不同CO_2浓度情景下热盐环流的演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以德国Max - Planck气象研究所的最新的大气海洋环流模式(ECHAM5/MPI-OM1)为工具,对control run下热盐环流(THC)年代际变率的产生机制进行了研究,分析了温室气体浓度增加情景下全球海洋变化的主要特征以及THC对温室气体浓度增加所引起的全球变暖情景的响应。这些研究工作对未来气候预测以及国际间的政策决策具有重要的意义。
     本文采用CO_2浓度固定在一定量值的control run的数值试验,从海气耦合的角度对THC年代际振荡机制以及格陵兰-苏格兰海脊溢流水变化机制进行了分析和探讨,得出结论如下:
     1.THC年际振荡的主导周期是4年,年代际振荡的主导周期是24年,THC的年代际振荡信号最强,是第一主成分。THC的年代际振荡机制:首先从MOC(the Meridional Overturning Circulation)强度最小开始,由于MOC强度处于较弱状态,从低纬度向高纬度输送的热量偏少,副极地海区海表温度出现负异常,持续5年之后,北大西洋副极地海区海表温度达到最大负异常。此时副极地流环中心(北大西洋)的表层海水变冷,密度增加,海表面下降,产生从副极地流环边缘指向副极地流环的中心的压强梯度力,根据地转平衡关系,北大西洋副极地海区的上层海洋会出现一个气旋式的环流异常(副极地流环得到加强),北大西洋暖流(NAC)同时得到加强。在副极地海区海表温度达到最大负异常的3年之后,副极地流环和NAC达到最强。由此,作为NAC延伸的法鲁海峡入流水增强,更多的高盐法鲁海峡入流水进入格陵兰-冰岛-挪威海(GIN)海域,使GIN海域层结稳定性减弱。1年后,GIN海域深层对流增强,格陵兰-苏格兰海脊溢流水增加。在GIN海域深层对流达到最强的3年之后,MOC强度达到最大。整个状态翻转过程完成,时间大约为12年,THC年代际振荡的整个周期大约是24年。
     2.在control run下格陵兰-苏格兰海脊溢流水的变化机制:当法鲁海峡的高盐入流水增强时,GIN海域表层密度增加,GIN海域层结稳定性减弱,使深层对流增强,GIN海域等密度线上翘,深层水密度增加,有效动力高度和海脊两侧的密度差增加,斜压效应导致的溢流水强度增强。入流水的增加同时使整个GIN海域的气旋式环流加强,正压出流效应也增强,因此影响溢流水强度的斜压效应和正压效应二者是统一的。由于溢流水的强度和溢流水的密度同步密切相关,尚难分辨溢流水的强度和溢流水的密度谁是影响MOC强度的主导因子。
     利用温室气体浓度增加情景下耦合模式(ECHAM5/MPI-OM1)的输出结果,分析THC对温室气体浓度增加所引起的全球变暖情景的响应,重点研究了全球变暖情景下,北大西洋深层水(NADW)生成率的变化机制,格陵兰-苏格兰海脊溢流水的演变机制及其和THC变化的关系,结论如下:
     1. THC强度在所研究的B1,A1B,A2三种排放情景下均减弱,减弱量值分别到达20%,25%和25.1%。NADW的生成率在A1B情景的20世纪大约是16.2Sv,其中8.2Sv来自拉不拉多海深层对流,5.9Sv来自丹麦海峡和法鲁海峡溢流水,2.1Sv是丹麦海峡以南(SDSR)海域的深层水卷夹的结果。在A1B情景全球变暖的21世纪,NADW的生成率降低到12.9Sv,拉不拉多海贡献5.2Sv,丹麦海峡和法鲁海峡溢流水贡献6.1Sv,SDSR海域的深层水卷夹贡献1.6Sv。
     2.在温室气体浓度升高全球变暖的情景下,极地和副极地海区由于高纬度降水的增加,将得到更多的淡水,海表盐度降低;同时,由于全球变暖,北大西洋海表温度(SST)升高,盐度和温度的共同作用导致北大西洋副极地海区表层密度降低,使拉不拉多海和SDSR海域的垂直层结更加稳定,垂直对流和深层卷夹减弱,这就是以上两个海区NADW生成率在全球变暖情景下降低的原因。而在GIN海域,NADW生成率的变化同以上两个海区是不同的,变化趋势是升高的。在全球变暖的情况下,有更多的北大西洋表层水通过法鲁海峡进入GIN海域。法鲁海峡入流的增加将把更多较咸的大西洋水带到GIN海域,使GIN海域表层盐度增加。虽然在全球变暖的背景下GIN海域的表层温度是升高的,但GIN海域温度升高对密度的减小作用弱于盐度升高对密度的增加作用,最终的结果是,在GIN海域深层对流发生区表层密度增加,表层密度的增加降低了垂直层结的稳定性,导致GIN海域在全球变暖情况下深层对流加强,深层水生成率增加。
     3.在A1B情景下,丹麦海峡和法鲁海峡由斜压效应导致的溢流水强度明显减弱。此时法鲁海峡入流水明显增加,整个GIN海域的气旋式环流得到了加强,GIN海域的正压出流效应增强。在A1B情景下,法鲁海峡溢流水的强度从3.2Sv下降到2.9Sv,同斜压效应导致的溢流水强度变化趋势一致,这表明法鲁海峡溢流水强度的变化是由斜压效应控制的。而丹麦海峡溢流水的强度从2.7Sv增加到3.3Sv,这同斜压效应导致的溢流水强度变化趋势相反,同GIN海域的正压出流效应变化趋势相同,这清楚的表明A1B情景下丹麦海峡溢流水的增强是正压效应的结果。在CO_2浓度升高全球变暖的背景下,溢流水的密度成为影响MOC强度的主导因子,而不是溢流水的强度。
