堤坝溃决水流数学模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国不少城市都是沿江河而建,有些城市的堤防并未达标,存在着不少险工险段,洪水期间堤防一旦溃决往往给人们的生命和财产造成巨大的损失。因此,研究堤防溃决之后洪水在城区内的演进规律具有重要的现实意义。
     本文首先建立了基于无结构网格Godunov格式的适于模拟天然堤坝溃决水流运动的二维有限体积模型。该模型采用混合非结构网格离散计算区域;采用Roe格式的近似Riemann解来计算通过界面处的法向通量;应用TVD-MUSCL格式和Hancock格式将模型的空间和时间精度同时提高到二阶;同时模型中采用了一种简单有效的干湿边界处理技术和时间动步长技术。通过几个经典算例和具有实际地形的堤坝溃决算例验证了该模型具有良好的激波捕捉能力和较高的计算精度,同时较好的满足了和谐性,能够模拟比较复杂的工程实际问题。
     城区地形与天然地形最大的不同在于城区一般分布有密集的建筑物,为模拟建筑物对溃决水流产生的影响,本文采用了三种方法:固壁边界法、真实地形法和加大糙率法。通过物理模型的实测数据对三种方法的计算精度以及适用范围进行了比较和分析后,推荐采用真实地形法。
     对哈尔滨上游蓄滞洪区的分洪能力以及可能发生的最大洪水进行了计算和分析,得出的结论认为哈尔滨市未来仍有发生溃堤的可能。鉴于此,采用本文二维水流模型对哈尔滨市可能发生的溃堤洪水进行了数值模拟,模型比较合理的模拟了城区溃堤水流的运动,所得的结果合理可靠。为了考虑侵入社区和楼房内的洪水水量,提出了侵入水量的概念,并借用侧堰流的思想给出了这部分水量的估算方法。
     为了将数学模型的计算结果更直观有效的显示给防洪决策者,本文采用动态链接库技术将数学模型嵌入三维可视化平台,构建了哈尔滨溃堤洪水三维可视化系统,该系统可以实时显示溃堤洪水在城区内的运动过程,利于防洪决策者方便快捷的制定防洪抢险的最佳方案,提升抗洪抢险的工作效率。
Flood is a major concern for many Chinese cities that are founded along rivers, and there exists a high risk of levee-breach due to low design criteria and poor maintenance. In case of levee-breach, the flood may induce serious losses of lives and properties. Therefore, it is of great significance to study the routing characteristics of flood caused by levee breach.
     A two dimensional numerical model based on Godunov method was developed to simulate levee-breach water flows over actual topographies. The Roe’s approximate Riemann solver was used to calculate the flow flux based on the hybrid unstructured finite-volume method. TVD-MUSCL and Hancock methods were used to achieve the second accuracy. A robust procedure was adapted to efficiently and accurately simulate the movement of a wet/dry boundary without diffusing it. The time step was determined adaptively, based on the maximum instantaneous Courant number across the domain. The algorithm’s stability, concordance and robustness were tested with several classical test cases. The test cases with actual topographies showed that the model can be used to deal with complex engineering problems.
     Dense buildings in urban areas exert great influence to flash flood, and they were treated in the model as, respectively, (1) solid wall boundaries, (2) grid cells with buildings top elevations, and (3) grid cells with artificially increased roughness. Comparison of the predicating performance of the model with three different approaches showed that approach (2) is more applicable.
     Analysis of flood release capacity of upstream detention areas and the probable maximum flood reveals that the risk of levee-breach in Harbin city still exists. The developed 2D model was then applied to describe possible flooding events due to levee breach in Harbin city. The results show that the model can simulate the levee-breach flood well. The invasion coefficient is put forward because the flash flood must invade into the residence block and buildings. In order to compute the invasion water, the side weir idea is used.
     In order to display the numerical results visually, the three dimensional levee-breach flood visualization system of Harbin is established by use of the Dll technology to link the numerical model into three dimensional visualization platform. Real-time display of levee-breach flood in the city was realized in the system, and this can help decision makers establish the best scheme about flood control and emergency repair easily and efficiently.
引文
[1] Alcrudo F, Garcia-Navarro P. Model for flood propagation on initially dry land. Journal of Hydraulic Engineering (ASCE), 1993a, 144(7):689-706.
    [2] Alcrudo F, Garcia-Navarro P. A high-resolution Godunove-type scheme in finite volumes for the 2D shallow water equations. Int J Numer Meth Fluids, 1993b, 16: 489-505.
