黄腹角雉保护生物学研究遗传多样性和种群生存力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
濒危物种保护是野生动物管理和生物多样性保护工作的重要内容与任务。就地保护(On site conservation)和迁地保护(Off site conservation)是物种保护的两种主要形式,其主要目标是恢复和保存野生种群,并通过关键物种的保护,保存和维持生物多样性,进而达到生态系统的恢复与保护。濒危物种保护成功与否取决于种群的遗传多样性和种群生存力(Population viability),并与人工种群(Captive breeding population)建立与管理、野生种群重建(Re-introduction of population)、栖息地管理(habitat management)、保护地规划(Protected areas planning)和保护计划(Conservation action plan)制定与实施密切相关。黄腹角雉(Tragopan caboti)为中国特有珍稀鸟类,是世界极度濒危物种之一,仅分布我国浙江、福建、江西、湖南、广东和广西等省(区),野生个体数量估计在4000只左右,栖息地呈现严重的“岛屿化”和“片段化”。目前我国在该物种的主要分布区建立了30多处自然保护区,开展了就地保护工作;在北京和湖南建立了两个人工种群,在迁地保护方面取得了初步进展。目前国内外对黄腹角雉的遗传多样性和种群生存力分析方面的研究未见报道。本论文根据湖南黄腹角雉人工种群研究工作,重点探索了黄腹角雉引种驯化、疾病防治、人工繁殖、生态群养等人工种群建立和管理关键技术;采用随机扩增多态DNA (RAPD)分子标记技术对黄腹角雉野生群体和子三代4个群体遗传多样性进行了分析,并检验了远交人工繁殖效果;应用种群生存力分析软件Vortex 9.51进行了种群生存力分析。根据上述研究结果,总结了黄腹角雉保护技术,并提出了保护策略。通过上述领域的研究,掌握了黄腹角雉人工种群建立的关键技术,建立了国际最大的黄腹角雉人工繁殖种群,为黄腹角雉迁地保护和重建野生种群积累了经验和技术、储备了种源、提供了数据,并为进一步的相关基础科学研究提供了基地及材料。主要研究结果如下:
     1、探索了黄腹角雉人工种群建立的关键技术,研究总结了黄腹角雉引种驯化、疾病防治等人工种群管理的技术,提出了黄腹角雉人工种群建立的整套技术标准和参数。通过对引种的野生个体进行寄生虫普查,发现了黄腹角雉的主要寄生虫疾病有球虫病、黑头病,并积累了有效的治疗方法,为建立黄腹角雉人工种群进行引种、检疫和治疗提供了经验。通过对黄腹角雉5种危险性疾病和7种常见疾病进行研究,发现黄腹角雉与鸡、鸭、鹅等家禽疾病有许多共同点,可以交叉传染,为有效防治新城疫(Newcatlle Disease)、禽出败Avian Pasteurella)和大肠杆菌(Escherichia coli)等疾病提供了科学依据。并采用琼脂凝胶免疫扩散试验(AGID),发明了检测新城疫病毒快速检测方法。首次治愈黄腹角雉肉毒梭菌中毒症(Botulism),填补了黄腹角雉人工种群和野生种群的疾病防治空白。
     2、研究了黄腹角雉繁殖行为。根据黄腹角雉繁殖行为特点和要求,进行了生态群体繁育模式的研究。通过生态群养和配对笼养技术的对比研究,证明黄腹角雉的群居程度、活动区大小、植被和隐蔽性与繁殖率有密切关系,群养、较大的活动空间、茂密的植被对提高繁殖率更有效,平均每只雌性产卵8.5枚,比传统对养方式提高产蛋率50%,提高受精率32.3%,达82.6%。通过对黄腹角雉饲料营养成分分析及对比实验,为黄腹角雉各生长时期筛选出了较为合理的营养搭配和饲料配方。根据黄腹角雉的特殊的生物学特性,在育雏过程中采用了日龄营养配方、定期免疫措施等,育雏成活率达到了91.3%。
     3、摸清了黄腹角雉繁殖规律。通过连续8年观察研究,发现黄腹角雉雄性较雌性发情早而明显。由于发情不一致,导致受精率下降,是该物种繁殖率低和致危的一个主要原因。在人工孵化研究中,发现黄腹角雉的应激反应强,其产卵数量比野生状态下增加3倍。黄腹角雉在野外年平均产卵3枚。在人工养殖条件下3月初即开始产卵,每只雌性平均年产卵量8.5枚。2002年H2号笼一只雌性年产卵19枚,是野外产卵量的6倍,说明该物种具有较大的存活潜力。研究发现雌性有25-30%的繁殖个体第二年即能产下受精卵,而且成功孵化出幼鸟,但未发现同龄雄性能成功繁殖,说明黄腹角雉的雄性比雌性性成熟更晚。
     4、进行了黄腹角雉人工繁育方案对比研究。通过采取1雄1雌、1雄多雌、多雄多雌等3类配比繁育方案研究,结果表明以多雄多雌效果为好,多雄多雌中又以雄性多于雌性最好,其受精率和孵化率分别为83.1%和89.2%,显著高于其他组别的相应指标。说明该物种的生存竞争策略倾向于K选择,即以较大的雄性比例来提高有效种群数量,进而控制整个种群的数量,以保证种群基因的杂合度。
     5、掌握了黄腹角雉人工孵化技术和关键技术指标。孵化临界温度控制在37.5℃,湿度控制在65-75%,出雏温度控制在36.5℃,湿度控制在65-100%,孵化率达到了89.2%。这些条件要求,特别是孵化温度和出雏湿度,与家鸡、环颈雉及基地同时养殖的红腹锦鸡、白颈长尾雉等雉类要求有很大的差别,孵化临界温度和出雏较上述雉类低,而湿度要求高。
     6、采用随机扩增多态DNA (RAPD)和微卫星(SSR)技术,首次对黄腹角雉野生群体和子四代5个群体遗传多样性进行了检测。检测结果显示,野生群体的遗传多样性高于人工繁殖群体,并随着世代更替,遗传多样性逐渐降低。
     7、分析了野生和人工繁殖四代5个群体遗传相似率和遗传距离。计算了黄腹角雉任意两个个体之间的遗传相似系数和遗传距离,构建出黄腹角雉遗传距离距阵,野生与人工繁殖群体的相似系数,随着世代更替递减,而遗传距离逐渐加大。子代F1、F2、F3、F4与亲本的遗传距离是逐渐增大的,逐代分化,并且分化程度逐代加大。
     8、对野生和人工繁殖群体遗传变异进行了研究。与遗传相似系数和遗传距离分析的结果一致,即随着世代更替,遗传相似系数逐渐降低,而遗传距离逐渐加大。遗传变异主要来自于群体内。
     9、对五个群体黄腹角雉的10个位点进行了哈迪-温伯格遗传平衡偏离指数(Hardy-Weinberg genetic equilibrium)分析。通过对各群体的多位点检测,野生群体和子一代中的平均哈迪—温伯格遗传平衡偏离指数显示过剩,在子二代、子三代和子四代中的平均哈迪—温伯格遗传平衡偏离指数显示缺失,且随着世代的更替缺失曾现递增趋势。本研究发现人工繁殖群体子二代、子三代和子四代在MCW330,、MCW29、MCW34三个座位杂合子严重缺失。
     10、检测了黄腹角雉人工种群生存力。应用旋涡模型(Vortex 9.51)软件,根据8年的连续观测研究数据,进行了50年100次模拟,结果表明,在考虑人为因素、近交压力和环境方差影响的前提下,假设容纳量为500±50(SD=0.1)只,在无收获(猎捕)、内禀增长率r为0.113(SD=0.238,PE=0.1)。在各种因素的综合作用下,种群达到环境容纳量之前的随机增长率为0.053(SD=0.238,PE=0.1);在达到环境容纳量前的平均增长率为0.0458(SE=0.0035;SD=0.2401)。最后种群数量(包括现存和灭绝情形)平均为348.35只(SE=14.57,SD=145.72),在有灭绝情形下的最后种群数量平均为362.56(SE=13.23,SD=129.67)。种群的世代长度为4.85年,即平均每4.85年种群基因交换一次,其中雌性为4.16年,雄性为5.45年。周限增长率λ为1.12(倍/年),净增长率RO为1.604;成年雄性数量是成年雌性的1.259倍。每25次模拟中至少发生一次灭绝,在50年中有4次灭绝。
     11、进行了致危因子的敏感性分析。对黄腹角雉繁殖率、死亡率、性比、灾害、环境容纳量、初始种群数量和异质种群效应等影响种群动态因子进行了敏感性检测。通过研究分析,找出了影响黄腹角雉种群存活的关键因子。雌性繁殖率、幼鸟死亡率、环境容纳量、初始种群数量和亚种群数量为关键致危因子;致死基因当量的变化,对小种群作用明显,并确定了黄腹角雉最小存活种群(MVP)、重建野生种群初始种群大小和性比等关键技术参数。
     12、探讨了黄腹角雉种群特征。通过对黄腹角雉种群生存力分析和结合人工繁育方式研究结果,表明该物种对环境因子变化敏感,由多个亚种群构成的异质种群(Metapopulation)有利于保持较高的遗传多样性和抵御环境因子的影响;通过雄性比例高于雌性比例的策略,在保持遗传多样性的前提下,增加有效种群,验证了黄腹角雉在野生状态下呈现异质种群分布的特征,是该物种在保持遗传多样性的前提下所采取的竞争策略。在环境容纳量K分别为100、200、300、400和500只(SD=0.1)时,每个亚种群的数量N与回归方程N=5.6390+0.813991K有极大拟合性,决定系数达R=0.9997,确定系数为RR=0.9994。
     13、提出了具有针对性的黄腹角雉就地和迁地保护策略。根据目前黄腹角雉种群数量、遗传多样性、种群生存力、社会经济条件和物种保护工作的要求,按照黄腹角雉特有的生物学特性,应采取就地保护和迁地保护相结合的技术方式,应用比较成熟的人工种群管理技术,增建人工种群,保存遗传多样性,并采取在多点重建野生小种群的措施,保持野生种群的总体数量和存活概率,以抵御由于环境因子,特别是灾害性事件导致种群灭绝的影响。
The conservation of endangered species constitutes the critical component and priority mission of both wildlife management and biodiversity conservation. On site conservation and off site conservation are the two dominant species conservation approaches. The objective is to restore and maintain the natural populations. Ultimately the ecosystem is revived and conserved through conservation of the key species, and through preservation and maintenance of biodiversity. The success or failure of the conservation of endangered species relies on both the genetic diversity and population viability. Needless to say, this is also pertinent to establishment and management of a captive breeding population, reintroduction of the population, habitat management, preparation and implementation of the protected area planning and conservation action plan.