A climate model (ECHAM5/MPI-OM1) newly developed for the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) at Max-Planck Institute for Meteorology is used to study the variations of the Atlantic Thermohaline Circulation (THC) under different increased CO_2 scenarios. Especially, the mechanism of the inter-decadal variability of the THC, the changes of the global oceans due to increased CO_2 in the atmosphere and the responses of the THC in the North Atlantic to increased Atmospheric CO_2, are discussed in details. These topics not only have very important scientific, social and economic meanings; but also have profound influences on international policies making.
     The control run experiment of the climate model, in which the CO_2 concentration is set at a fixed value, is used to study the mechanism of the inter-decadal variability of the THC from atmosphere-ocean interaction viewpoint and the dynamics of the variations of Greenland-Scotland overflow. A series of meaningful conclusions are drawn, the main of these are as follows:
     1. The dominant period of interannual variability of THC is 4 years, while the dominant period of interdecadal variability of THC is 24 years, which appears as the strongest signal and the first principal component. The interdecadal variability of the THC works as follows: when the THC has the weakest strength, negative temperature anomalies are induced in the up upper ocean north of the Gulf Stream region due to the reduced northward ocean heat transport. About 5 years later, the negative temperature anomalies reach its maximum. Associated with the build up of negative upper ocean temperature anomalies positive anomalies in the upper ocean density and an acceleration of the subpolar gyre and North Atlantic Current (NAC) take place. After another 3 years the subpolar gyre and NAC receive their strongest values. Stronger subpolar gyre and NAC mean increased transport of salinity into the Greenland–Iceland–Norway (GIN) Seas and will lead to a maximum in the upper ocean density in GIN. After 1 further year enhanced convection is triggered, leading to an increase in the rate of deep water formation and acceleration of the THC. The THC reaches its maximum approximately 4 years after the maximum of subpolar gyre and NAC strength. The total time for the phase reversal is 12 years, consistent with a period of about 24 years.