    [3] Anastasiou K, Chan C T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 1997, 24:1225-1245.
    [4] Aureli F, Mignosa P, Tomorotti M. Numerical simulation and experimental verification of dam-break flows with shocks. J Hydraul Res, 2000, 38(3):197-206.
    [5] Bauer D, Peikert R, Sato M, et al. A case study in selective visualization of unsteady 3D flow. IEEE Visualization 2002. 2002,525-528.
    [6] Bellos C V, Soulis J V and Sakkas J G. Experimental investigation of two-dimensional dam-break induced flows, Advances in Water Resources, 1992, 14(1):31-41.
    [7] Benedict D R, Alistair G B, Paul H T. Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. Journal of Computational Physics, 2003, 192:422-451.
    [8] Bermudez A, Vazquez M E. Upwind methods for hyperbolic conservation laws with source terms. Compters and Fluids, 1994, 23(8),1049-1071.
    [9] Bradford S F, Sanders F. Finite-volume model for shallow-water flooding of arbitrary topography. Journal of Hydraulic Engineering, 2000, 128(3):253-262.
    [10] Brufau P, Vazquez-Cendon M E, Garcia-Navarro P. A numerical model for the flooding and drying of irregular domains. Int J Numer Meth Fluids, 2002, 39:247-275.
    [11] Brufau P, Garcia-Navarro P. Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique. Journal of Computational Physics, 2003, 186:503-526.
    [12] Brufau P, Garcia-Navarro P and Vazquez-Cendon M E. Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. Int J Numer Meth Fluids, 2004, 45:1047-1082.
    [13] Calenda G, Calvani L, Mancini C P. Simulation of the great flood of December 1870 in Rome[J], Water & Maritime Engineering, 2003,156(4):305-312
    [14] Chen C, Ambruster J T. Dam-break wave model: Formulation and Verification. J Hydraul Eng, 1980, 106(5):747-767.
    [15] Cockburn B, Hou S and Shu C W. TVB Rung-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the multidimensional case. Math Comp, 1990, 54:545-581.
    [16] Cockburn B, Shu C W. TVB Rung-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: Multidimensional systems. J Comput Phys, 1998, 141:199-224.
    [17] Dhondia J F, Stelling G S. Application of one dimensional-two dimensional integrated hydraulic model for flood simulation and damage. Proceedings of the 5th International Conference on Hydroinformatics, Cardiff, 2002, 265-276.
    [18] Dressler R F. Hydraulic resistance effects upon the dam-break functions, Journal of Research, 1952, 49(3):217-225.
    [19] Dressler R F. Unsteady non-linear waves in sloping channels, Royal Society of London, Proc. Series A, 1958, 247,186-198.
    [20] Dushmanta D, Jahangir A, Kazuo U, et al. A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin. Hydrological Progresses, 2007, 21:1223-1237.
    [21] Elliot R, Chaudhry M H . A wave propagation model for two dimensional dambreak flows. J Hydr Res, 1992, 30(4):467-483.
    [22] Fennema R T, Chaudhry M H. Explicit methods for 2D transient free-surface flows. Journal of Hydraulic Engineering (ASCE), 1990, 116:1013-1014.
    [23] Fraccarollo L, Toro E F. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problem, Journal of Hydraulic Research, 1995, 33(6), 843-864.
    [24] Fread, D L, Lewis J M. NWS FLDWAV Model national weather service, office of hydrology. Maryland: Silver Spring, 1998.
    [25] Garcia,R, Kahawita R A. Numerical solution of the St.Venant equations with the MacCormack Finite differences scheme. International Journal for Numerical Methods in Fluids, 1986, 6:507-527.
    [26] Gayer M, Slavik P, Hrdlicka F. Real-time simulation and visualization using pre-calculated fluid simulator states. Information Visulization, 2003, 440-445.
    [27] Godunov S K. Finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik, 1959, 47:271-306.
    [28] Guo W B, Shao Z Q, Shi B C, et al. Parallel simulation of fluid flows and its visualization. Parallel and Distributed Computing, Applications and Technologies, Proceedings of the Fourth International Conference on Visualization, 2003, 670-674.
    [29] Haider S, Paquier A, Morel R, et al. Urban flood modeling using computational fluiddynamics. Water & Maritime Engineering, 2003, 156:129-135.
    [30] Harten A. High resolution schemes for hyperbolic systems of conservation laws. Journal of Computational Physics, 1983, 49:357-393.