     The rare bird species, Tragopan caboti, endemic to China, is among the critically endangered species globally. It is distributed in only such provinces (regions) as Zhejiang, Fujiang, Jiangxi, Hunan, Guangdong and Guangxi. Some 4,000 individuals of this species are estimated to be surviving in their natural habitat, however the population is seriously fragmented and isolated. So far upwards of 30 nature reserves, in the main distribution area of the species, have been established and on site conservation has been carried out. In addition, one captive breeding population each has been established in Hunan and Beijing respectively and initial headway made on off site conservation. So far there has been little documentation of the genetic diversity and population viability analyses in relation to Tragopan caboti, either at home or abroad.
     1. The key technique for establishment of a captive breeding population of Tragopan caboti was studied. This research distilled expertise for introduction, domestication, disease control and other management in relation to Tragopan coboti captive breeding population. Finally a set of technical standards and parameters was established. An inventory of the parasites infesting introduced natural individuals of Tragopan caboti demonstrated that dominant parasites included Coccidiosis and Histomoniasis and effective control measures against these diseases were gleaned, which provided experience for the introduction aimed at establishment of a captive breeding population, disease quarantine and control as well. Tests were made to prevent and control five dangerous and seven common diseases. The results indicated that the diseases infesting Tragopan caboti or poultry shared common grounds. Cross infestations were found between poultry and Tragopan caboti, which laid scientific foundation for effective cure approaches for such diseases as Newcastle Disease, Avian Pasteurella and Escherichia coli. Particularly a rapid test method, using AGID to testify Newcastle Disease, was found. The disease, caused by the bacterium, Botulism was cured for the first time, which filled the gap of disease control for both captive and natural populations of Tragopan caboti.
     2. The breeding behavior was studied. Taking into consideration the behavior characteristics and demands of Tragopan caboti, research on the reproduction pattern of the ecological population was conducted. The comparison between group-rearing under ecological conditions to couple-rearing in captive conditions showed that there was a close relationship between reproduction rate and size of the population, living space, vegetation and concealment. Generally group-rearing, larger living space, and abundant vegetation could improve the reproduction rate. Group-rearing can increase egg-laying by 50% and the average of individual egg-laying marked 8.5 eggs a-1, the fertilization ratio increased by 32.3%, reaching 82.6%. Nutrition elements and forage formula for different growth periods were screened for Tragopan caboti, through nutrition analysis and comparison researches. In addition nutrition formula, in light of bionomics of the birds, on the day-age basis during the nestling rearing periods, and regular immunity were adopted. As a result the survival rate of the nestlings peaked at 91.3%.
     3. The reproduction regularity of Tragopan caboti was understood. Consecutive research for seven years on reproduction showed that the estrus of the female was markedly earlier than that of the male. The discrepancy in the estrus led to a drop in fecundation, which was considered as the underlying cause of the low reproduction rate and status of being endangered. A study on artificial incubation indicated that the Tragopan caboti demonstrated strong emergency response and the number of eggs laid was three times of that under natural conditions. Under natural conditions the annual average of eggs laid per female was three eggs whilst under artificial condition it was 8.5 eggs. The initial egg-laying commenced in earlier March under the latter condition. For instance, up to 19 eggs were produced by one female from the cage H2 in 2002,6 times of the average under natural conditions, which implied that the survival potential of this species was adequately high. In addition, the research also showed that some 25%-30% of the reproductive individuals were able to produce fertilized eggs in the second year and culminated in nestlings. However the male individuals at the same age could not successfully produce progeny. This illustrated that the male sex maturation lagged behind the female.
     4. Different mate combination patterns were examined. Such mate patterns as one male coupling one female, one male matching multi-female, and multi-male matching multi-female were tried and the results indicated that the last pattern was the best. Moreover, out of various options of multi-male matching multi-female, the option of the males outnumbering the females was the best, which generated 83.1% fecundation rate and 89.2% incubation rate, clearly higher than the other options. This implies that this species developed the ecological strategy of K-Selection. In other words, improving the number of viable population through larger proportion of males, and controlling the abundance of the entire population and securing the adequate gene heterozigosity of the population.
     5. The artificial incubation technique and relevant indicators were developed. The incubation rate reached 89.2%, at a critical temperature of 37.5℃, humidity of 65-67%, nestling emerging temperature of 36.5℃and emerging humidity of 65-100%. These development conditions differed greatly from that for the domestic chickens, Phasianus colchicus, Chrysolophus pictus, and Syrmaticus ellioti reared in the reproduction site, with lower critical temperature and emerging temperatures but higher humidity.
     6. Randomly amplified polymorphic DNA markers and Microsatellites analysis were applied to analyze the genetic diversity of the different group/populations, i.e. wild group, the captive breeding four groupsfirst filial generation.40 primers were used,and 10 loci were tested. The results reveal that captive breeding decreases the genetic diversity of the species. And these results also imply it is not proper to conserve species by captive breeding.
     7. The genetic similarity and distances of the different groups were analyzed by RAPD and SSR testing. The genetic similarity and distance for every two groups and individuals were calculated with a matrix of RAPD and SSR based. However, the genetic similarity declined gradually for wild and captive breeding groups, and genetic distance increased with each generation. The genetic variation that occurred distinctly increased with each generation for captive breeding groups.
     8. The genetic variation of wild and captive breeding groups was studied RAPD-based. The analysis results also showed that average heterozygosity(Hpop) by population was 0.1073 for whole groups, average heterozygosity (Hsp) by species was 0.1752, the average genetic variability by species (HPOP/Hsp) was 0.7331, and average genetic variability by population ((Hsp-Hpop)/Hsp) was 0.2668. This indicated that the most genetic variation was from groups, only 26.7% genetic variability was tested in different individuals.
     9. Hardy-Weinberg genetic equilibrium was used to test genetic diversity for all the groups of Tragaopan caboti through ten loci, analysis revealed that heterozygosity excess and deficiency respectively in wild, first captive breeding groups and third, fourth, fifith captive breeding groups. Moreover, analysis detected that first captive breeding groups and third, fourth, fifith captive breeding group showed a remarkable genetic disequilibrium and heterozygosity distinct deficiency at loci MCW330,、MCW29、MCW34.
     10. The population viability of the captive breeding group of Tragopan caboti was examined with the software Vortex 9.51. About 100 simulations for 50 years were tested, on the basis of data collected for eight years in a row. Considering the human factor, inbreeding stress and impact of the environment variance, with assumption carrying capacity marking 500±50 (SD=0.1), under the condition of no harvesting, the determined rate of natural increase R was 0.113 birds (SD= 0.238, PE=0.1). Before reaching the carrying capacity ceiling, the stochastic increase rate was 0.053 (SD=0.238, PE=0.1) and the mean increase rate 0.0458 (SE=0.0035; SD= 0.2401), under the integrated impact of all factors. The ultimate population size (including existing and extinct populations) averaged 348.35 (SE=14.57, SD=145.72) or 362.56 (SE=13.23, SD=129.67), removing extinct populations. The length of the population generation lasted 4.85 years. In other words, the population gene would be reshuffled once every 4.85 years. The female's reshuffle took 4.16 years whilst the male's 5.45 years. The finite rate of increase (λ) was 1.12 (time/per year) and net increase (RO) 1.604. The number of the adult males was 1.259 times that of the adult females. At least one extinction occurred within 25 modelings and four extinctions happened within 50 years.
     11. The sensitivity of the lethal factors was analyzed. Specifically such factors affecting the population fluctuation factors as the reproduction rate, mortality, sex ratio, catastrophes, environmental carrying capacity, initial population size, and metapopulation effect were examined to understand their sensitivity. As a result, the key factors affecting the survival of the population were identified after analysis. The findings suggested that the reproduction rate of the females, chick mortality, carrying capacity, initial population size and the subpopulation size were the key lethal factors. The impact of the lethal loci on the small population was obvious. In addition the minimum viability population (MVP), the size and sex ratio of initial population for reintroduction, and parameters for key techniques were determined.
     12. The population features of Tragopan caboti were examined. The analysis of population viability and captive breeding showed that Tragopan caboti was very sensitive to environmental variance. Thus the metapopulation consisting of multi-subpopulations was conducive to maintaining relatively high genetic diversity and offseting the impact of environmental variance. More, effective population can be augmented through the strategy of raising the male proportion. This attests to the feature of metapopulation under natural conditions, a contest strategy adopted by this species under the precondition of retaining genetic diversity. Given the carrying capacity at 100,200,300,400, and 500 birds (SD=0.1), there existed a high correspondence between the number (N) of the subpopulation and the regression equation, i.e. N=5.6390+0.813991K, with R=0.9997 and RR=0.9994.
     13. Strategies for on site conservation and off site conservation, pertinent to the Tragopan caboti, were provided. Taking into consideration the quantity of the Tragopan caboti, genetic diversity, population viability, social economic conditions and the requirements of the species conservation, the approach of combining both on site conservation and off site conservation should be adopted. Also the established management techniques of captive breeding population should be applied and captive breeding populations augmented. At the same time, genetic diversity should be preserved. Particularly restoration of the natural population at more sites should be achieved to maintain the adequate quantity of natural population and survival probability so as to overcome the impact brought by environment factors, particularly the events of catastrophic proportion leading to population extinction.
