抽油泵泵筒内壁激光/渗氮复合改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内大部分油田进入高含水开发期,由于高含砂、高含水、高矿化度、高温蒸汽稠油开采、注聚合物开采及强腐蚀介质等因素的影响,抽油泵的腐蚀磨损日趋严重,严重影响油田开发。目前渗氮泵由于耐磨损、耐腐蚀而在油田使用较多,但由于气体渗氮层的脆性较大易造成剥落而使其受到一定影响,本文采用激光淬火/渗氮复合处理技术成功制备出性能优异的复合渗氮层,并对渗氮层的相组成、微观组织结构、硬度、耐磨性、耐蚀性及脆性进行系统分析,研究了激光淬火对渗氮层组织及性能的影响和催渗机理。
     激光淬火表面层晶粒细化,晶界增多,N原子的扩散通道数量和扩散速度增加,位错、孪晶等缺陷增加,这些缺陷处于较高的能量状态,为氮化物的形成提供额外的驱动力,使得生成ε相和γ’相的标准自由能减小,在未达到渗氮温度(530℃)的升温阶段形成氮化物,同时N原子沿晶界的扩散通道增多,扩散速度提高,表面N浓度较低,渗氮层中N分布较均匀,浓度降低趋势平缓,而气体渗氮层表面N浓度较高,N浓度降低趋势陡峭。激光淬火可显著提高渗氮速度,增加渗氮层厚度,渗氮层深度由气体渗氮的0.2mm增加至0.3mm。
     激光淬火/渗氮处理后γ’相双向溶解速率大于ε相储氮速率,ε相和γ’相的阻碍扩散作用降低,白亮层厚度减小,白亮层均由;ζ-Fe2N相、ε-Fe3N相和Cr2N组成。气体渗氮层中的ζ-Fe2N相、ε-Fe3N相和Cr2N的体积分数分别为79.95%、14.74%和5.31%。激光淬火/渗氮层对应的体积分数分别为25.03%、69.45%和5.52%。其中Cr2N的含量基本不变激光淬火/渗氮层内脆性大的ζ-Fe2N相含量减少,脆性小的ε-Fe3N相含量增加,渗氮层脆断的临界压力由气体渗氮层的3N提高到激光淬火/渗氮层的6N。
     激光淬火/渗氮扩散层的γ’相和α-Fe相晶粒细小,γ’-Fe4N中存在超点阵结构,Fe原子和N原子在γ’相中有序排列,γ’相和α-Fe相存在一定的位向关系,二者的共格性和相容性优良,二者的结合强度高,同时细小渗碳体分布在条状下贝氏体组织中。复合渗氮中优先生成的Cr2N颗粒细小,且数量增多,而气体渗氮中的ε相和Cr2N颗粒较粗大,由于激光淬火/渗氮层中的Cr2N颗粒的硬度较高,细小的Cr2N颗粒起钉扎作用,其渗氮层硬度较气体渗氮层提高约100HV0.2。
     由于激光淬火/渗氮层中韧性较好的γ’相和ε相的数量增加,细小合金氮化物耐磨硬质点阻碍了磨痕的发展,其阻碍和钉扎行为在摩擦过程中发挥了强烈的阻磨作用,激光淬火/渗氮层的磨擦磨损量为普通气体渗层的1/8,摩擦系数由气体渗氮的0.35降为气体渗氮层的0.29。
     激光淬火/渗氮复合处理的耐蚀性能提高,复合处理后的渗氮层致密度提高,组织品粒细化,表层的氧化物含量降低,自腐蚀电流由普通渗氮层的57.68μA/cm2减小到激光/渗氮层的3.166μA/cm,复合渗氮层的耐蚀性提高。
     在腐蚀磨损试验中,激光淬火/渗氮层的腐蚀磨损失重约为气体渗氮层的1/2,腐蚀优先在晶界或相界处发生,削弱了Cr2N颗粒与基体的结合力。Cr2N颗粒在磨损作用下发生少量脱落,因此腐蚀加剧了磨损。腐蚀磨损形貌为切削犁沟和腐蚀坑,腐蚀磨损机制为腐蚀磨粒磨损。由于激光淬火/渗氮层白亮层组织致密、脆性低、Cr2N颗粒不易脱落,其腐蚀磨损性能优于普通气体渗氮层。
With the majority of domestic oil fields entering high water-cut development stage, due to the influence of high water-cut, high sand content, hyper salinity, high-temperature steam heavy oil extract, polymer injection oil extract and the strong corrosive medium, the corrosion and wear of oil well tube get more and more serious.In the paper, compound nitriding layers were produced successfully by laser quenching/nitrided compound processing technique.The phase composition, microstructure, hardness, wear resistance, corrosion resistance, brittleness of nitriding layers were systematically analysised, the promotion effect of laser quenching on nitrding and the influence of laser quenching on the microstructure and properties were researched.