    [31] Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-Type schemes for hyperbolic conservation laws. SIAM Review, 1983, 25(1):35-61.
    [32] Harten A, Engquist B, Osher S, et al. Some results on uniformly high order accurate essentially non-oscillatory schemes. Applied Numerical Mathematics, 1986, 2:347-377.
    [33] Harten A, Osher S. Uniformly high order accurate non-oscillatory schemeⅠ.SIAM Journal on Numerical Analysis, 1987, 24:279-309.
    [34] Hervouet J M, Petitijean A. Malpasset dam-break revisited with tow-dimensional computations. J.Hydraul Res, 1999, 37(6):777-788.
    [35] Hirsch C. Numerical computation of internal and external flows. New York : Wiley, 1988.
    [36] Hiver J M. Adverse-slope and slope bump in concerted action on dam-break modeling: objectives, project report, test case. Hydraulics Division, Louvain-la-Neuve, 2000.
    [37] Hou T Y, Lefloch P. Why non-conservative schemes converge to the wrong solutions: error analysis. Math of Comput, 1994, 62:497-530.
    [38] Hu K, Mingham C G, Causon D M. A bore-capturing finite volume method for open-channel flows. Int. J. Meth. Fluids, 1998, 28:1241-1261.
    [39] Hubbard M E, Garcia-Navarro P. Flux difference splitting and the balancing of source terms and flux gradients. Journal of Computational Physics, 2000, 165:89-125.
    [40] Hunt B. Asymptotic solution for dam break on sloping channel. J Hydraul Eng, 1983, 109(25):1698-1707.
    [41] Inoue K, Kawaike K, Hayashi H. Numerical simulation models on inundation flow in urban area. J Hydrosci Hyd Engng, JSCE, 2000, 18(1):119-126.
    [42] Katopodes N D and Wu C T. Explicit computation of discontinuous channel flow. Journal of the Hydraulic Division, ASCE, 1986, 112(6):456-475.
    [43] Kawahara M, Umetsu T. Finite element method for moving boundary problems in river flow. International Journal for Numerical Methods in Fluids, 1986, 6:365-386.
    [44] Khan A A, Cadavid R, Wang S SY. Simulation of channel confluence and bifurcation using the CCHE2D model. Water and Martine Engineering, 2000, 142(2): 97-102.
    [45] Liang Dongfang, Falconer R A, Lin B L. Comparison between Tvd-Maccormack and ADI-type solvers of the shallow water equations. Advances in water resources, 2006, 29:1833-1845.
    [46] Liang Dongfang, Roger S F, Lin B L. Linking one-and two-dimensional models for free surface flows. Proceedings of the Institution of Civil Engineers, Water Management, 2007,160(3):145-151.
    [47] Li G S, Bordoloi U D, Shen H W. Chameleon: an interactive texture-based rendering framework for visualizing three-dimensional vector fields. IEEE Visulization 2003, 2003, 241-248.
    [48] Liao C B, Wu M S, Liang S J. Numerical simulation of a dam break for an actual river terrain environment. Hydrological processes, 2007, 21:447-460.
    [49] Lin B, Wicks J M, Falconer R A ,et al. Integrating 1D and 2D hydrodynamic models for flood simulation. Proceedings of the Institution of Civil Engineers, Water Management, 2006, 159(1):19-25.
    [50] Liu X D, Osher S, Chan T. Weighted essentially nonoscillatory schemes. J Comput Phys, 1994, 115:200-212.
    [51] Lorenzo B, Brett F S. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. Journal of Hydraulic Engineering (ASCE), 2006, 132(4):371-384.
    [52] Macchione F, Morelli M A. Practical aspects in comparing shock-capturing schemes for dam break problem. Journal of Hydraulic Engineering (ASCE), 2002, 129(3):187-195.
    [53] Meselhe E A, Holly F M. Invalidity of preissmann scheme for transcritical flow. Journal of Hydraulic Engineering, ASCE, 1997, 123(7):652-655.
    [54] Mignot E, Paquier A, Haider S. Modeling Floods in dense urban area using 2D shallow water equations. Journal of Hydrology, 2006, 327:186-199.
    [55] Mignot E, Paquier A, Ishigaki T. Comparison of numerical and experimental simulation of a flood in a dense urban area. Water Science &Technology, 2006, 54(6-7):65-73.
    [56] Mingham C G, Causion D M. High-resolution finite volume method for shallow water flows. Journal of Hydraulic Engineering, ASCE, 1998, 124(6):605-614.