引文
1国家林业局,《全国野生动植物保护和自然保护区建设工程总体规划》,2001年6月。
    [1]郑光美.黄腹角雉[J].动物学杂志,1987,22(5):40-43.
    [2]DELACOUR J. The Pheasants of the World [M]. Second Edition, Hindhead:World Pheasant Association and Spur Publications,1977.1-89.
    [3]Howe, K. The Artificial insemination of Cabot's Tragopan [J]. WPA,1984, (9):19-32.
    [4]郑光美,王岐山.中国濒危动物红皮书鸟类卷[M].北京:科学出版社,1998.
    [5]Deng Wenhong, Zheng Guangmei. Landscape and habitat factors affecting the occurrence of Cabot's Tragopan in fragmented forests [J]. Biological Conservation, 2004,117:25-32.
    [6]Garson P, McGowan M. Status survey and conservation action plan 2000-2004[Z]. Gland, Switzerland:Pheasants IUCN,2000.
    [7]Brussard, P F. The current status of conservation biology[J]. Bull Ecol Soc Amer, 1985,66:9-11.
    [8]FAO. Second interim report on the state of tropical forests[R]. Paper presented at the 10th World Forestry Congress Paris France,1991.
    [9]Ehrlich, P R., and Wilson, E O. Biodiversity studies science and policy[J].Science, 1991,25(3):758-762.
    [10]Soule, M F. What is biology conservation? Bio Science[J].1985,35:727-734.
    [11]Western and M Pearl (eds). Conservation for the Twenty-First Century[M]. New York Oxford:Oxford University Press,1997.297-303
    [12]Shaffer R P., and Seifert F H. A beliconia insect community in a Venczuelan cloud forest[J]. Ecology,1979,60:462-467.
    [13]Leopold A. The Round River[M]. Oxford:Oxford University Press.1953.56-59.
    [14]Raven P R Ethics and attitudes[A]. In Simmons J B., Bayer R J., Branhams P E., Lucas G L,. and Parry W T H,. (eds) Conservation of Threalened Plants[C]. New York: Plenum Press,1976.155-179.
    [15]Erwin T L. Tropical forest companies:the last biotic frontier[J]. Bull Entomol Soc Am.,1983,29:14-19.
    [16]Paine R T. A note on tropic complexity and community stability[J]. America Nature,1969,103:91-93.
    [17]Gilbert L E. Food web organization and the conservation of neotropical diversity[A] In M F Sooule and B A Wilcox (eds.). Conservation Biology An Evolutionary-Ecological Perspective[C]. Sinauer:Sunderland Mass,1980.11-33.
    [18]Terborgh J., and B Winter. Some cases of extinction[A]. In M E Soule and B A Wilcox (eds.). Conservation Biology An Evolutionary Ecological Perspective[C]. Sinauer:Sunderland Mass:1980.119-134.
    [19]Diamond J. "Normal" extinctions of isolated populations[A]. In M H Nitcki (ed). Extinction[C]. Chicago:Chicago University Press,1984.191-246.
    [20]Shaffer M L. Minimum population sizes for species conservation[J]. Bio Science, 1981,31:131-134.
    [21]Soule M E. What do we really know about extinction?[A]. In C M Schonewald-Cox R M Chambers, MacBryde and W L Thomas(eds.). Genetics and Conservation[C]. Menlo Park CA:Benjamin Cummings Publishing,1983.11-125.
    [22]Terborgh J. Preservation of natural diversity the problem of extinction-prone species[J]. Bio Science,1974,24:715-722.
    [23]Franklin I A. Evolutionary change in small populations[A]. In M E Soule and B A Wilcox(eds.). Conservation Biology An Evolutionary Ecological Perspective[C]. Sinauer:Sunderland Mass,1980.135-149.
    [24]Berdmore J A. Extinction survival and genetic variation[A]. In C M Schonewald-Cox S M Chambers, MacBryde and W L Thomas(eds.). Genetics and Conservation[C]. Menlo Park CA:Benjamin Cummings Publishing,1983.125-151.
    [25]Orians G H. Hahitat selection general theory and applications to human behavior[A]. In J S Locked(ed.). The Evolution of Human Social Behavior[C]. North Holland. New York:Elsevier,1980.49-66.
    [26]Diamond J M. Historic extinction their mechanisms and their lessons[A]. In P S Martin and R Klein(eds.). Quarternary Extinctions[C]. Tucson:University of Arizona Press,1984.824-862.
    [27]Diamond J. Overview of recent extinctions[A]. In D Western and M pearl (eds.). Conservation for the Twenty First Century[C]. New York Oxford:Oxford University Press,1989.37-41.
    [28]Myers N. The end of lines[J]. Nat Hist,1985,94:2-12. Atkinson I. Introduced animals and extinctions[A]. In D Western and M pearl(eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.54-76.
    [29]Myers N. A major extinction spasm predictable and inevitable?[A]. In D Western and M Pearl(eds.). Conservation for the Twenty-Firsi Century[C]. New York Oxford: Oxford University Press,1989.42-49.
    [30]Atkinson I. Introduced animals and extinctions[A]. In D Western and M pearl(eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.54-76.
    [31]MacArthur R H., and Wilson E O. The Theory of Island Biogeography[M] Princeton:Princeton University Press,1967.54-66.
    [32]Olson S L. Extinction on islands man as a catastrophe[A] In D Western and M Pearl (eds.).Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.50-53.
    [33]Gilpin M E., and M E Soule. Minimum viable populations Processes of species extinction[A]. In M E Soule(ed.). Conservation Biology:The Science of Scarcity and Diversity[C]. Sinauer:Sunderland Mass,1986.19-34.
    [34]Vrijenhoek R C. Population genetics and conservation[A]. In D Western and M Pearl (eds.). Conservation for the Twienty-First Century[C]. New York Oxford:Oxford University Press,1989.89-98.
    [35]Eisenberg J F., and Harris L D. Conservation a consideration of evolution population and life history[A]. In D Western and M Pearl (eds.). Conservatzon for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.99-106.
    [36]Soule M F., and D Simberloff. What do genetics and ecology tell us about the design of nature reserves?[J]. Biol Conserv.,1986,35:19-40.
    [37]McNaughton S J. Ecosystems and Conservation in the Twenty-First Century[A]. In D Western and M pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University press,1989.109-120.
    [38]Walker D. Diversity and Stability in Ecosystem Conservation[A]. In D Western and M Pearl(eds.). Conservation for the Twenty First Century[C]. New York Oxford: Oxford University Press,1989.121-130.
    [39]Walker B H., Ludwing D., Holling C S., and Peterman R M. Stability of semi-arid savanna grazing systems [J] Ecol,1981,69:473-498.
    [40]Wilson E O. Conservation The Next Hundred Years[A]. In D Western and M Pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.1-7.
    [41]Western D. Conservation biology[A]. In D Western and M Pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.31-41.
    [42]Green B H Conservation in Cultural Landscapes[A]. In D Western and M Pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.182-198.
    [43]Stanley Price M R. Reconstructing ecosystems[A]. In D Western and M Pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.210-220.
    [44]周开亚.保护生物学的发展趋势及我国的发展战略[J].动物学杂志,1992,27(5):42-48.
    [45]Kleiman D G. The sociobiology of captive propagation[A]. In Soule M E and B A Wilcox (eds.). Conservation Biology An Evolutionary-Ecological Perspective[C]. Sinauer:Sunderland Mass,1980.243-261.
    [46]Wilson E O. Conservation The Next Hundred Years[A]. In D Western and M Pearl (eds.). Conservation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.1-7.
    [47]Woodruff D S.The problem of conservation genes and species[A]. In D Western and M Pearl(eds.). Conservation for the Twenty-First Century[C]. New York Oxford: Oxford University Press,1989.76-88.
    [48]Conway W G. The prospects for sustaining species and their evolution[A]. In D Western and M Pearl(eds.). Consereation for the Twenty-First Century[C]. New York Oxford:Oxford University Press,1989.199-209.
    [49]Benford G.1992 Saving the "Library of life"[A]. Proc Natl Acad Sci USA,1992 89:11098-11101.
    [50]赵洪峰等.中国受胁鸟类的分布与现状[J].生物多样性,2005,13(1):12-19
    [51]Bird Life International. Saving Asia's Threatened Birds[R]. Cambridge:2004.
    [52]Zheng GM(郑光美),Wang QS(王岐山).China Red Data Book of Endangered Animals:Aves(中国濒危动物红皮书·鸟类)[M]. Beijing:Science Press,1998.
    [53]Olson DM., and Dinerstein E. The Global 2000:A representation approach to conserving the earth's most biological valuable ecoregions[J]. Conservation Biology, 1998,12:502-515.
    [54]王献溥,刘玉凯.生物多样性的理论与实践[M].北京:中国环境出版社,1994.
    [55]汪松,解焱.中国物种红色名录(第一卷)[M].北京:高等教育出版社,2004.222-274.
    [56]Wilson E O. The diversity of life[M]. Cambridge, MA:The Belknap pres of Harvard University,1992.
    [57]May RM.,. Lawton JH,.Stork NE. Assessing extinction rates[A]. In:J.H.Lawton and R.M.May(eds.). Extinction rates[C]. Oxford, U.K.:Oxford University Press,1995.
    [58]Caro TM, laurenson M K. Ecological and genetic factors in conservation:A autionary tale[J]. Science,1994,263:485-486.
    [59]Smith TB., Brufort MW., Wayne R K. The preservation of process:the missing element of Conservation program[J].Biodiversity Lett.,1993,1:164-167.
    [60]Smith TB., Wayne RK. eds. Molecular Genetic:Approaches in conservation[M]. Oxford University Press,1996.
    [61]Avise J C,. Molecular marker, natural history and evolution[M]. New York: Champ man and Hall,1994.
    [62]Hedrick PW,. Miller PS. conservation genetics:techniques and fundamentals[J]. Ecol.Appl.,1992,2:30-46.
    [63]Brien S J. A role for molecular genetics in biological conservation[M]. Proc. Natl. Acad.sci., USA,1994,91:5748-5755.