     Both the white layers of gaseous nitriding and laser quenching/nitrided are composed ofζ-Fe2N、ε-Fe3N and Cr2N. The volume fractions ofζ-Fe2N,ε-Fe3N and Cr2N are separately 79.95%,14.74%,5.31% in the gaseous nitriding layers and 25.03%,69.45%,5.52% in the laser quenching/nitrided layers, of which the content of Cr2N stays stable, the N content inζ-Fe2N is higher and the white layers are looser. The structure ofε-Fe3N is body-centered hexagonal andε-Fe3N is less brittle.The structure ofζ-Fe2N is orthorhombic lattice structure and is more brittle.The content ofε-Fe3N increased in the laser quenching/nitrded layers and the content ofζ-Fe2N decreased. Brittle fracture Critical stresses of nitriding layers increased from 3N of gas nitriding to 8N of laser quenching/nitrided layers.
     The grain ofεphase and Cr2N in gas nitriding layers are more coarse, while in the compound nitriding layers, the grain are finer and the quantities of Cr2N grain are more.Tiny Cr2N grains play a pinning effect and the micro hardness of compound nitriding layers increased by 100HV0.2,compared with gas nitrding layers.The micro hardness of laser quenching/nitrded layers dramatically improved.
     Compared with gas nitriding layers,γ'phase andα-Fe in the laser quenching/nitrded layers are finer.The ultra lattice structure existed inγ'-Fe4N in the diffusion layer, in which the Fe and N atoms arranged orderly. There have been certain orientation relationship between y'-Fe4N and a-Fe.The coherency and compatibility of y'-Fe4N and a-Fe is very excellent.Tiny Fe3C grains dispersively distribute on the structure of the strip lower bainite.
     The grains of surface layer processed by Laser quenching/nitrded were refined, which lead to the increase of the quantities of the grain boundary and the dislocation. These defects were at a higher energy state.Part of the energy can provide additional driving force to form the nitride compounds, making the standard free energy of generatingεphase andγ'phase reduced, and form the nitride compounds at the warming stage before reaching the nitriding temperature (530℃).Simultaneously, the diffusion path of N atoms along the grain boundaries increased and diffusion speed also increased, which increased the depth of laser quenching and nitriding layers.
     The quantities of y'phase andεphase,which have excellent ductibility, in the laser quenching/nitrided layers increased. Tiny wearable nitride alloy particles hinder the development of gridding crack. The hindering and pinning effect play a forceful friction block effect during friction process, which make friction process more stable, decrease wear losses and friction coefficient.
     In corrosive wear experiment, corrosion is inclined to start on grain boundary and phase boundary, which weaken the binding strength between Cr2N and base and make some Cr2N particles dropping from base during wear process.Therefore, corrosion speeds up wear process.Wear morphology of corrosive wear are Cutting furrows and corrosion pits.The mechanism of corrosive wear is corrosion abrasion wear. The white layers'microstructures of laser quenching/nitrided layers are denser, less brittle and less dropping.So the corrosion wear resistance of laser quenching/nitrided layers is better than that of gas nitriding layers.
引文
[1]徐滨士,朱韶华等.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    [2]孙希泰等.材料表面强化技术[M].北京:化学工业出版社,2005.
    [3]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005.
    [4]曾德麟主编.粉末冶金材料.北京:冶金工业出版社,1989,190-200.
    [5]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.220-221.
    [6]沈迪成.抽油泵.石油工业出版社,1994,316-318.
    [7]Wellinger, E.,Uetz, H.,Wear,11(1968), No.3,173.