     2. The dynamic mechanism of the variations of Greenland-Scotland overflow of control run is: The Faro-Bank (FB) Channel saline inflow increases, and the upper layer density in GIN seas increases. Enhanced convection is triggered, leading to rise of isopycnal. So the density contrast across the ridge and effective height increase, and the hydraulic transports increase. At that time, the FB Channel inflow increases, so the anticlockwise circulation in the GIN seas will be strengthened. Thus the positive barotropic effect for overflow increases. Therefore the hydraulic effect is consistent with barotropic effect for overflow.
     The results of coupled model (ECHAM5/MPI-OM1) under increased atmospheric CO_2 scenarios are analyzed to study the variation of the THC with global warming. Especially we focus on the variation of the THC strength, the changes of North Atlantic deep water (NADW) formation, the regional responses of the THC in the North Atlantic to increased Atmospheric CO_2 and dynamics of the changes of Greenland-Scotland overflow. The main conclusions are as follows:
     1. From 2000 to 2100, under increased CO_2 scenarios (B1, A1B and A2), the strength of the THC decreases by 4Sv, 5.1Sv and 5.2Sv respectively, or equivalently reduced by 20%, 25% and 25.1% of the present THC strength. In total approximately 16.2Sv deep water are formed in the Labrador sea (8.2Sv) by convection, both overflows (5.9Sv),and entrainment (2.1Sv) in south of the Denmark Strait region (SDSR) in the 20th century. In the 21st century approximately 12.9Sv deep water are formed in the Labrador sea (5.2Sv) by convection, both overflows (6.1Sv), and entrainment (1.6Sv) in SDSR.
     2. Analyses show that oceanic deep convective activity strengthens significantly in the GIN Seas owing to saltier (denser) upper oceans, but weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming. The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through FB Channel.
     3. Since the density contrast across the sills decreases with global warming, the hydraulic transports of Denmark strait and FB channel both decrease under the A1B scenario. The overflow of FB channel also decreases from 3.2 Sv to 2.9Sv with global warming, so the variation of FB channel overflow is hydraulically controlled. However the overflow of Denmark strait increases from 2.7 Sv to 3.3 Sv under the A1B scenario, because it is not a kind of hydraulic transport. There will be more north Atlantic water through FB channel entering the GIN seas, and there will be more water which flows out of the GIN seas and enters the Barents Sea. The inflow through the Fram Strait will increase not only in the upper layer but also in the deeper and bottom layer. Not only in the upper layer but also in the deeper and bottom layer, the anticlockwise circulation in the GIN seas will be strengthened with global warming. Therefore the increase of Denmark Strait overflow is attributed to barotropic effect.
引文
1. Aagaard, K. and E. Carmack, 1989. The role of sea ice and other fresh water in the Artic circulation. J. Geophys. Res., 94, 14485~14498.
    2. Bacon, S., W. Gould and Y. Jia, 2003. Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30(5), 1246~1250.
    3. Baumgartner A and Reichel E, 1975. The World Water Balance. London:Elsevier, 179.
    4. Broecker W. S., 1990. What drives glacial cycles? Scientific American, 262, 49~56.
    5. Broecker W. S., 1991. The great ocean conveyor. Oceanography, 4, 79~89.
    6. Bryan, K. and Spelman, M. J., 1985. The ocean’s response to a CO2 induced warming. J. Geophys. Res, 90(E6), 11.679~11.688.
    7. Bryan, K., S. Manabe, and M. J. Spelman, 1988. Interhemispheric asymmetry in the transient response of a coupled ocean-atmosphere model to a CO2 forcing. Journal of Physical Oceanography, 18(6), 851~867.
    8. Cheng, W, Bleck R and Rooth C, 2004. Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Climate Dyn., 22, 573~590.
    9. Chung, C. and S. Nigam, 1999. Weighting of geophysical data in principal component analysis. J. Geophys. Res., 104, 16925~16928.
    10. Dansgaard, W., S. J. Johnsen, H. B. Clausen, et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218~220.
    11. De Ruijter, W., A. Biastoch, S. Drijfhout, J. Lutjeharms, R. Matano, T. Pichevin, P. van Leeuwen and W. Weijer, 1999. Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104(C9), 20885~20910.