    [64]Glaus KR. Structure Organization and Evoluation of Avian Mitochaondrial DNA.Ph.D Dissertation, Ohio state University, Columbus,1981.
    [65]张亚平,施立明.两种锦鸡和环颈雉线粒体DNA的比较研究.动物学研究,1991,12(4):387-392.
    [66]王文,兰宏,刘爱华,等.家鸡和原鸡的线粒体DNA多态性比较.动物学研究,]994,15(4):55-60.
    [67]Haig SM., Rhymer JM,. Hcekel DG. Population differention in randomly plified polymorphic DNA of red cockaded woodpeckers(Picoides borealis)[J],1994, 3(2):581-595.
    [68]Fleischer RC., Fuller G., Ledig DB. Genetic Strcuture of Endangered Clapperrail(Rallus longirostris) Populations in southern California[J]. Conservation Biol, 1994,9(5):1234-1243.
    [69]Nusser JA., Goto RM., Ledig DB. et al. RAPD analysis reveals low genetic varability in the endangered red light-footed clapper rail[J]. Mol Ecol,1996,5(4): 463-472
    [70]张细权,吕雪梅,杨玉华,等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报,1998,25(2):112-119.
    [71]吴晓林,肖兵南,蒋隽,等.闭锁繁育乌骨鸡群体的RAPD指纹分析[J].生命科学研究,1998,2(4):278-282.
    [72]吕雪梅,杨关福,张细权等.蛋鸡品系RAPD变异及其与杂种优势关系的分析[J].遗传,1999,21(2):24-28
    [73]刘斌,韩之明,刘彦,等.朱鹮的随机抗增多态DNA分析与种内亲缘关系研究[J].应用与环境生物学报,1999,5(1):45-49.
    [74]李义明,李典漠.种群生存力分析研究进展和趋势[J].生物多样性,1994,2(1):1-10.
    [75]中国科学院生物多样性委员会.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.36-54,69-82.
    [76]徐宏发,陆厚基.最小存活种群(MVP)—保护生物学的一个基本理论:最小存 活种群及其在野生动物保护中的应用[J].生态学杂志,1996,15(2):25-30.
    [77]李欣海,李典漠,路宝忠,等.种群生存力分析[J].生物多样性,1996,4(2):69-77
    [78]Lacy R C.VORTEX:A computer simulation model for population viability analysis[M]. wild l.Res.,1993,20:45-65.
    [79]Berger J.persistence of different sized populations:an empirical assessment of rapid extinction in big horn ship[J]. Conservation Biology,1990,4:91-98.
    [80]Thomas C D. What do real population dynamics tell us about minimum population size[J]. Conservation Biology,1990,4:324-327.
    [81]Lacy RC, T W Clark.population viability assessment of the eastern Barred Bandicoot in Victoria[M]. In:TW. Clark, J H Seebeck(eds,).Management and Conservation of Small population.Brook field, Illinois:Chicago Zoological society, 1990,131-145.
    [82]Hail SM, et al.population viability analysis for a small population of red cockaded woodpecker(Picoide borealis)and an evaluation of enhancement:strategies[J]. Conservation Biology,1993,7:289-501.
    [83]Ludwig D.1996. Uncertainty and the assessment of extinction probability[J]. Ecological Applications,1996,6:1067-1076.
    [84]Dennis B., Mutholl and pl., and Scott JM. Estimation of growth and extinction parameters forendangerd species[J]. Ecological Monographs,1991,61:115-143.
    [85]李欣海,等.朱鹮(Nipponia nipponia)种群生存力分析[J].生物多样性,1996,4(2):69-77.
    [86]Zheng G M, Z W Zhang and L Young et al.The use of radio-telemetry to study Cabot's Tragopan in Wuyangling Natural Reserve,China[M]. Pheasant in Asia(WPA).1989.48-53.
    [87]Young L, Zheng G M, Zhang Z W. Winter movements and habitat use by Cabot's Tragopars Tragopan caboti in southeastern China[J].Ibis,1991,133:121-126.
    [88]钱法文,郑光美.黄腹角雉的栖息地研究[J],北京师范大学学报,1993,29(2):256-264.
    [89]史海涛,郑光美,蒋鸿,等.红腹角雉栖息地选择的研究[J].动物学报,1996,42(增刊):90-95.
    [90]杨月伟,丁平,姜仕仁,等.针阔混交林内白颈长尾雉栖息地利用的影响因子研究[J].动物学报,1999,45(3):279-286.
    [91]马志军,丁长青,翟天庆,等.朱鹮的巢址变化及其影响[A].见:中国鸟类学会等主编.中国鸟类学研究(第二届海峡两岸鸟类学术研讨会文集).北京:中国林 业出版社,1996.119-123.
    [92]丁长青,郑光美.黄腹角雉的巢址选择[J].动物学报,1997,43(1)27-33.
    [93]马志军,丁长青,李欣海等.朱鹮冬季觅食地的选择[J].动物学业研究,2001,22(1):46-50.
    [94]杨月伟,李智,姜仕仁等.白颈长尾雉的夜宿地特征研究[A].见:社团法人台北市野鸟学会主编.第三届海峡两岸鸟类学术研讨会文集.台北:台北市野鸟学会.1998.247-253.
    [95]丁平,姜仕仁,诸葛阳.浙江西部白颈长尾雉栖息地片断化研究[J].动物学研究,2000,21(1):65-69.
    [96]朴仁珠,韩爱惠,张明海.利用遥感(RS)和地理信息系统(GIS)技术评价丹顶鹤的生境选择[A].见:中国鸟类学会等主编.中国鸟类学研究(第四届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,2000.170-179.
    [97]马志军,钱法文,王会,等.盐城自然保护区丹顶鹤及其栖息地的现状[A].见:中国鸟类学会等主编.中国鸟类学研究(第四届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,2000.180-185.
    [98]徐基良,张正旺,郑光美,等.鸟类栖息地片断化研究的理论基础[J].生物学通报,2004,39(11):9-12
    [99]王天厚,钱国桢.长江口杭州湾鸟类[M].上海:华东师范大学出版社,1988.
    [100]赛道建,吕福然,王禄东,等.黄河三角洲鹤类的分布与数量变动[A].见:中国鸟类学会等主编.中国鸟类学研究(第二届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,2000.190-193.
    [101]张迎梅,张贵林.黑颈鹤在甘肃省尕海的种群数量动态和食性分析[A].见:中国鸟类学会等主编.中国鸟类学研究(第四届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,2000.190-193.
    [102]丁长青,巩会生,赵雷刚,等.秦岭南麓不同地区红腹锦鸡繁殖密度的比较研究[J],见:中国鸟类学会,等主编.中国鸟类学研究(第四届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,2000.34-37.
    [103]高育仁,刘仲敏.白鹇距长与年龄的关系[J].动物学报,]992,38(3):278-285.
    [104]高育仁.鸻形目(Charadriiformes)鸟类的年龄鉴定[A].见:中国鸟类学会水鸟组主编.中国水鸟研究.上海:华东师范大学出版社,1994.100-106.
    [105]卢欣.狩猎期间雉鸡的年龄组成和体重的初步研究[J].动物学杂志,1993.(5):40-43.
    [106]王中裕,张宏杰,翟天庆,等.朱鹮的环志情况及其生命表的分析研究[J].西北大学学报,1994,24(1):57-60.
    [107]马世全.黄斑苇.繁殖期种群分布型的研究[J].生态学报,1990,10(4):362-366.
    [108]王洪波,高中信.扎龙自然保护区草鹭、苍鹭种群动态研究[J].林业资源管理,1997,3:29-34.
    [109J高玮.长白山北坡冬季鸟类群落丰富度及其群落的演替[J].动物学研究[J],1982,3(增刊):335-341.
    [110]高玮.长白山北坡主要森林类型中鸟类群落结构研究[J].东北师范大学学报.1985,(3):105-110.
    [111]高玮.长白山北坡冬季鸟类群落结构研究[J].东北师范大学学报,1985,(3):105-110.
    1112]高玮,相桂权,冯贺林,等.柞木林鸟类群落的季节变化[A].见:高玮主编.中国鸟类研究.北京:科学出版社,1991.107-112.
    1113]钱国桢,王培潮,祝龙彪.二十年来天目山鸟类群落结构变化趋势的初步分析[J].生态学报,1983,3(3):265-268.
    [114]杨兴军.长白山北坡鵐属鸟类种群结构的研究[J].生态学报,1983,3(4):382-392.
    1115]周放.鼎湖山森林鸟类群落的集团结构[J].生态学报,1987,7(1):176-184.
    [116]高颖,钱国桢.天童常绿阔叶林中鸟类群落结构的空间生态位分析[J].生态学报,1987,7(1):71-82.
    [117]丁平,诸葛阳,姜仕仁.浙江古田山自然保护区鸟类群落生态研究[J].生态学报,1989,9(2):121-127.
    [118]孙帆,陈鹏.长春市绿地的鸟类群结构和景观生态建设[A].见:高玮主编.中国鸟类研究,北京:科学出版社,1991.113-115.
    [119]王直军.常绿阔叶林不同破坏强度生境鸟类群落[A].见:高玮主编.中国鸟类研究.北京:科学出版社,1991.116-125.
    [120]王直军.西双版纳热带森林鸟类群落结构.动物学研究[J].1991,12(2):169-174.
    [121]相桂权,方林.次生林阔叶林猛禽的群落结构及其季节变化[J].东北师范大学学报,1995,(4):71-74.
    [122]常家传,鲁长虎,刘伯文,等.红松林不同演替阶段夏季鸟类群落研究[J].生态学杂志,1997,16(6)1-5.
    [123]常弘,陈万成,卢开和,等.广东南岭国家级自然保护区鸟类群落的研究[J].中山大学学报,1997,36(4):75-78.
    [124]刘喜悦,李世纯,孙悦华,等.长白山次生林繁殖鸟的群落结构[J].动物学报,1998,44(1):11-19.