    [57] Mohammadian A, Le Roux D Y. Simulaiton of shallow flows over variable topographies using unstructured grids. Int. J Numer Meth Fluids, 2006, 52:473-498.
    [58] Nania l, Gomez M, Dolz, J. Experimental study of the dividing flow in steep streets crossing. J Hyd Res, 2004, 42(4):406-412.
    [59] Nugic M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flow. J Hydraul Res, 1995, 33(1):101-111.
    [60] Osher S, Solomon F. Upwind difference schemes for hyperbolic conservation laws, Math Comp, 1982, 158:339-374.
    [61] Ritter A. Die fortpflanzung der Wasserwellen, Zeitschrift des Vereines deuscher Ingenieure, 1892, 36(33):947-954.
    [62] Roe P L. Approximate Riemann solvers, Parameter Vectors, and Difference schemes. J Comput Phys, 1981, 43:357-372.
    [63] Schwanenberg D, Harms M. Discontinuous galerkin finite-element method for transcritical two-dimensional shallow water flows. J Hydraul Eng, 2004, 130(5):412-421.
    [64] Singh V P. Dam breach modeling technology. Dordrecht: Kluwer academic publisher, 1996:55-58.
    [65] Shettar A S, Murthy K K. Numerical study of division of flow in open channel. Journal of Hydraulic Research, 1996, 34(5): 651-675.
    [66] Shih T S, Albert H B. Geometric and Frictional effects on sudden releases. J Hydraul Eng, 1970, 96(11):2185-2200.
    [67] Sleigh P A, Gaskell P H, Berzins M, et al. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. J Comp and Fluids, 1998, 27(4):479-508.
    [68] Soares S, Spinewine B, Duthoit A, et al. Dam-break flow experiments in simplified city layouts.7th International Conference on Hydroinformatics, Nice, France, 2006.
    [69] Sobel J S, Forsberg A S and Laidlaw D H. Feature article-Particle flurries synoptic 3D pulsatile flow visualization. Computer Graphics and application. 2004, 24(2):76-85.
    [70] Stoker J J. Water Wave. New York: Interscience Publishers, 1957:334-341.
    [71] Tae H Y, Kang S K. Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering, 2004, 130:678-688.
    [72] Testa G, Zuccala D, Alcrudo F, et al. Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 2007, 45: 37-44.
    [73] Thompson J F. Body-fitted coordinate system for numerical solution of partial differential equations. J Comput Phys, 1982, 47(2):1-10.
    [74] Tseng M H, Chu C R. Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. Journal of Hydraulic Research, 2000a, 31: 123-131.
    [75] Tseng M H and Chu C R. The simulation of dam-break flows by an improved predictor-corrector TVD schemes. Advances in Water Resources, 2000b, 23:637-643.
    [76] Toro E F, Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Physical Sciences and Engineering, 1992, 338:43-68.
    [77] Toro E F. Riemann solvers and numerical methods for fluid dynamic. Berlin: Springer-Verlag, 1999.
    [78] Toro E F. Shocking methods for free surface shallow flows. New York :Wiley, 2000.
    [79] Valian A, Caleffi V, Zanni A. Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. Journal of Hydraulic Engineering, ASCE, 2002, 128(5):460-472.
    [80] Valiani A, Begnudelli L. Divergence form for bed slope source term in shallow water equations. J Hydrau Eng, 2006, 132(7): 652-665.
    [81] Van Leer B. Towards the ultimate conservative difference scheme IV.A new approach to numerical convection. Journal of Computational Physics, 1979, 32:101-136.
    [82] Wang J S, Ni H G, He Y S. Finite-difference TVD scheme for computation of dam-break problems. Journal of Hydraulic Engineering, ASCE, 2000a, 126(4):253-262.
    [83] Wang J W, Liu R X. A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems. Mathematics and Computers in Simulation, 2000b, 53:171-184.
    [84] Xu Kun. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms. Journal of Computational Physics, 2002, 178:533-562.
    [85] Youssef L., Azzeddine S. Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation. International Journal for Computational Methods in Engineering Science and Mechanics, 2007, 8:1-14.
    [86] Zhao D H, Shen H W, Tabios G Q, et al. Finite-Volume two-dimensional unsteady-flow model for river basins. J Hydraul Eng, ASCE, 1994, 120(7):863-883.
    [87] Zhao D H, Shen H W, Lai J S, et al. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling. J Hydraul Eng, 1996, 122(12):692-702.