    12. Delworth T L, Greatbatch R, 2000. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481~1495.
    13. Delworth T L, Manabe S, Stouffer R J, 1993. Interdecadal variation of the thermohaline circulation in a coupled ocean atmosphere model. J Climate, 6, 1993~2011.
    14. Dengg, J., A. Beckmann and R. Gerdes, 1996. The Gulf Stream separation problem. In The warmwatersphere of the North Atlantic Ocean (edited by W. Krauss), pp. 253~290. Gebr¨uder Borntraeger, Berlin.
    15. Dixon K W, Delworth T L, Knutson T R, et al., 2003. A comparison of climate change simulations produced by two GFDL coupled climate models. Global & Planetary Change, 37(1-2), 81~102.
    16. Eden C, Jung T, 2001. North Atlantic Interdecadal Variability: Oceanic Response to the North Atlantic Oscillation (1865-1997). Journal of Climate, Vol. 14, No. 5, pp. 676~691.
    17. Eden, C. and Willebrand, J., 2001. Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14(10), 2266~2280.
    18. Emery, W., C. Fowler and J. Maslanik, 1997. Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988-1994. Geophys. Res. Lett., 24, 897~899.
    19. Furevik, T., M. Bentsen, H. Drange, I. Kindem, N. Kvamsto and A. Sorteberg, 2002. Description and validation of the Bergen Climate Model:ARPEGE coupled with MICOM. Clim. Dyn., p. submitted.
    20. Gent, P. R., F. Bryan, G. Danabsoglu, S. Doney, W. Holland, W. Large and J. McWilliams, 1997. The NCAR climate system model global ocean component. J. Climate, 11, 1287~1306.
    21. Gordon, A. L., 1978. Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600~612.
    22. Haak, Helmuth, 2004. Simulation of Low-Frequency Climate Variability. Max-Planck Institut für Meteorologie-Report on Earth System Science, No. 1:115.
    23. Hall, M. and H. Byrden, 1982. Direct estimates and mechanisms of ocean heat transport. Deep Sea Res., 29, 339~359.
    24. Halliwell, G. R., 1997. Decadal and multidecadal North Atlantic SST anomalies driven by standing and propagating basin-scale atmospheric anomalies. J. Climate, 10, 2405~2411.
    25. Halliwell, G. R., 1998. Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. J Phys Oceanogr, 28, 5~21.
    26. Hansen, James E., 2005. A Slippery Slope: How Much Global Warming Constitutes “Dangerous Anthropogenic Interference”. Climatic Change, 68, 269~279.
    27. Hasselmann K., 1976. Stochastic climate models, Part I: theory. Tellus, 28, 473~485.
    28. Held I, Soden B. Robust responses of the hydrological cycle to global warming. Submitted to J. Climate.
    29. Hilmer, M., 2001. A model study of Arctic sea ice variability. Report 320, Reports of the Institute for Marine Research, University of Kiel, Germany.
    30. Houghton J T, Ding Y, Griggs D J, et al., 2001. Intergovernmental Panel on Climate Change (IPCC), 2001: The scientific basis. Contribution of working group I to the third assessment report of the IPCC. Cambridge: Cambridge University Press, 944.
    31. Hu, A., G. A. Meehl, W. M. Washington, A. Dai, 2004. Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J. Climate, 17, 4267~4279.
    32. Huck T., A. Colin de Verdière, and A. J. Weaver, 1999. Interdecadal variability of thethermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr, 29, 865~892.
    33. Huck, T., and G. K. Vallis, 2001. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations. Tellus, 53A, 526~545.
    34. Johannessen, O., C. Myrmehl, O. A.M. and H. T., 2002. Ice cover data analysis - Arctic. Technical Report 2, AICSEX.
    35. Johannessen, O., E. Shalina and M. Miles, 1999. Satellite evidence for an Arctic sea ice cover in transformation. Science, 286, 1937~1939.
    36. Johns T C, Gregory J M, Ingram W J, et al., 2001. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Hadley Centre Technical Note, No. 22:112.