    [8]]李宁,王鸿建,杨银娥.细长管内壁无电解镀镍[J].电镀与环保,1994,14(5):9-11.
    [9]Noriyuki S..Method for cleaning existing water supply pip[P].JP Pat:63195279, 1988-08-12.
    [10]吴洁,高继东,陈松.一种槽外化学镀的方法及设备[P].中国专利:94111247. 0,,1996-12-18.
    [11]Mandie N V. Praelieal Probems in Bright and Hard Chromium Eleetrodeposion. Part 1 [J].Metal Finishing,1999,97(6):100.
    [12]Weiner R, Walmsley A. Chromium Plating[P].Tedding:Finishing Publications Ltd, 1980.
    [13]Seyb E.Chromium Plating[J].Matal Finishing,1990,88(3).
    [14]蔡积庆编译.钨合金电镀,腐蚀与防护,2002,2(10):463-464).
    [15]全国热处理标准化技术委员会.金属热处理标准应用手册(第二版)[M].北京:机械工业出版社,2005.413-416.
    [16]孙和庆,陈翠娥,张幸等.大型重载齿轮深层渗碳的工艺控制[J].金属热处理,1994,(1):7-11.
    [17]金付鑫,刘凯.重载齿轮深层渗碳的工艺控制[J].热处理技术与装备,2006,(4):33-35.
    [18]赵麦群,杨君刚,余历军等.深层渗碳碳化物形态对弯曲疲劳性能的影响规律[J].热加工工艺,1996,(3):13-15.
    [19]韦习成.盐浴渗氮技术的现状和发展思考[J].热处理,2005,20(2):16-19
    [20]沈思特,谭昌瑶.,马开琼.无脆性快速气体渗氮机理及性能的研究[J].四川工业学报,2000,(2):95-99.
    [21]陈玮,王蕾,周磊等.钢的快速渗氮技术研究现状[J].武汉科技大学学报,2006,2(3):225-228.
    [22]叶金玲,叶峰..稀土元素对T10钢低温盐浴渗氮的影响[J].金属热处理,2006,31(5):41-42.
    [23]黄勇.渗氮条件对马氏体时效钢疲劳强度的影响[J].国外金属热处理,2004,25(6):19-23.
    [24]杨莉,杨涟,周吉智.离子渗氮对2Cr13钢疲劳性能的影响[J].热加工工艺,2004,(3):52-52.
    [25]王荣滨.钢氮化质量缺陷分析及对策[J].现代制造工程,2002(1):52-53.
    [26]顾彩香,朱雅年.加氩离子渗氮工艺研究[J].热处理,2000(2):17-19.
    [27]陈方生,王成国,元永新等.稀土在离子渗氮中的氧化对催渗效果的影响[J].热加工工艺,2000,(3):17-19.
    [28]袁泽喜,余宗森.钢中稀土对表面渗碳的促进作用[J].中国稀土学报,1999,17(1):42-45.
    [29]王成国,王世清,王立铎等.稀土催渗离子渗氮的研究[J].金属热处理,1991,(3)::12-14.
    [30]Peng J, Dong H.Effect of Rare Earth Elements on Plasma Nitriding of 38CrMoAl Steel[J].Surface Engingeering,1996,12(2):151.
    [31]谢飞,马宝钿,何家文等.钢的快速深层渗氮研究进展[J].材料导报,1999,(5):21-22.
    [32]赖福贵.预氧化两段快速氮化的工艺[J].机械,1997,(2):43-44.
    [33]梁育贵.特殊渗氮[J].金属热处理,2002,27(11):47.
    [34]任中华,刘玉荣,王振霞等.快速渗氮工艺的试验研究[J].煤矿机械,2000,(4):33
    [35]拉赫金等[俄].预氧化对快速渗氮过程的影响[J].铸锻热热处理实践.,1994,(1):25-26.
    [36]卢柯,吕坚.一种金属材料表面纳米层的制备方法[P].中国专利:99122670.4,1999.
    [37]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI304不锈钢表层纳米化组织与性能[J]..金属学报,2003,(4):342-345.
    [38]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AI-SI304不锈钢表层纳米化晶粒细化机理[J].金属学报,2003,(4):347-350.
    [39]刘刚,雍兴平,卢柯,等.金属材料表面纳米化的研究现状[J].中国表面工程,2001,(3):1-5.