    [88] Zhou J G, Causon D M, Mingham C G, et al. The surface gradient method for the treatment of source terms in the shallow-water equation.J Comput Phys, 2001, 168: 1-25.
    [89] Zoppou C, Roberts S. Catastrophic collapse of water supply reservoirs in urban areas. Journal of Hydraulic Engineering, 1999, 125(7):686-695.
    [90] Zoppou C, Roberts S. Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modeling, 2000, 24:457-475.
    [91]陈景秋,张永详.一维溃坝涌波的特征线激波装配法.重庆大学学报, 2004(5):99-102.
    [92]成建梅,陈崇希,孙红林.三角网格等值线自动生成方法及程序实现.水利学报, 1998(10):23-26.
    [93]董文峰,袁艳斌,杜迎泽,等.流域三维地形仿真及洪水演进动态模拟.水电能源科学, 2001, 19(3):37-39.
    [94]董哲仁.堤防除险加固实用技术.北京:中国水利水电出版社, 1998.
    [95]杜雷功,薛占群.全国病险水库水闸除险加固专项规划简要报告.水利部天津水电勘测设计研究院,水利部水利建设与管理总站, 2001,12.
    [96]冯民权.蓄滞洪区洪水模拟研究综述.西北水力发电, 2002, 18(1):5-8.
    [97]顾小松,王汉青. Visual C++与Fortran混合编程及Matcom绘图在空调负荷计算软件中的应用.建筑热能通风空调, 2003, 2:54-56.
    [98]胡昌伟.东苕溪防洪决策支持研究[硕士学位论文].北京:中国水利水电科学研究院, 2003.
    [99]胡四一,谭维炎.一维不恒定明流计算的三种高性能差分格式.水科学进展, 1991, 2(1):11-21.
    [100]胡四一,谭维炎.无结构网格二维浅水流动数值模拟.水科学进展, 1995, 6(1):1-9.
    [101]黄炳彬,方红卫,刘斌.复杂边界水流数学模型的斜对角笛卡尔方法.水动力学研究与进展A辑, 2003, 18(6):679-685.
    [102]姜国强,李炜,那宇彤.利用混合语言编程实现计算流体动力学计算结果可视化.武汉大学学报(工学版), 2003, 36(1):37-41.
    [103]金旦华,刘国俊,周本华.一维涌潮计算.应用数学与计算数学, 1965, 3(2):183-195.
    [104]李发文.洪灾避迁决策理论及其应用研究[博士学位论文].南京:河海大学, 2005.
    [105]李宏.高分辨率间断有限元法.计算物理, 2004, 21(4):367-376.
    [106]李云,范子武,吴时强,等,.大型蓄洪区洪水演进数值模拟与三维可视化技术.水利学报, 2005, 36(10):1158-1164.
    [107]李致家.通用一维河网不恒定流软件的研究.水利学报, 1998(8):14-18.
    [108]林秉南,龚振瀛,王连详.突泄坝址过程线简化分析.清华大学学报, 1980, 20(1):17-31.
    [109]刘得贵,费景高. FORTRAN算法汇编(第一分册).长沙:国际工业出版社, 1980: 218-221.
    [110]刘德平.河道分洪溃口特性分析及流量估算方法.电力勘测, 1998, 1:54-58.
    [111]刘仲桂.中国南方洪涝灾害与防灾减灾.广西:广西科学技术出版社, 1996.
    [112]陆德福.美国21世纪洪范区管理.河南:黄河水利出版社, 2000.
    [113]罗小峰.长江口水流盐度数值模拟[博士学位论文].南京:南京水利科学研究院. 2003.
    [114]马劲松,朱大奎.海岸海洋潮流模拟可视化与虚拟现实建模.测绘学报, 2002, 31(1):49-53.
    [115]潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解.水科学进展, 2003, 14(4):430-436.
    [116]清华大学,都江堰管理局.数字都江堰工程总体框架及关键技术.北京:科学出版社, 2004.
    [117]石教英,蔡立文.科学计算可视化算法与系统.北京:科学出版社, 1996.
    [118]水利部水文局,水利部松辽水利委员会水文局. 1998年松花江暴雨洪水.北京:中国水利水电出版社, 2002.
    [119]谭维炎.计算水动力学—有限体积法的应用.北京:清华大学出版社, 2001: 204-206.
    [120]谭维炎.浅水动力学的回顾和当代前沿问题.水科学进展, 1999, 10(3):296-303.
    [121]谭振宏.平底棱柱形水库溃坝波分析.水利学报, 1992(4):37-47.