    [125]张晓辉,张正旺,宋杰,等.北京东灵山地区春夏季鸟类群落研究[J].北京师范大学学报,2000,36(5):677-682
    [126]余玉群,吴建平,郭松涛,等.秦岭北坡雉类种群密度和群落结构的初步研究[J].生物多样性,2000,8(1):60-64.
    [127]高玮,杨志杰.人工落叶松林中冬季鸟类混合群的相互关系研究[J].动物学杂志,1991,26(4):9-12.
    [128]丁平,姜仕仁,诸葛阳.浙江古田山自然保护区的鸟类区系与群落[J].动物学杂志,1992,27(6):19-22.
    [129]钱国桢,朱家贤.太湖野鸭的动物群落学[J].华东师范大学学报,1980,(3):39-57.
    [130]钱国桢,崔志兴.东海北部沿海越冬鸻形目鸟类群落[J].动物学报,1985,31(1):96-97.
    [131]陆健健,施铭,崔志兴.东海北部沿海越冬鸻鹬群落的初步研究[J].生态学杂志,1988,7(6):19-22.
    [132]张荫荪,何芬奇,陈容伯,等.遗鸥繁殖生境选择及其繁殖地湿地鸟类群落研究[J].动物学研究[J],1993,14(2):128-135.
    [133]刘迺发,李春旺,王再锐.兰州湿地鸻形目鸟类群落结构研究[A].见:中国鸟类学会水鸟组主编.中国水鸟研究.上海:华东师范大学出版社,1994.118-123.
    [134]李湘涛,钱法文,刘光生,等.渤海湾春秋季迁徒期鸻形目鸟类群落研究[A].见:中国鸟类学会等主编.中国鸟类学研究(第二届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,1996.297-304.
    [135]唐仕华,虞快.崇明东滩鸻形目鸟类群落及其食性研究[J].华东师范大学学报,1996,(动物学专辑):79-83.
    [136]崔志兴,陈龙小.长江口迁徒鸻形目鸟类群落结构十三年的变化[A].见:社团法人台北市野鸟学会主编.第三届海峡两岸鸟类学术研讨会文集.台北:台北市野鸟学会,1988.189-200.
    [137]陈小麟,宋晓军.厦门潮间带春季鸟类群落的生态分析[J].生态学杂志,1999,18(4):36-39.
    [138]陈水华,丁平,郑光美,等.城市化对杭州湿地水鸟群落的影响研究[J].动物学研究,2000,21(4):279-285.
    [139]张晓爱,邓合黎.青海省海北地区高寒草甸鸟类群落结构的季节变化[J].动物学报,1986,32(2):180-187.
    [140]颜重威,邢莲莲,杨贵生.内蒙古草原繁殖鸟类群聚组成之比较[J].生态学报,2000,20(6):992-1001.
    [141]常诚,刘迺发.甘肃临泽繁殖鸟类群落及演替研究[J].甘肃科学学报,1997, 9(1):71-55.
    [142]胡鸿兴.武汉市区自然景观的变迁与鸟类物种及数量变动[J].环境科学,1984,5(1):51-55.
    [143]魏湘岳,朱靖.北京城市及近郊区环境结构对鸟类的影响[J].生态学报,1989,9(4):285-289.
    [144]赵欣如,房继明,宋杰,等.北京的公园鸟类群落结构研究[J].动物学杂志,1996,31(3):17-21.
    [145]孙永梅,刘忠宝,宋榆钧.长春市南湖公园冬季鸟类集团结构的研究[J].东北师范大学学报,1999,(2):84-90.
    [146]赛道建.济南自然景观变迁对鸟类群落的影响[J].山东师范大学学报,1994,9(2):70-76.
    [147]傅必谦,高武,陈卫.北京地区不同景观类型鸟类群落结构的比较[A].见:中国鸟类学会等主编.中国鸟类学研究(第二届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,1996.62-67.
    [148]高中信,陈化鹏,郭金利,等.小兴安岭北京夏季森林鸟类群落取食集团结构研究[A].见:高玮主编.中国鸟类研究.北京:科学出版社,1991.120-125.
    [149]刘迺发,李岩,刘敬泽.大山雀和褐头山雀种间关系研究[J].动物学研究,1989,10(4):277-284.
    [150]朱曦,章立新,梁峻等.鹭科鸟类群落的空间生态位和种间关系[J].动物学研究[J],1998,19(1):45-52.
    [151]周放,房慧伶.两种鹪莺的种间生态位关系研究[J].动物学研究,2000,21(1):52-57.
    [152]丁平,诸葛阳.浙江西部山区珍稀雉类生态学研究[J].杭州大学学报,1989,16(3):302-309.
    [153]张军平,郑光美.黄腹角雉的种群数量及其结构研究[J].动物学研究,1990,11(4):291-297.
    [154]Young L, Zheng G M, Zhang Z W. Winter movements and habitat use by Cabot's Tragopan in southeastern China[J]. Ibis,1991,133(1):121-126.
    [155]钱法文,郑光美.黄腹角雉的栖息地研究[J].北京师范大学学报(自然科学版),1993,29(2):256-264.
    [156]丁长青,郑光美.黄腹角雉的巢址选择[J].动物学报,1997,43(1):27-33.
    [157]郑作新.中国鸟类分布名录[M]. 北京:科学出版社,1976.
    [158]郑光美,赵欣如,宋杰,等.黄腹角雉的繁殖生态研究.生态学报,1985,5(4):379-385.
    [159]郑光美,尹荣伦,张正旺,等.黄腹角雉的人工繁殖及雏鸟的生长发育[J]. 野生动物,1986,(6):39-43.
    [160]郑光美,尹荣伦,张正旺,等.黄腹角雉求偶炫耀行为[J].动物学报,1989,35(3):328-332.
    [161]张正旺,尹荣伦,郑光美.笼养黄腹角雉繁殖期取食活动性的研究[J].动物学研究,1989,35(3):333-339.
    [162]温战强,郑光美.黄腹角雉繁殖期行为研究[J].北京师范大学学报(自然科学版),1997,33(2):263-269.
    [163]李晶,李庆芬,郑光美.黄腹角雉静止代谢率研究[J].动物学研究,1993,14(4):341-345.
    [164]郑光美,赵欣如,宋杰,等.黄腹角雉的食性研究[J].生态学报,1986,6(3):283-288.
    [165]孙悦华,郑光美.黄腹角雉活动区的无线电遥测研究[J].动物学报,1992,38(4):385-392.
    [166]Zheng Guangmei. The use of radio-telemetry to study Cabot's Tragopan in Wuyanling Natural Reserve, China. Pheasants in Asia(WPA),1989,48-53.
    [167]丁长青,郑光美.人工光照对黄腹角雉繁殖行为的影响[J].北京师范大学学报(自然科学版),1992,28(2):240-244.
    [168]张雁云,郑光美.笼养下黄腹角雉(Tragopan caboti)粪便中性激素的变化研究[J].北京师范大学学报(自然科学版),2001,37(5):685-689.
    [169]Zhao Xinru, Zheng Guangmei, The breeding of Cabot's Tragopan in captivity. Pheasant in Asia(WPA),1989,54-59.
    [170]温战强,郑光美.黄腹角雉的饲养繁殖[J].动物学杂志,1998,33(3):22-27.
    [171]温战强,郑光美.黄腹角雉(Tragopan caboti)的人工授精研究[J].北京师范大学学报(自然科学版),2002,38(1):117-122.
    [172]温战强,郑光美,等.黄腹角雉精子超微结构的研究[J].动物学报,1997,43(2):127-132.
    [173]张雁云,郑光美.黄腹角雉精液的精液品质研究[A].见:第5届海峡两岸鸟类学术研讨会论文集[C].台湾:台湾自然科学博物馆出版,2003.295-298.
    [174]张雁云,郑光美.黄腹角雉精液的低温保存[J].北京师范大学学报(自然科学版),2003b,39(6):819-822.
    [175]丁长青,郑光美.黄腹角雉再引入的初步研究[J].动物学报,1996,42(增刊):69-73.
    [176]Deng Wenhong, Zheng Guangmei, Zhang Zhengwang, et al. The use of mest platforms by Cabot's Tragopan Tragopan caboti in Southeastern China [A]. The Third International Galliformes Symposium,2004.88.
    [177]Zahng Yanun, Zheng Guangmei. A preliminary analysis of population viability in Cabot's Tragopan in Wuyanling National Nuture reserve, Zhejiang Province, China [A].23rd internation al Omithological Congress,2002.207.
    [178]张子慧,郑光美.黄腹角雉的骨骼系统[J].动物学杂志,2000,35(2):25-28.
    [179]张子慧,郑光美.黄腹角雉附肢肌肉的研究[A].见:中国鸟类学会等主编.中国鸟类学研究.北京:中国林业出版社,1996.210-216.
    [180]张子慧,郑光美.黄腹角雉肉裾和肉角的研究[J].动物学报,1996,42(增刊):6-10
    [181]刘彦,刘凌云.三种角雉染色体R带带型的比较研究[A].见:中国鸟类学会等主编.中国鸟类学研究.北京:中国林业出版社,1996.217-221.
    [182]刘彦,刘凌云.三种角雉染色体G带带型的比较研究[J].动物学报,1996,42(增刊):122-128.
    [183]桂小杰,李立,朱开明,等.黄腹角雉生态群养技术研究[J].生命科学研究,2004,8(4):354-359.
    [184]李立,朱开明,姜卫星,等.黄腹角雉的笼养生态学研究[J].湖南林业科学,2001,28(6):78-82.
    [185]姜卫星,李立,朱开明,等.珍稀雉类育雏期黑头病的诊治[J].中国家禽,2004,26(1):15-15.
    [186]李立,朱开明,段文武,等.黄腹角雉血液生理生化指标的测定[J].动物学杂志,2003,38(6):94-96.
    [187]吕秀杰,王立屏,赤锡联,等.等电聚焦电泳技术在黄腹角雉分类上的应用[J].松辽学刊(自然科学版),1995,(3):70-72.
    [188]郑光美.我国鸟类生态学的回顾与展望[J].动物学杂志,1981,(1):63-68.