    37. Johns, W. E., T. N. Lee, R. J. Zantopp and E. Fillenbaum, 1997. Updated transatlantic heat flux at 26.5oN. WOCE Newsletter, 27, 15~22.
    38. Jungclaus J H. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Submitted to J. Climate.
    39. Legutke, S. and E. Maier-Reimer, 1999. Climatology of the HOPE-G global ocean general circulation model. Technical Report 21, German Climate Computer Center (DKRZ), Hamburg, Germany.
    40. M. Latif, 1987. Tropical ocean circulation experiments. J. Phys. Oceanogr., 17, 246~263.
    41. M. Latif, 1998. Dynamics of interdecadal variability in coupled ocean-atmosphere models. J. Climate, 11, 602~624.
    42. Macdonald, A. M. and C.Wunsch, 1996. Oceanic estimates of global ocean heat transport. WOCE Newsletter, 24, 5~6.
    43. Manabe, S. and K. Bryan, 1985. CO2-Induced Change in a Coupled Ocean-Atmosphere Model and Its Paleoclimatic Implications. Journal of Geophysical Research, 90(C11), 11689~11707.
    44. Manabe, S. and R. J. Stouffer, 1999. The Role of Thermohaline Circulation in Climate. Tellus, 51 A-B(1), 91~109.
    45. Manabe, S. and R. Stouffer, 1980. Sensitivity of a Global Climate Model to an Increase of CO2 Concentration in the Atmosphere. Journal of Geophysical Research, 85(C10), 5529~5554.
    46. Manabe, S. and R. T. Wetherald, 1975. The effect of doubling CO2 concentrtion on the climate of the general circulation model. J. Atmos. Sci., 32, 3~15.
    47. Manabe, S. and R.T. Wetherald, 1985. CO2 and Hydrology. In Advances in Geophysics, 28, A. Climate Dynamics, B. Saltzman (ed.), Academic Press, New York, 131~156.
    48. Manabe, S., Kirk Bryan, and Michael J. Spelman, 1990. Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. Journal of Physical Oceanography, 20, 722~749.
    49. Manabe, S., Stouffer, R. J., Spelman, M. J., Bryan, K., 1991. Transient response of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2, Part I:Annual mean response. J. Climate, 4, 785~818.
    50. Marotzke J., 2000. Abrupt Climate Change and Thermohaline Circulation:Mechanisms and Predictablity. Proceedings of the National Academy of Sciences (U.S.A.), 97, 1347~1350.
    51. Marotzke, J., P. Welander and J. Willebrand, 1988. Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus, 40A, 162~172.
    52. Martinson, D., P. Killworth and A. Gordon, 1981. A convective model for the weddell polynya. J. Phys. Oceanogr., 11, 466~488.
    53. Mauritzen, C., 1996a. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. part 1: Evidence for a revised circulation scheme. Deep-Sea Research, 43, 769~806.
    54. Mauritzen, C., 1996b. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 2: An inverse model. Deep-Sea Research I, 43, 807~835.
    55. McCartney, M. S. and L. D. Talley, 1984. Warm-to-cold water conversion in the northern North Atlantic Ocean. Journal of Physical Oceanography, 14, 922~935.
    56. McCartney, M. S. and R. Curry, 1993. Transequatorial flow of Antarctic Bottom Water in the western Atlantic ocean: Abyssal geostrophy at the equator. J. Phys. Oceanogr., 23, 1264~1276.
    57. Mikolajewicz Uwe and Ernst Maier-Reimer, 1993. Acoustic detection of greenhouse-induced climate changes in the presence of slow fluctuations of the thermohaline circulation. Journal of Physical Oceanography, 23, 1099~1109.
    58. Nowlin, W. D. J. and J. M. Klinck, 1986. The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469~491.
    59. Pickart, R., M. Spall, M. Ribergaard, G. Moore and R. Milliff, 2003. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152~156.