    [122]唐泽圣.三维数据场可视化.北京:清华大学出版社, 1999.
    [123]王光谦,刘家宏,孙金辉.黄河流域三维仿真系统构想与实现.人民黄河, 2003, 25(11):1-3.
    [124]汪继文,刘儒勋.间断解问题的有限体积法.计算物理, 2001, 18(2):97-105.
    [125]王瑞丰,胡明,余代广,等.水电站输水系统水力过渡过程的可视化仿真系统研究.水利水电科技进展, 2003, 23(4):23-24.
    [126]王少梅,张煜.港口物流系统仿真建模及三维可视化研究.港口装卸, 2002, 6:1-4.
    [127]王学军,李月永,杨进良,等.二维流场多媒体动态仿真系统的实现.水利学报, 1999(4):18-24.
    [128]王志力,耿艳芬,金生.具有复杂计算域和地形的二维浅水流动数值模拟.水利学报, 2005a, 36(4): 439-444.
    [129]王志力.基于Godunov和Semi-Lagrangian法的二、三维浅水方程的非结构化网格离散研究[博士学位论文].大连:大连理工大学, 2005b.
    [130]汪迎春.溃坝水流二维演进模型[硕士学位论文].南京:河海大学,2001.
    [131]韦春霞,张永详.溃坝洪水的二维算子分裂特征线模拟.重庆大学学报, 2003(9):18-21.
    [132]魏加华,陈良程,张远东,等.地下水数值模型三维可视化研究.煤田地质与勘探, 2003, 31(4):33-36.
    [133]伍超,吴持恭.求解任意结构断面溃坝水力特性的形态参数分离法.水利学报, 1988(1):10-18.
    [134]向素玉,陈军.基于GIS城市洪水模拟分析.地球科学, 1995, 20(5):575-580.
    [135]谢任之.溃坝坝址流量计算.水利水运科学研究, 1982(1):42-46.
    [136]谢任之.溃坝水力学.济南:山东科学技术出版社,1989.
    [137]谢任之,骆桂海.平底有阻力河床的瞬间全溃近似解.华南理工大学学报, 1995(3):75-83.
    [138]徐世涛.流场、河床及航行的动态演示系统[硕士学位论文].北京:清华大学, 2001.
    [139]徐小明,汪德爟.河网水力数值模拟中Newton-Raphson法收敛性的证明.水动力学研究与进展(A辑), 2001a, 16(3): 319-324.
    [140]徐小明,何建京,汪德爟.求解大型河网非恒定流的非线性方法.水动力学研究与进展(A辑), 2001b, 16(1):18-24.
    [141]彦民,王宏伟,王旭萍.松花江哈尔滨段未来可能最大洪水初探.水利科技与经济, 1999, 5(4): 194-195.
    [142]袁艳斌,王乘,杜迎泽,等.洪水演进模拟仿真系统研制的技术和目标分析.水电能源科学, 2001, 19(3):30-33.
    [143]张大伟,董增川. Preissmann隐式格式在新沂河洪水演进中的应用研究.水利与建筑工程学报, 2004, 2(4):41-43.
    [144]张家驹.水力学方程间断解的差分方法.应用数学与计算数学, 1966, 3(1):12-29.
    [145]张尚弘,姚仕明,曲兆松,等.流域三维可视化与数值模拟的实时交互运行研究.清华大学学报, 2004a, 44(12):1638-1641.
    [146]张尚红.都江堰水资源可持续利用及三维虚拟仿真研究[博士学位论文].北京:清华大学, 2004b.
    [147]张尚弘,陈忠贤,赵刚,等.三峡与葛洲坝梯级调度三维数字仿真平台开发.水科学进展, 2007, 18(3): 451-455.
    [148]张细兵,龙超平,李线纲.可视化数学模型动态演示及动态演示系统的初步研究与应用.长江科学院院报, 2003, 20(4):21-23.
    [149]张修忠,王光谦.浅水流动有限元分析及其高分辨率格式.长江科学院院报, 2001(2):13-15.
    [150]张修忠.堤防溃决过程的数值模拟[博士学位论文].北京:清华大学, 2003.
    [151]钟登华,李景茹,郑家祥.全过程动态仿真技术及其在水利水电工程施工中的应用.水利水电技术, 2002, 33(9):22-25.
    [152]周振红,杨国录,周洞汝.基于组件的水力数值模拟可视化系统.水科学进展, 2002, 13(1):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700