    [189]郑光美.中国的鸟类生态学[A].见:中国鸟类学会等主编.中国鸟类学研究(第二届海峡两岸鸟类学术研讨会文集).北京:中国林业出版社,1996.19-25.
    [190]高玮.鸟类生态学[M].长春:东北师范大学出版社,1993.
    [191]陈化鹏,高中信.野生动物生态学[M].哈尔滨:东北林业大学出版社,1993.100-102.
    [192]蒋志刚,马克平,韩兴国,等.保护生物学[M].杭州:浙江科学技术出版社,1997.108-114.
    [193]陈婴芳,徐宏发.DAN标记及其在保护生物学中的应用[J].浙江师范大学学报(自然科学版),2003,26(1):60-64.
    [194]Botstein D., White RL., Skolnick M., et al. Construction of a genetic linkage map in man using restriction fragment lenth polymorphisms[J]. American journal of Human genentics,1980,32(3):314-331.
    [195]Kessler L G, Avise J C. Systematic relationships among water-fowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA[J]. Syst Zool, 1984,33:370-380.
    [196]Kessler L.G and Avise J.C. A comparative description of mitochondrial-DNA differentiation in selected avian and other vertebrate genera[J]. Mol Biol Evol.1985,2: 109-125.
    [197]Shield G. F., Wilson A C. Calibration for mitochondrial DNA evolution in geese [J]. Journal of Molecular Evolution,1987,24:212-217.
    [198]Shield G F, Wilson A C. Subspecies of the Canada goose (Branta canadensis) have distinct mitochondrial DNAs[J]. Evolution,1987,41:662-666.
    [199]Zink R M. Geograp of mitochondrial DNA variation on two sympatrie sparrows[J]. Evolution,1991,45:329-339.
    [200]Ball R M, Avise J C. Mitochondrial DNA phylogeographic dif-ferentiation among avian population and the evolutionary signifi-cance of subspecies[J]. The Auk, 1992,109(3):626-636.
    [201]Shield G F, Helnbychowski K M. Mitochondrial DNA of birds[A]. In:Johnston R Fed. Current Ornithology, Ibw York:Plenum Press,1988.237-295.
    [202]Dittman D J, Zink R M. Mtochondrial DNA variation among phalaroes and allies[J]. The Auk,1991,108:771-779.
    [203]文陇英,张立勋,刘迺发,等.以mtDNA细胞色素b基因探讨斑翅山鹑的分类地位[J].动物学研究,2005,26(1):69-75
    [204]李庆伟,林津,文伟,等.鴞形目8种鸟类线粒体DNA多态性研究[J].动物学报,1998,44(1):94-101.
    [205]李庆伟,李爽,田春宇,王勇军,郭玉梅,等.雀形目10种鸟类线粒体的DNA变异及分子进化[J].动物学报,2002,48(5):625-632.
    [206]Nakamura Y, Carlson M, Krapcho K et al. Tbw approach for isolation of VNTR markers[J]. Am J Hum Genet,1988,43:854-859.
    [207]Burke T, Bruford M W. DNA fingerprinting in birds[J]. Nature,1987,327(14): 149-152.
    [208]Anming M, Carter R E, Parkin D T. The variability of DNA fingerprints in three species of swan[J]. Heredity,1990,64:73-80.
    [209]Haig S M, Walters J R, Plissner J H. Genetic evidence for monogamy in the cooperatively breeding red7cockaded woodpecker[J]. Behav. Ecol. Sociobiol,1994,34: 295-303.
    [210]Piper W H, Evem D C, Meyer M W, et al. Genetic monogamy in the common loon(Cavia imner) [J]. Behav Ecol Sociobiol,1997,41:25-39.
    [211]Zilberman R et al. Extra-pair paternity in the socially monoga-mous orange-tufted sunbird (Mctarinia osea osea) [J]. Israel Journal of Zoology,1999, 45(3):407-421.
    [212]Gibbes H L, Goldizen A W, Bullough C et al. Parentage analysis of multi-male social groups of tasmanian native hens (Tribonyx nrortierii):genetic evidence for monogamy and poly-andry[J]. Behav. Ecol. Sociobiol,1994,35:363-371.
    [213]Westneat D F, Gar A B, Rambo K C. Withirrbrood patterns of paternity and behavior in red 7 winged blackbirds[J]. Behav Ecol Sociobiol,1995,37:349-356.
    [214]McRae S B, Burke T. Intraspecific brood parasitism in the moorhen:parentage and parasite-host relationship determined by DNA fingerprinting[J]. Behav Ecol Sociobiol,1996,38:115-129.
    [215]方盛国.大山雀两亚种基因指纹图的比较研究[J].生物多样性,1996,4(4):207-210.
    [216]孟安明,齐顺章,宫桂芬.四个探针产生的家禽DNA指纹图谱[J].生化与生物物理进展,1993,20(2):139-142.
    [217]Apay G, Morissette J, Vignal A et al. The 1993-1994 Genethon human linkage map[J]. Nature Genetics,1994,7:246 339.
    [218]Khatib H, Soller M. Mononucleotides repeat polymorphism atthe MYHE locus in chicken[J]. Animal Genetics,1992,23:478.
    [219]Crooij mans R P M A, Kampen van A J A, Poel van der J J, et al. Highly polymorphic microsatellite markers in poultry[J]. Ani-oral Genetics,1993,24:441-443.
    [220]Crooij mans R P M A, Kampen van A J A, Poel van der J J, et al. new microsatellite markers on the linkage map of the chicken genome[J]. Journal of Heredity,1997,85:410-413.
    [221]Gibbs M, Dawson D A, McCamley C, et al. Chicken micro- satellite markers isolated from libraries enriched for simple tan-dem repeats[J]. Animal Genetics,1997, 28:401-417.
    [222]Hoglund J, et al. Mcrosatellite markers reveal the potential for kin selection on black grouse leks[J]. Proceedings of the Royal Society Biological Sciences Series B, 1999,266(1421):813-816.
    [223]Saino N, et al. No evidence for adjustment of sex allocation in relation to paternal ornamentation and paternity in barn swallows[J]. Journal of Molecular Ecology,1999,8(3):399-406.
    [224]Double, M. C., and A. Cockburn.. Pre-dawn infidelity:Females control extra-pair mating in superb fairy-wrens. Proc. R. Soc. Lond. B.2000.267:465-470.
    [225]Dale J, et al. Frequency and timing of extrapair fertilisation in the polyandrous red phalarope (Phalaropus licarius) [J]. Be-havioral Ecology & Sociobiology,1999, 46(1):0-56.
    [226]Mun NI, Winchell C S, Burr T. Mcrosatellite variatin and microevolution in the critically endangered San Gemente Island loggerhead shrike (Lanius ludovicianus nearnsi) [J]. Proceedinns:Biological Sciences,1997,264(1383):869-875.
    [227]张细权,刘敬顺,吴显华.畜禽微卫星多态性的银染法显色[J].华南农业大学学报,1997,18(增刊):112-115.
    1228]包文斌,陈国宏.孔雀微卫星引物筛选及其遗传多样性分析[J].遗传,2006,28(10):1242-1246.
    [229]叶朗惠,霍金龙,苗永旺.尼西鸡遗传多样性微卫星标记分析[J].动物学研究,2006,27(1):68-74.
    [230]Sanguinetti, C.J., Dias, N.E., Simpson, A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques,1994,17(5):914-21.
    [231]Smith J S C, Chin E, Shu H, Smith O S, Wall S J, Senior L, Mitchell S, Kresovich S, Ziegle J. An evolution of the utility of SSR loci as molecular markers in maize (Zea may L.):comparisons with data from RFLPs and pedigree[J]. Theor Appl Genet,1997,95:163-176.
    [232]Crow, J.F., Kimura, M., Evolution in sexual and asexual populations[J]. Am. Nat. 1965,99:439-450.
    [233]Faiza C,Damien B,Youssef I,Amal K,Paul M.Characterization of 22 microsatellites loci from the endangered Houbara bustard[J].Molecular Ecology Notes,2002,2:484-487.
    [234]Lieckfeldt D,Schmidt A,Pitra C.Isolation and characterization of microsatellite loci in the great bustard Otis tarda[J].Molecular Ecology 2001,1:133-134.
    [235]Botstein D,White RL,Skolnick M,Davis RW.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].American Journal of Human Genetics,1980,32:314-331.
    [236]艳丽,黄炎,张保卫等.卧龙圈养大熊猫遗传多样性现状及预测[J].兽类学报,2006,26(4):317-324.
    [237]Questiau S, et al. Amplified fragment length polymorphism (AFLP) markers reveal extra-pair parentage in a bird species:bluethroat (Luscinia siecica) [J]. Nblecular Ecology,1999,8(8):1331-1339.
    [238]Williams J G K, Ubelik K A R, Livak J, et al. DNA polymorphisms amplified by arbitary primers axe useful as genetic markers[J]. Nucleic Acid Research,1990,18:6 531-6535.
    [239]Welsh J, Mmclelland M. Fingerprinting genomes using PCR with arbitary primers[J]. Nucleic Acids Research,1990,18:7213-7218.
    [240]Haig S M, Rmer J M, Heckel D G. Population differentiation in randomly amplified polymorphic DNA of red7cockaded woodpeckers Picoides borcalis[J]. Al Ecol,1994,3(2):581-595.
    [241]Corley-Smith GE. Lim CJ. Kalmar GB, et al. Efficient detection of DNA polymorphisms by fluorescent RAPD analysis[J]. Bio Techniques,1997,22:689-690.
    [242]Valentini A. Timpero AM.Cappuccio I. Random amplified polymorphic DNA (RAPD) interpretation requires a sensitive method for the detection of amplified DNA[J]. Electrophoresis,1996,17(10):1553-1554.
    [243]Gutierrez-Adan A.Cushwa WT. Anderson GB., et al, Ovine-specific Y-chromosome RAPD-SCAR marker for embryo sexing[J]. Anim Genet,1997, 28(2):135-138.