    60. Proshutinsky, A. and M. Johnson, 1997. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102, 12493~12514.
    61. Proshutinsky, A., R. Bourke and F. McLaughlin, 2002. The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophys. Res. Lett., 29, doi:10.1029/2002GL015847.
    62. Rind, D., and M. Chandler, 1991. Increased ocean heat transports and warmer climate. J. Geophys. Res. 96, 7437~7461.
    63. Rintoul, S. R. and C. Wunsch, 1991. Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep Sea Res., 38, Suppl. 1, S355~S377.
    64. Roach, A., K. Aagaard, C. Pease, S. SALO, W. T., V. Pavlov and M. KULAKOV, 1995. Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100(C9), 18443~18457.
    65. Roeckner E, G. Baeuml L, Bonaventura R, et al., 2003. The atmospheric general circulation model ECHAM5, part I: Model description. Max-Planck Institut für Meteorologie―Report, No. 349:123.
    66. Roemmich, D. and C.Wunsch, 1985. Two transatlantic sections: meridional circulation and heat flux in the subtropical north atlantic ocean. Deep Sea Res., 32, 619~664.
    67. Rooth, C., 1982. Hydrology and ocean circulation. Progress in Oceanography, 11, Pergamon, 131~149.
    68. Rothrock, D., Y. Yu and G. Maycut, 1999. Thinning of Arctic sea ice cover. Geophys. Res. Lett., 26, 3469~3472.
    69. Schmittner, A. and Stocker, T. F., 1999. The stability of the thermohaline circulation in global warming experiments. J. Climate, 12, 1117~1133.
    70. Schmitz Jr W J, 1995. On the interbasin-scale thermohaline circulation. Reviews of Geophysics, 33, 151~173.
    71. Seager R, Kushnir Y, Visbeck M, et al., 2000. Causes of Atlantic Ocean climate variability between 1958 and 1998. J Climate, 13, 2 845~2 862.
    72. Speer, K. and W. Zenk, 1993. The flow of Antarctic Bottom Water into the Brazil Basin. J. Phys. Oceanogr., 23, 2667~2682.
    73. Spelman, M. J., Manabe, S., 1984. Influence of oceanic heat transport upon the sensitivity of a model climate. J. Geophys. Res., 89, 571~586.
    74. Steele, M., D. Thomas, D. Rothrock and S. Matin, 1996. A simple model study of the Arctic ocean freshwater balance. J. Geophys. Res., 101, 20833~20848.
    75. Stommel, H., 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13, 224~230.
    76. Stouffer, R. J., Manabe, S., Bryan, K., 1989. On the climate change induced by a gradual increase of atmospheric carbon dioxide. Nature, 342, 660~662.
    77. Sun, S., and R. Bleck, 2001. Atlantic Thermohaline Circulation and its Response to Increasing CO2 in a Coupled Atmosphere-Ocean Model. Geophys. Res. Lett., 28, 4223-4226.
    78. Swift, J. H., K. Aagaard and S. A. Malmberg, 1980. The contribution of the Denmark Strait overflow to the deep North Atlantic. Deep-Sea Res., 27, 29~42.
    79. Te Raa L A, Dijkstra H A, 2002. Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr, 32, 138~160.
    80. Thorpe R B, Gregory J M, Johns T C, et al., 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Clim., 14, 3102~3116.
    81. Timmermann A, M Latif, R Voss and A Grotzner, 1998. Northern Hemispheric interdecadal variability: A coupled air-sea mode. J Climate, 11, 1906~1931.
    82. Trenberth K E and Solomon A, 1994. The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn, 10, 107~134.
    83. V. Konstantin Y, Robock A, Stouffer R J, et al., 1999. Global warming and Northern Hemisphere sea ice extent. Science, 286, 1934~1937.
    84. Vinje, T., 2001. Fram Strait ice fluxes and atmospheric circulation: 1950-2000. J. Climate, 14, 3508~3517.
    85. Vinje, T., N. Nordlund and A. Kvambek, 1998. Monitoring ice thickness in Fram Strait. J. Geophys. Res., 103, 10437~10449.