    [40]石连捷.低碳钢表面纳米处理及渗氮特性研究[D].南京理工大学,1999.
    [41]刘家俊.复合表面技术研究的新进展[J].中国表面工程,1998,(1):0-15.
    [42]Jolanta Baranowska, Bozena Arnold. Corrosion resistance of nitried layers on austenitic steel.surface and coating Technology[J].2006,(200):6623-6628.
    [43]高玉魁.表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响[J].材料热处理学报,2005,26(1):74-76.
    [44]张凌峰,陈维平.激光预处理对氮化层组织和性能的影响[J].冶金丛刊,2005,(4):11-13.
    [45]韩晏,周海光.金属材料的激光表面氮化处理.机械工艺师[J].2000,(12):23-24.
    [46]刘富荣,高谦,王广生,等.38CrMoAlA钢激光和氮化复合处理研究[J].新技术新工艺新设备,2003,(3):65-67.
    [47]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998.
    [48]王存山.18Cr2Ni4W钢渗碳激光强化复合处理组织的研究[J].金属热处理,1999,24(2):14-16.
    [49]张兴权,周建忠,杨泽腾,等.改善零件疲劳寿命的激光冲击强化技术[J].汽轮机技术,2005,47(3):238.
    [50]樊亚军,曹海玲,蔺卫平等.热处理对1.41%C超细晶超高碳钢马氏体亚结构的影响[J].热加工工艺,2007,36(2):34~36.
    [51]李晓轩,孙锡军,王华明,等·奥氏体不锈钢1Cr18Ni9Ti激光冲击强化研究[J].宇航材料工艺,1999,(4):16.
    [52]Chu J P, Rigsbee J M, Banas G. Laser-shock processing effects on surface microstructure and mechanical propertiesof low carbon steel[J].Mater Sci Eng,1999,A260:260.
    [53]朱雅年.室温形变对钢在渗碳、碳氮共渗、离子渗氮过程的影响[J].金属热处理,1990,(1):12-15.
    [54]汤亚量,杨安静.低温变形对25CrNi3MoAl钢渗氮的形响[J]..热加工工艺,1995,(5):6-8.
    [55]雷廷权.热处理工艺方法300种[M]..北京:机械工业出版社,1995.
    [56]葛利玲,路彩虹,井晓天等.40Cr钢表面纳米化对气体渗氮行为的影响[J].材料热处理学报,2008,29(5):155~159.
    [57]Tuckart W, Forlerer E, Iurman L.Delayed cracking in plasma nitriding of AISI420 stainless steel[J].Surface and CoatingsTechnology,2007,202:199-202.
    [58]R逊太基—菲舍编著.渗氮与氮碳共渗[M]..北京:机械工业出版社,1989.
    [59]解挺,朱元吉.气体氮碳共渗—现行工艺中的问题与对策[J].国外金属热处理,1997,(4):27.
    [60]Norbert Koebel..金属热处理中的表面活性[J].金属热处理,1978,(6)60-62
    [61]W P Tong, Z Hana, L M Wang, et al.. Low-temperature nitrided of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J]. Surface and Coatings Technology,2008,202(20):4957-4963.
    [62]葛利玲,路彩虹,井晓天等.40Cr钢表面纳米化对气体渗氮行为的影响[J].材料热处理学报,2008,29(5):155~159.
    [63]崔宝隆.炉压对气体诊氮工艺的影响[J].机械工人,1999,(4):29-31.
    [64]张志璞译.铸铁件的气体软氮化[M].国外热处理(八),重庆:科学技术文献出版社,1981.
    [65]崔宝隆.炉压对气体诊氮工艺的影呐[J].机械工人(热加工),1999,(4):29-30.
    [66]郭铮匀.钢的氮化[M].北京:国防工业出版社,1979,168.
    [67]贺毅,王学前.渗氮及氮碳共渗中的相行为和间歇供氨法[J].热加工工艺,2002,3:11-13.
    [68]王学前,曹惠荣.渗氮及氮碳共渗中的相行为及动力学[J].四川工业学院学报,1998.17:1-6.
    [69]谢善晓等译.化学热处理译文集[M].北京:国防工业出版社,1981,22-23.
