和土壤水盐运动综合扩散系数Dsh(θ)的测定[J].灌溉排水,1989,8(1):6-12.
    [139]张富仓,张一平,张君常.土壤导水参数的温度效应及其数学模式[J].水利学报,1996,(12):8-15.
    [140]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988,30-34.
    [141]华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993,91.
    [142]张伟,吕新,李鲁华,等.新疆棉田膜下滴灌盐分运移规律[J].农业工程学报,2008,24(8):15-19.
    [143]柴付军,李光永,张琼,等.灌水频率对膜下滴灌土壤水盐分布和棉花生长的影响研究[J].灌溉排水学报,2005,24(3):12-15.
    [144]刘新永,田长彦.棉花膜下滴灌水氮耦合效应研究[J].植物营养与肥料学报,2007,13(2):286-291.
    [145]刘瑞显,郭文琪,陈兵林,等.干旱条件下花铃期棉花对氮素的生理响应[J].应用生态学报,2008,19(7):1475-1482.
    [146]杨志彬,陈兵林,周治国.施氮量对花铃期棉花果枝生物量累积时空变异特征的影响[J].应用生态学报,2008,19(10):2215-2220.
    [147]杨贵羽,罗远培,李保国,等.不同土壤水分处理对冬小麦根冠生长的影响[J].干旱地区农业研究,2003,21(3):104-109.
    [148]杨贵羽,罗远培,李保国,等.水分胁迫持续时间对冬小麦根冠生物量累积的影响[J].干旱地区农业研究,2006,24(4):94-98.
    [149]陈晓远,高志红,刘晓英,等.水分胁迫对冬小麦根、冠生长关系及产量的影响[J].作物学报,2004,30(7):723-728.
    [150]高志红,陈晓远,罗远培.不同土壤水分条件下冬小麦根、冠平衡与生长稳定性研究[J].中国农业科学,2007,40(3):540-548.
    [151]陈晓远,刘晓英,罗远培.土壤水分对冬小麦根、冠干物质动态消长关系的影响[J].中国农业科学,2003,36(12):1502-1507.
    [152]张立桢,曹卫星,张思平,等.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004, 37(11):1621-1627.
    [153]刘贤赵,康绍忠,夏卫生.水分胁迫与光照条件对棉花干物质和产量形成影响的数学模[J].应用生态学报,2002,13(9):1085-1090.
    [154] Bange MP, Milroy SP. Timing of crop maturity in cotton impact of dry matter production and partitioning [J]. Field Crops Research, 2000, 68: 143-155.
    [155] Pace PF, Cralle HT, Cothren JT, et al. Photosynthetic and drymatter partitioning in short and long season cotton cultivars[J]. Crop Science, 1999, 39: 1065-1069.
    [156]朱艳,吴华兵,田永超,等.基于冠层反射光谱的棉花干物质积累量估测[J].应用生态学报,2008,19(1):105-109.
    [157]马富裕,曹卫星,张立桢,等.棉花生育时期及蕾铃发生发育模拟模型研究[J].应用生态学报,2005,16(4):626-630.
    [158]赵都利,许玉璋,许萱.花铃期缺水对棉花干物质积累和用水效率的影响[J].干旱地区农业研究,1992,10(3):7-10.
    [159]方怡向,赵成义,串志强.膜下滴灌条件下水分对棉花根系分布特征的影响[J].水土保持学报,2007,21(5):96-100.
    [160]张旺锋,王振林,余松烈,等.膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响[J].中国农业科学,2002,35(6):632-637.
    [161]李永山,冯利平,郭美丽,等.棉花根系的生长特性及其与栽培措施和产量关系的研究Ⅱ栽培措施对棉花根系生长的影响及其与地上部和产量的关系[J].棉花学报,1992,4(2):59-66.
    [162]李俊义,刘荣荣,王润珍,等.北疆棉花根系分布规律研究[J].中国棉花,1999,26(6):18-26.
    [163]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273.
    [164]司建华,冯起,李建林,等.荒漠河岸林胡杨吸水根系空间分布特征[J].生态学杂志,2007,26(1):1-4.
    [165]吉喜斌,康尔泗,陈仁升,等.植物根系吸水模型研究进展[J].西北植物学报,2006,26 (5):1079-1086.
    [166]姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报,1989,(9):32-38.
    [167]康绍忠,刘晓明,熊运章.冬小麦吸水模式的研究[J].西北农业大学学报,1992,20 (2): 5-12.
    [168]虎胆·吐马尔拜.作物根系吸水的研究[J].新疆农业大学学报,1996,19(14):30-34.
    [169]邵爱军,李会昌.野外条件下作物根系吸水模型的建立[J].水利学报,1997,(2):68-72.
    [170]左强,孙炎鑫,杨培岭.应用Microlysimeter研究作物根系吸水特性[J].水利学报,1998,(6):69-76.
    [171]白文明,左强,李保国.乌兰布和沙区紫花苜蓿根系吸水模型[J].植物生态学报,2001,25(4):431-437.
    [172]迟道才,王宣,夏桂敏.水稻根系吸水模型的初步研究[J].灌溉排水学报,2004,23 (1): 56-61.
    [173]孟雷,左强.污水灌溉对冬小麦根长密度和根系吸水速率分布的影响[J].灌溉排水学报,2003,22(4):25-29.
    [174]刘春卿,杨劲松,陈小兵,等.滴灌流量对土壤水盐运移及再分布的作用规律研究[J].土壤学报,2007,44(6):1016-1021.
    [175]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [176]刘广明,杨劲松.地下水作用条件下土壤积盐规律研究[J].土壤学报,2003,40(1):65-69.
    [177]郭全恩,王益权,郭天文,等.半干旱地区环境因素与表层土壤积盐关系的研究[J].土壤学报,2008,45(5):957-962.
    [178]胡顺军,顾桂梅,李岳坦,等.塔里木河干流流域防治耕地盐碱化的生态需水量[J].干旱区资源与环境,2007,21(1):145-148.
    [179]王学峰,尤文瑞,王遵亲.表层盐化土壤的灌溉淋洗需要量[J].土壤学报,1994,31(2):190-196.
    [180]陈小兵,杨劲松,杨朝晖,等.渭干河灌区灌排管理与水盐平衡研究[J].农业工程学报,2008,24(4):59-64.
    [181]王俊,肖俊,王杰.新疆干旱内陆河灌区棉花膜下滴灌最优灌水参数的选定[J].水资源研究,2008,29(3):26-28.
    [182]岳卫峰,杨金忠,童菊秀,等.干旱地区灌区水盐运移及平衡分析[J].水利学报,2008,39(5):326-626.
    [183]董新光,姜卉芳,邓铭江,等.内陆盆地的盐分分布与平衡分析研究[J].水科学进展,2005,16(5):638-642.
    [184]周桃华.NaCI胁迫对棉子萌发及幼苗生长的影响[J].中国棉花,1995,22(4):1l-12.
    [185] Levitt J.Responses of Plants to Environmental Stress (2ed.) [M], 1980.
    [186]罗宾主编(陈恺元等译).棉花生理学[M].上海科技出版社,1983.
    [187]刘国强.棉花品种资源耐盐性鉴定研究[J].作物品种资源,1993,(2):21-22.
    [188]闫映宇,盛钰,冯省利,等.膜下滴灌的土壤水分对棉花根长密度分布及产量的影响[J].灌溉排水学报,2008,27(5):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700