    86. Visbeck M, Cullen H, Krahmann G, Naik N, 1998. An ocean model's response to North Atlantic Oscillation-like wind forcing. Geophys Res Lett, 25, 4521~4524.
    87. Voss, R., Mikolajewicz, U., 2001. Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG. Climate Dyn., 17, 45~60.
    88. Washington, W. M. and G. A. Meehl, 1983. General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentrations. Journal of Geophysical Research, 88, 6600~6610.
    89. Washington, W. M. and G. A. Meehl, 1984. Using climate models to investigate global habitability issues. Proceedings of American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, 9-12 January 1984, Reno, NV.
    90. Washington, W. M. and G. A. Meehl, 1989. Climate sensitivity due to increased CO2: Experiments with a coupled atmosphere and ocean general circulation model. Climate Dynamics, 4, 1~38.
    91. Weaver A J and S Valcke, 1998. On the variability of the thermohaline circulation in the GFDL coupled model. J Climate, 11, 759~767.
    92. Weaver, A. J., and E. S. Sarachik, 1991a. The role of mixed boundary condition in numerical models of the ocean’s climate. Journal of Physical Oceanography, 21, 1470~1493.
    93. Weaver, A. J., and E. S. Sarachik, 1991b. Evidence for decadal variability in an ocean general circulation model:An advective mechanism. Atmosphere-Ocean, 29, 197~231.
    94. Weaver, A. J., J. Marotzke, Partrick F. Cummins, and E. S. Sarachik, 1993. Stability and variability of the Thermohaline Circulation. Journal of Physical Oceanography, 23, 39~60.
    95. Weisse, R., U. Mikolajewicz and E. Maier-Reimer, 1994. Decadal variability of the North Atlantic in an ocean general circulation model. J. Geophysical Research, 99, 12411~12421.
    96. Whitehead, J.A., 1998. Topographic control of oceanic flows in deep passages and straits. Rev. Geophys., 36, 423~440.
    97. Wilson C A and Michell J F B, 1987. A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. J Geophys Res, 92, 13315~13343.
    98. Wright, Daniel G., and Thomas F. Stocker, 1991. A zonally averaged ocean model for the thermohaline circulation .Part I:Model development and flow dynamics. Journal of Physical Oceanography, 21(12), 1713~1724.
    99. Yang F, Kumar A, Schlesinger M E, et al., 2003. Intensity of hydrological cycles in warmer climates. J. Climate, 16, 2419~2423.
    100. Zhang, D., M. McPhaden and E. Williams, 2003. Oberservational evidence for flow between the subtropical and tropical Atlantic: the Atlantic Subtropical Cells. J. Phys. Oceanogr., p. submitted.
    101. Zhou T J, Yu R C, Liu X Y, et al., 2005. Weak response of the Atlantic thermohaline circulation to an increase of atmospheric carbon dioxide in IAP/LASG Climate System Model. Chinese Science Bulletin, 50(6), 592~597.
    102. 孙亮, 2005. 热盐环流非线性稳定性与年代际变化的研究. 中国科学技术大学博士学位论文.
    103. 赵艳玲等, 2006. 海洋环流模式研究回顾与展望, 解放军理工大学学报(自然科学版), 7(3), 281~290.
    104. 周天军, 1997: 海洋环流与气候变率研究, 北京大学攻读博士学位研究生中期资格考试报告, 北京大学地球物理系.
    105. 周天军, 1998: 大洋环流与年代际气候变率的机制研究, 北京大学博士研究生学位论文开题报告, 北京大学地球物理系.
    106. 周天军, 王绍武, 2001. 20 世纪北大西洋温盐环流的年代际变化试评估. 气候和环境研究, 6(3), 294~304.
    107. 周天军, 宇如聪, 刘喜迎, 等, 2005. 一个气候系统模式中大洋热盐环流对全球增暖的响应. 科学通报, 50(3), 269~275.
    108. 周天军, 张学洪, 王绍武, 2000. 大洋温盐环流与气候变率的关系研究. 科学通报, 45(4), 421~425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700