    [70]潘健生,胡明娟.钢铁化学热处理原理[M].上海:上海交通大学出版社,1988.
    [71]王国佐,王万智.钢的化学热处理[M].北京:中国铁道出版社,1980,115.
    [72]Inokuti Y. Forming of Fe3N, Fe4N, Fe16N on the Steel Suface[J].Metal Heat Treatment,, 1979,1(5):44.
    [73]蔡殿峰.钢气体渗氮产生的常见缺陷分析及补救措施[J].热加工工艺,2004,33(10):63.
    [74]赵昌胜,冯立文.模具气体氮化产生的缺陷及对策[J].机械工人-热加工,2007,58(7):45.
    [75]卢金生.离子渗氮层的接触疲劳性能试验与研究[J].金属热理,2001,26(5):15-17.
    [76]柳祥训,钟华仁,张淑芳.化学热处理问答[M].北京:国防工业出版社,1991:95-128.
    [77]谢志余,潘钰娴.激光热处理相变机理及应用[J].机械制造与研究,2003,4:38~42.
    [78]J G. Buijnsters, P Shankar, J Sietsma, et al..Gas nitrided of chromium in NH3-H2 atmosphere[J].Materials Science and Engineering,2003,341(1-2):289~295.
    [79]A A Peligrad, E Zhou, D Morton et al. Transient temperature behaviour and dynamic process models in laser surface melting of clay tiles[J].Surface and Coatings Technology,2003,150(1):15~23.
    [80]卑多慧,吕坚,顾剑锋等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(1):19-24.
    [81]席守谋,张建国,孙晓燕等.38CrMoAlA钢激光淬火+氮化复合处理[J].中国激光,2004,31(6):761~764.
    [82]K H Jaek. The iron-nitrogen system:the structures of Fe4N and Fe2N[J],Proc.ROy. Soc, 1948,195A:34-40.
    [83]K.H.Jaek, Binary and ternary interstitial alloys 11.The iron-carbon-nitrogen system[J]. Proc.Roy. Soc.,1948,195A:41-55.
    [84]K.H.Jaek, Results of further X-ray strue tural investigations of the iron-carbon and iron-nitrogen systems and of related interstitial alloys[J].Acta. Cryst.,1950,3:392-393.
    [85]K.H.Jaek, The iron-nitrogen system:the preparation and the erystal structures of nitrogen-austenite(γ) and nitrogen-martensite(a) [J].Proc. Roy Soc.,1951,208A: 200-215.
    [86]K.H.Jaek, The occurrenee and the crystal structure of a"-Fe16N2 nitride:A new type of interstitial alloy formed during the tempering of nitrogen-martensite[J].Proe.Roy. Soe, 1951,208A:216-224.
    [87]K H.Jaek, The iron-nitrogen system:the crystal structures of ε-Phase iron nitrides[J]. Acta. Cryst.,1952,5:404-411.
    [88]D.Gerardin, H.Miehel, J.P.Morniroli and M.Gantois, Etude microstrue tur aledeseouehes nitrurees duf erPurobtenuesParbombardementionique[J].1977,74:457-467.
    [89]D.Gerardin,H.Miehel and M.Gantois[J].ScriPta Me t.,1977,11:557-563.
    [90]D.Gerardin, J. P. Morniroli, H MichelandM GantoiS.Microstrueral study of ε-iron-carbo nitrides formed by a glow discharge technique[J].J. Mate.Sci.,1981,16: 159-169.
    [91]许晓磊,黑祖昆,孙俊才,刘世永,杨烈宇,高温镀铁层离子氮碳共渗后的微观组织结构特征[J].金属科学与工艺,1990,9:49-52.
    [92]许晓磊,黑祖昆,杨烈宇,40CrNiMoA钢离子渗氮层的微观组织研究[J].理化检验(物理分册),1990,26:19-22.
    [93]许晓磊,于志伟,黑祖昆,离子氮碳共渗层显微组织研究[J].金属热处理学报,1994.15:35-39.
    [94]许晓磊,王亮,于志伟,王天贵,黑祖昆,离子氮碳共渗层横截面显微组织研究[J].电子显微学报,1995,14:189-191.
    [95]于志伟,马永庆,张占平,关德林,纯铁高温两段离子渗氮层内的反常组织[J].金属热处理学报,1995,16:22-25.