    [244]兰宏,张文艳,王文.滇金丝猴的随机扩增多态DNA与遗传多样性分析[J].中国科学(C辑),1996,26(3):244-249.
    [245]Bardin MG.Bandi C.Cominicini S., et al. Random amplified polymorphic DNA fingerprints of the eight taxa of Trichinella and their comparison with allozyme analysis[J]. Parasitology.1995 May,110 (Pt 4):401-7.
    [246]Teale AJ. Wambugu J. Gwakisa PS., et al. A polymorphism in randomly amplified DNA that differentiates the Y chromosomes of Bos indicus and Bos taurus[J]. Anim Genet,1995,26(4):243-248.
    [247]Smith EJ. Jones CP.Bartlett J., et al. Use of randomly amplified polymorphic DNA markers for the genetic analysis of relatedness and diversity in chickens and turkeys[J]. Poultry Science,1996,75:579-584.
    [248]Zhang X. Mcdaniel GR. Giambrone JJ. Random amplified polymorphic DNA comparisons among broiler lines selected for incidence of tibial dyschondroplasia[J]. Poult Sci,1995,74:1253-1258.
    [249]Wei R.Dentine MR.Bitgood JJ. Random amplified polymorphic DNA markers in crosses between inbred lines of Rhode Island red and White Leghorn chickens[J]. Anim genet,1997,28(4):291-294.
    [250]Haig S M, Riamer J M, Heckel DG.. Population differentiation in randomly amplified polymorphic DNA of red7cockaded woodpeckers Picoides borcalis[J]. Al Ecol,1994,3(2):581-595.
    [251]Fleischer, R. C., G. Fuller and D. Ledig. Genetic structure of endangered clapper rail (Rallus longirostris) populations in southern California[J]. Conservation Biology,1995,9(5):1234-1243.
    [252]Nusser J A, Goto R M, Ledig D B., et al. RAPD analysis re-veals low genetic variability in the endangered light-footed clapper rail[J]. Al Ecol,1996,5(4):463-472.
    [253]Katanen j. Vilkki J..Elo K.et al, Random amplified polymorphic DNA in cattle and sheep:application for detecting genetic variation[J]. Anim genet,1995, 26(5):315-320.
    [254]Gwakisa PS.Kemp SJ.Teale AJ. Characterization of Zebu cattle breeds in Tanzania using random amplified polymorphic DNA markers[J]. Anim genet,1994, 25(2):89-94.
    [255]Mel'nikova MN.Grechko VV. Study of polymorphism and divergence of genomic DNA at the species and population levels (using DNA of domestic sheep and wild rams as an example) [J]. Genetika,1995,31(8):1120-1231.
    [256]Ezer AD. Williams RW.Goldowitz D. Arbitrary primer PCR of dog DNA with estimates of average heterozygosity[J]. J Hered,1996 Nov-Dec,87(6):450-5.
    [257]Glazko VI. Domanskii NN.Sozinov AA. Current trends in the use of DNA technologies [J]. Tsitol Genet.1998 Sep-Oct,32(5):80-93. Review. Russian.
    [258]张细权,吕雪梅,杨玉华,等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报,1998,25(2):112-119.
    [259]吴晓林,等.闭锁繁育乌骨鸡群体的RAPD指纹分析[J].生命科学研究,1998,2(4):278-282.
    [260]吕雪梅,杨手福,张细权,等.蛋鸡品系RAPID变异及其与杂种优势关系的分析[J].遗传,1999,21(2):24-28.
    [261]刘斌,韩之明,刘彦等.朱鹮随机扩增多态DNA分析与种内亲缘关系研究[J].应用与环境生物学报,1999,5(1):45-49.
    [262]Martin G.B., et al. Characterization of the binding specificity of two anticruciform DNA monoclonal antibodies[J]. J Biol Chem,1989 Jan 5,264 (1): 334-41.
    [263]Michelmore R.W., et al. Tetrahydrobiopterin and nitric oxide:mechanistic and pharmacological aspects[J]. Proc, Natl. Acad. Sci. USA,1992,94:896-901.
    [264]Levin I. Santangelo L. Cheng HH., et al. An autosomal genetic linkage map of the chicken[J]. J.Hered,1994,85:79-85.
    [265]Levin I.Crittenden LB, Dodgson JB., Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers[J]. Genomics,1993 Apr, 16(1):224-30.
    [266]Cheng HH.Levin I.Vallejo RL., et al. Development of a genetic map of the chicken with markers of high utility[J]. Poult Sci,1995,74(11):1855-74.
    [267]Cushwa WT.Dodds KG.Crawford AM., et al. Identification and genetic mapping of random amplified polymorphic DNA (RAPD) markers to the sheep genome[J]. Mamm Genome,1996 Aug,7(8):580-5.
    [268]Horvat S, Medrano JF, Behboodi E., et al. Sexing and detection of gene construct in microinjected bovine blastocysts using the polymerase chain reaction[J]. Transgenic Res.,1993 May,2(3):134-40.
    [269]Wei R. Proceeding of fifth world congress on genetics applied to livestock production[J]. Hereditas,1995,123(1):53-9.
    [270]谢新民,施启顺,柳小春,等.鹌鹑的遗传多样性研究[J],湖南农业大学学报,1998,24(2):143-147.
    [271]Gilpin M E, Soule M E. Minimum viable population:the processes of species extinctions [A]. In:Conservation Biology:the science of Scarcity and Diversity edied by M E soule Sinauer Association. Sunderland. Mass.1996,13-14.
    [272]Ewens W J,Brockwell P J,Gani J M, et al. MVP size in the presence of catastrophe. In Viable Population for Conservation edited by M E soule. Cambrige University Press. Cambrige,987.59-78.
    [273]Franklin I A, Evolutionary change in small populations[A].In:M E Soule and B A Wilcox(eds) Conservation, Biology:an Evolutinary-Ecol ogical Perspective,sinauer Associates,Sunderland,Mass,1980.135-49.
    [274]Simberloff D, The contribution of population and community biology to conservation science[J]. Ann. Rer. Ecol.Syst.,1988,19:473-511.
    [275]Shaffer M L. Minimum viable populations:coping with uncertainty[A]. In Viable Population for conservation edited by M E soule. Cambrige University Press.Cambrige, 1987.69-86.
    [276]Soule E M. Introduction [A]. In:Viable Population for conservation edited by M E soule, Cambrige University Press, Cambrige,1987.1-9.
    [277]Shaffer M L., Minimum population sizes for species conservation[J]. Bio. Science,1981,31(2):131-134.
    [278]Morre N W. The heaths of dorset and their conservation [J], J.Ecology, 1962,50:369-91.
    [279]Soule M E, D Simberloff. What do genetics and ecology tell us About the design of nature reserve[J]. Biological Conservation,1986,35 19-40.
    [280]Shaffer M L, Population viability analysis[J]. Conservation Biological,1990, 4(1)39-40.
    [281]Richter-Dyn N, Goel N S. On the extinction of a colonizing species[J]. Theor. Pop. Biol,1972,3:406-23.
    [282]Goodman D. The demography of chance extinction [A].In Viable Population for conservation editel by M E soule. Cambrige University Press, Cambrige,1987.11-34.
    [283]Burgman M,Cantoni D,Vogal P. Shrews In suburbia:an application of Goodman;sextinction model[J]. Biological Conservation,1992,61:117-123.
    [284]Belovsky G. Extinction models and mammalian persistence [A], In:Viable Population for conservation edited by M E soule. Cambrige University Press. Cambrige,1987.35-57.
    [285]Ginzburg L R, Fersin S,Akcakays H R. Reconsturctibility of density dependence and the conservation assessment of extinction risks[J]. Conservation Biology,1990, 4(1):63-70.
    [286]Ralls K,Harvey P H, Lyles A M. Inbreeding in natural populations of birds and mammals [A]. in Conservaltion Biology:An Science of Scarity and Diversity edited by M E soule Sinauer Associates, Surderland,Mass,1986.35-56.
    [287]Allendorf F W, Leary R E, Heterozygosity and fitness in natural population of animal [A].In:Conservaltion Biology:An Science of Scarity and Diversity edited by M E soule Sinauer Associates, Surderland,Mass,1986.57-76.
    [288]Leding F T. Heterozygosity, heterosis, and fitness in outbreeding plants.77-104[A]. In:Conservaltion Biology:An Science of Scarity and Diversity edited by M E soule Sinauer Associates, Surderland,Mass.1986.
    [289]Koenig W D, On determination of viable population size in birds and mammals[J].Wildl.Soc.Bull,1988,16:230-234.
    [290]Soule M E. Thresholds for survival Maintaining fitness and evolutionary potential [A].in Conservaltion Biology:an Evolutionary Ecological Perspective edited by Soule,M E and Wilcox, B A Sunderland, MA:Sinauer,1980.111-124.
    [291]Frankel O H,M E Soule. Conservation and Evolution [M]. Cambridge, UK Cambridge Univ, Press,1981.327.
    [292]Lande R, Barrowclough G G. Effective population size, genetic variation, and their use in population management [A], in Viable Population for conservation edited by M E soule, Cambrige University Press. Cambrige,1987.87-123.
    [293]Lacava J, Hughes J. Determining minimum viable population levels [J]. Wild, Soc, Bull.,1984,12:370-375.
    [294]Reed J M,Docerr P D,Walters J R. Determining minimun populaiton sizes for birds and mammals[J]. Wildl.Soc.Bull,1986,14:225-261.
    [295]Gilpin M E. Spatial structure and population vulnerability [A], in Viable Population for conservation edited by M E soule, Cambrige University Press. Cambrige,1987.125-139.
    [296]Reddingius J., Boer P J D. Simulation experiments illustrating stabilization of animal numbers by spreading of risk[J]. Oecologin (Brel.) 1970,5:240-284.
    [297]Roff D A. The analysis of a population mldel demontrating the importance of dispersal in a heterogeneous environment[J]. Oecologin (Brel.),1974,15:259-75.
    [298]Roff D A. Spatial heterogeneity and the persistence of population [J]. Oecologin(Brel.),1974,15:245-258.