    [96]X.L.Xu, L.Wang, Z.W.YuandZ.K.Hei, Transmission eleetron microscopy study on the cross-sectional microstrueture of an ion-nitriding layer[J].Meta.Trans.A,1996,27A: 1347-1352.
    [97]X.L.Xu,L.Wang, Z.W.Yu and Z.K.Hei, Mierostrueture analysis of an ion-nitridingl ayer on a No.45steel[J].Acta Metall.Sin.(Engl.Lett),1998,11:183-189.
    [98]Li. Guibin, Li. Guoqing, Lei.Mingkai, Liu. Bangzhi, Formation of Nanometer magnetie iron nitride film by IBED[J].Surf Coat.Technol.,1997,96:34-38.
    [99]M.K Lei and Z.L.Zhang, Nitrogen-induced h.c.P.martensite formation in Plasma source ion nitrided austenitic stainless steel[J].J Mater. Sci. Lett.,1997,16:1567-1569.
    [100]孙东升,李风照,张宝荣,离子渗氮层的精细结构[J].金属热处理学报,1992,13:46-51.
    [101]孙东升,李风照,戴吉岩、李斗星,离子渗氮层的晶体缺陷和界面结构[J].金属学报,1993,29A:203-207.
    [102]夏立芳,高彩桥.钢的渗氮[M].机械工业出版社,1989.
    [103]热处理化学编写组,热处理化学[M].辽宁人民出版社,1982.
    [104]章子元,渗氮热力学[J].金属热处理,1988,5:130.
    [105]D.A.Potrer, K.E.Easterling.Phase Transformations in Metals and Alloys, London[J]. p.100.
    [106]ZHANG C W, WENG L S.Fe-N nanometer powder prepared by arc plasma reactive evaporation[J].Metal Function Materials,1995,4(5):139-141.
    [107]Porter DA, Easterling KE.Phase Transformations in Metals and Alloys[J]. London,UK:Chapman&Hall;1992.p.277.
    [108]徐祖耀.应力对钢中贝氏体相变的影响[J].金属学报,2004,40(2):113~119.
    [109]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005.
    [110]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992,177.
    [111]许中明,黄平.摩擦磨损的接触界面势垒理论研究[J].摩擦学学报,2007,27(1):54-60.
    [112]陈华辉,邢建东,李卫,等.耐磨材料应用手册[M].北京:机械工业出版社,2006.
    [113]Lepper K, JamesM,Chashechkina J, Rigney D A. Sliding behavior of selected aluminum alloys[J].Wear,1997,203~204:46~56.
    [114]王宗英,肖楠,吕淑萍.40Cr钢表面改性处理及磨损性能研究[J],沈阳建筑大学学报,2005,21(3):281-284.
    [115]钟骏杰,朱汉华,肖常模,等.耐磨钢NM360的耐磨性能试验研究[J],武汉理工大学学报,2006,30(3):395-397.
    [116]稀土在钢铁中的应用编委会.稀土在钢铁中的应用[M]..北京:冶金工业出版社,1987.287.
    [117]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.220-221.
    [118]Hofman R, Vreijling M P W, Ferrari G M, Wit J H W de.Electrochemical methods for characterization of thermal spray corrosion resistant stainless steel Cladding Layers [J]. Materials Science Forum,1997,1998,289-292 pt 2:641-654.
    [119]Souza V A D,Neville A. Linking electrochemical corrosion behavior and corrosion mechanisms of thermal spray cermet Cladding Layers (WC-CrNi and WC/CrC-CoCr)[J].Mater. Sci. Eng.2003,A352(1-2):202.
    [120]Guilemany J M, Fernandez J, Delgado J, Benedetti A V, Climent F. Effects of thickness Cladding Layer on the electrochemical behavior of thermal spray Cr3C2-NiCr Cladding Layers [J].Surface and Cladding Layers Technology,2002,153(2-3):107.
    [121]S H Ahn,Y S Choi,J G. Kim et al.. A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method[J].Surface and Coatings Technology,2002,150(2-3):319-326.
    [122]Long Fajin, Zhou Shangqi, Liu Linfei et al.. Research progress on nitrided and oxidation combined processes[J].Hot Working Technology,2004,(5):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700