    [299]Murphy D D, Preas K E, Weiss S B. An environment-Metapopulation approach to population viability analysis for a threatened invertebrate [J]. Conservaltion Biology, 1990,4(1):41-51.
    [300]Howe R W, Davis G J. The demographic significance of "sink" population[J]. Biological Conservation,1991,57:239-255.
    [301]Ehrlich P R. The population biology of the butterfly Euphydryas Editha. I, the strucuture of the Jasper ridge colony [J]. Evolution,1965,19:327-336.
    [302]Ehrlich P R, White R R,Singer M C. Checkerspot butterflies:a historical perspective[J]. Science,1975,188:221-28.
    [303]Shaffer M L, Samson F B. Population size and extination:a note on determinion critical population sizes[J]. Am.Nat,1985,125:144-152.
    [304]Suchy W J, Mcdonald L L. Strickland M D. New estimates of minimum viable populaiton size for grizzly bears of the yellowstone ecosystem [J]. Wildl. Soc, Bull., 1985,13(3):223-228.
    [305]Seal U S, The Workshop Participants. Bali Starling viability analysis and species surrival plan workshop report[R]. Captive Breeding Specialist Group Species Surrival Commission/IUCN,1990.
    [306]Seal U S, Lacy R C, The Workshop Participants.Florida key Deer population viability assessnent[R]. Captive Breeding Specialist Group Species Surrival Commission/IUCN,1990.
    [307]Samson F B, Pevez-Trejo F, Salwasser H., et al. On determining and managing minimum population size[J]. Wildl.Soc. Bull,1985,13(4):425-433.
    [308]Diamond J M. Assmebly of specie communities [A], in Ecology and Evolution of Communities edited Cody M L and Diamond J M. The Beckrap Press of Harvard University,1975.342-444.
    [309]Brown J H. Mammals on mountaintops:non equilibrium insular biogeography[J]. Am. Nat.,1971,105:467-78.
    [310]Patterson B D, Atmar W. Nested subsets and strueture of insular mammalian faunas and archipelagos[J]. Buological Journal of the Linnean Society,1986,28:65-82.
    [311]Berger J. Persistence of different-sized populations:an empirical saaessment of rapid extinctions in Bighorn Sheep[J]. Conservaltion Biology,1990,4(1):91-98.
    [312]Grumbine R E. Viable population reserve size and federal lands management:a critique[J]. Conservaltion Biology,1990,4(2):127-134.
    [313]Soule M E. Where do we go from here[A]?, in Viable Population for conservation edited by soule M E, Cambrige University Press, Cambrige,England,1987. 175-183.
    [314]Thomas C D. What do real population dynamics tell us about minimum vible population sizes[J].Conservaltion Biology,1990,4(3):324-427.
    [315]Newmark W D. Legal and biotic Boundaries of Western North American national parks:aproblem of congruence[J]. Biological Conservation,1985,33:197-208.
    [316]Schonewald-cox C M. Guidelines to management:a beginning attempt[A]. In: C M shouewald-cox,et (eds)Genetics and Conservation Benjamin Commings, Menlo Park, Calif,1983.415-45.
    [317]Diamond J M. The island dilemma:lessons of modern biogeographic studies for the design of natural reserves[J]. Biol.Conserv,1975, (7):129-146.
    [318]Mace G M, lande R, Assessing extinction threats:troward a reevaluatrion of IUCN threatened species categories[J]. Conservaltion Biology,1991,5(2):148-157.
    [319]Noss R F. Can we maintain biological and ecological integrity[J] Conservaltion Biology,1990,4(3):241-243.
    [320]李义明,李典谟.种群生存力分析研究进展和趋势[J].生物多样性,1994,2(]):1-]0.
    [321]蒋志刚,马克平,韩兴国.保护生物学[M](第二版).浙江:浙江科学技术出版社,1999.130-131.
    [322]张先锋,等.漩涡模型及其在白豚种群管理中的应用[J].生物多样性,1994,2(3):133-139.
    [323]肖文,等.黑白仰鼻猴种群生存力初步分析[J].动物学研究,2005,26(1):9-16
    [324]张泽钧,等.唐家河大熊猫种群生存力分析[J].生态学报,2002,Vol.22,No.7: 990-998.
    [325]Seal US, et al. Bali starling (Leucopsar rothschildi) population viability assessment(R). The Workshop Participants, Bali Starling viability analysis and species surrival plan workshop report. Captive Breeding Specialist Group Species Surrival Commission/IUCN,1990,167-198.
    [326]Seal US, and R.C. Lacy.Florida key deer population viability assessment(R).Report to the U.S. Fish and wildlife Service.Aplle Valley, MN:Captive Breeding Specialist Group(SSC/IUCN)l 990,40-70.
    [327]Hail SM., et al. Population viability analysis for a small population of red-cockaded woodpeckers (Picoides borealis) and an evaluation of enhancement strategies[J]. Conservation biology,1993,7:289-301.
    [328]Armbruster P, R Lande. A Population viability analysis for African Elephant(Loxodonta africana):how big shoud reserve be. conservation Biology, 1993,7:602-610.
    [329]John Mackinnon, et al. A Field Guide to the Birds of China [M]. Changsha: Hunan Education Press,2000.19-30.
    [330]蒋志刚,马克平,韩兴国,等.保护生物学[M](2).杭州:浙江科学技术出版社,1997.138-167.
    [331]蔡宝祥主编.家畜传染病学[M].北京:中国农业出版社,2000.252-253.
    [332]华育平主编.野生动物传染病检疫学[M].北京:中国林业出版社,1999.37-38.
    [333]世界动物卫生组织者.哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册[M].北京:中国家业科学技术出版社,2002.201-207.
    [334]蔡宝祥主编.家畜传染病学—3版[M].北京:中国农业出版社,2000.5:43-45.
    [335]项大实主编.实用兽医手册[M].北京:北京出版社,1994.7:175.176.
    [336]J.Sambrook, E.F. Fritsch, T. Maniaatis著.金冬雁,黎孟枫,等译.分子克隆实验指南(第二版)(M).北京:科学出版社,2002.
    [337]Lynch M. The similarity index and DNA fingerprinting[J]. Mol boil Evol,1990, 7:478-484.
    [338]Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proc Natl Aced Sci, USA,1979,76(10):5269-5273.
    [339]Apostol B L,Black IV W C,Reiter,et al. Population genetics with RAPD-PCR markets:the breeding structure of Aedes aegypti in Puerto Rico[J]. Heredity, 1996,76:325-334.
    [340]王成树,李增智.分子数据的遗传多样性分析方法(综述)[J].安徽农业大学学报.2002,29(1):90-94.
    [341]杨永华,胡永金.分子遗传技术与生物遗传多样性研究[J].农村生态环境.1996,12(4):28-31.
    [342]WACHIA F N,WAUGH R,HACKETT C A,et al.Detection of genetic diversity in tea(Camellia sinensia)using RAPD markers[J]. Genome,1995,38:201-210.
    [343]谢新民,施启顺,柳小春,等.鹌鹑的遗传多样性研究[J].湖南农业大学学报,1998,24(2):143-147.
    [344]Miller,P.C.,and R. C. Lacy.Vortex:A Stochastic Simullation of the Extinction Process[M]. Version 9.21. Vortex User's Manuual. Aplle Valley, MN:Conservation Breeding Specialist Group(SSC/IUCN),2003.73-74.
    [345]Lacy R. C, Vortex:A Computer Simulation Model for Population Viability Ananlysis[J]. wildl. Res.,1993,20,45-65.
    [346]Simmons, M.J., and J.F. Crow.1977, Mutations affecting fitness in Drosophila population[J]. Annual review Genetics,1977,11:49-78.
    [347]Morton N. E., Crow, J.F., and Muller, H.J. An estimate of the mutational damage in man from data on consanguineous marriages. Proceedings of the national academy of sciences, USA 1956,42:855-863.
    [348]李义明.种群生存力分析:准确性和保护应用[J].生物多样性,2003,11(4):340-350.
    [349]Brook B. W., O Grady J.J., Chapman A.P., Burgman M.A., Akcakaya, R. and Frankhmam R. Predictive accuracy of population viability analysis in conservation biology[J]. Nature,2000,82:119-128.
    [350]Brook B.W., Burgman M.A., Acakaya R., Grady J.J and Frankman R. Critiques of PVA ask the wrong questions:throwing the heuristic baby out with the numerical bath water[J]. Conservation Biology,2002,16:262-263.
    [351]马建章,贾竞波.野生动物管理学[M].哈尔滨.东北林业大学出版社.1990.152-203.
    [352]徐洪发,陆厚基.最小存活种群(MVP)一保护生物学的一个基本理论[J].生态学杂志,1995,15(2):25-30.
    [353]倪喜军.地理信息系统在野生动物研究[J]中的应用[J].生物学通讯,1998,33(9):3-6.
    [354]何友均,等.濒危物种保护进展[J].生态学报,2004,24(2):338-346.
    [355]葛汉栋,等.湖南天然林保护与可持续利用研究[M].湖南科技出版社,2001.100-130.
    [356]Jouko Hogmander & Gui Xiao Jie. Biodiversity Conservation Action Plan for Hunan, China. Published by Finnish Forest and Park service,2000.
    [357]湖南省林业厅.湖南省野生动植物保护及自然保护区工程总体规划[z].2001.
    [358]徐宏发,等.野生动物保护原理及管理技术[M].上海:华东师范大学出版社,1995.
    [359]中国环境与发展合作委员会生物多样性工作组.利用天然植被改善中国退化环境[M].北京:中国林业出版社,2001.
    [360]马敬能,等.中国生物多样性保护综述[M].北京:中国林业出版社,1998.
    [361]薛达元.生物多样性保护价值评估[M].北京:中国环境出版社,1997.
    [362]肖笃宁.景观生态学理论、方法及应用[M].北京:中国林业出版社,1991.
    [363]John Mackinon,解炎,等.利用天然植被改善中国退化环境[M].北京:中国林业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700