阴离子功能化离子液体对生物质原料组分的溶解及选择性分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是近十多年来在绿色化学的框架下发展起来的一类新的介质和功能材料。由于其具有几乎可以忽略的蒸汽压、热稳定性高、不燃烧、易回收、结构和性质可调变等优良性能,离子液体已被成功地应用于有机合成、催化化学、电化学以及材料科学等领域。然而,离子液体在纤维素材料和生物质原料分离方面的研究还处于起步阶段,人们对离子液体尤其是离子液体的阴离子对纤维素的溶解规律缺乏系统的研究,现有的离子液体存在着熔点高、粘度大、或者室温下溶解度较低等缺陷。作为国家863项目(No.2007AA05Z454)的一部分,本文通过阴离子的功能化设计合成了一系列对纤维素具有较强溶解能力的离子液体,研究了这些离子液体对纤维素的溶解性能、锂盐和极性非质子溶剂的加入对纤维素溶解性能的影响,以及离子液体和复合体系对纤维素溶解的可能机理。在此基础上,研究了离子液体对生物质原料组分的选择性分离。主要研究内容包括:
     1、根据离子液体结构与性能的关系,设计合成了一系列1-丁基-3-甲基咪唑基阴离子功能化的离子液体:1-丁基-3-甲基咪唑的乙酸盐,甲酸盐,乳酸盐,甘氨酸盐,乙醇酸盐,苯甲酸盐以及二氰胺盐。借助1HNMR核磁技术对这些离子液体进行了表征,并在303.15K至343.15K的温度范围内测定了这些离子液体的密度(ρ)、粘度(η)、电导率(σ)等物理化学数据,考察了这些性质随温度的变化关系。结果表明,随着温度的升高,离子液体的密度稍有降低,粘度明显降低,而电导率显著增加。阴离子烷基链的长度对离子液体的物理化学性质有重要的影响,烷基链上CH2的增加会导致密度和电导率的降低,粘度的增加。离子液体的密度可以用Tait方程进行描述;离子液体[C4mim][HCOO]、[C4mim][HOCH2COO]和[C4mim][N(CN)2]的粘度随温度的变化更适合用VFT方程来描述,而其它几种离子液体的粘度随温度的变化更适合用Arrhenius方程来描述;离子液体的电导率随温度的变化用VFT方程比用Arrhenius方程描述更合适。
     2、系统地测定了不同温度下纤维素在上述离子液体中的溶解度,并利用1H NMR化学位移和溶剂化显色紫外/可见光探针研究了影响离子液体对纤维素溶解性能的主要因素。离子液体的阴离子的结构对纤维素的溶解度具有显著的影响,离子液体阴离子的氢键接受能力对纤维素的溶解度起支配作用。离子液体[C4mim][CH3COO]的阴离子[CH3COO]-上的H原子被吸电子基团OH、SH、NH2以及CH3OH取代后会导致纤维素溶解度的降低。
     3、以[C4mim][CH3COO]离子液体为代表,研究了少量锂盐LiX(X=Cl-,Br-, NO3-, ClO4-, [CH3COO]-)的加入对纤维素在离子液体中溶解度的影响,并用13C NMR技术分析了可能的影响机制。研究结果表明,少量锂盐的加入即可增加纤维素的溶解度,主要原因是:Li+与纤维素中的O(3)有较强的相互作用,导致纤维素分子链之间的氢键O(6)H…O(3)被打开。向[C4mim][CH3COO]/LiX/纤维素体系中加入水,可使纤维素沉淀再生,再生纤维素没有发生衍生化反应,说明[C4mim][CH3COO]/LiX是纤维素的直接溶剂。再生纤维素表现出与原生纤维素相似的热稳定性。
     4、研究了极性非质子溶剂二甲基亚砜(DMSO)、N,N二甲基甲酰胺(DMF)和N,N二甲基乙酰胺(DMAc)的加入对离子液体溶解纤维素性能的影响以及可能的机制。实验结果表明,这些非质子溶剂的加入均可以较大幅度地增加纤维素在离子液体中的溶解。250C时,无论是[C4mim][CH3COO]还是DMSO、DMF或DMAc均不能溶解纤维素,但是将[C4mim][CH3COO]以一定的比例与DMSO、DMF或DMAc混合后,纤维素能够高效地溶解到这些溶剂中。1H NMR和13C NMR核磁结果表明,这是由于[C4mim]+被极性非质子溶剂溶剂化,更多的离子液体的阴离子[CH3COO]-由缔合状态转化为解离状态,解离状态的[CH3COO]-离子更有利于打开纤维素分子内氢键,从而促进了纤维素的溶解。极性非质子溶剂对纤维素溶解度的影响取决于这些溶剂分子与离子液体阳离子相互作用的强弱。在此基础上,开发了在室温下能快速、大量溶解纤维素的离子液体复合溶剂体系。
     5、根据不同离子液体对纤维素、半纤维素、木质素溶解性能的差异,首次尝试用离子液体对模拟生物质原料三组分进行选择性逐级分离,纤维素、半纤维素、木质素的分离百分比例分别为99.7%,75.4%和76.9%。同时研究了离子液体的回收和循环使用。为生物质原料组分的分离和利用提供了新的思路。
As a class of new media and functional materials, ionic liquids (ILs) have obtained remarkable achievement in green chemistry during recent years. ILs have been successfully applied in organic synthesis, catalytic chemistry, electrochemistry, and materials science due to thier unique properties such as non-detectable vapor pressures, high stability, non-flammability, easy recovery, and physico-chemical tunabilities. However, the application of ILs in the seperation of biomass components is still in its infant stage, very few studies have been conducted to explore the influence of the anionic structure of ILs on the dissolution performance of cellulose. The existing ILs show some drawbacks like high melting point, high viscosity or lower solubility at room temperature and so forth. As a part of the project supported by the National High Technology Research and Development Program (863 Program, No.2007AA05Z454), in this thesis, a series of anion-functionalized ILs which possess a stronger capacity of dissolving cellulose were synthesized, solubility property of cellulose in the ionic liquids, the influence of addition of lithium salts as well as polar aprotic solvents in [C4mim][CH3COO] on cellulosic solubility, and the possible mechanisms of the ILs and composite systems in dissolution of cellulose were investigated. On that basis, the selective separation of model biomass components was successfully realized by using ILs. The main contents are as follows:
     1. A series of anion-functioned ILs were designed and synthesized by coupling 1-butyl-3-methylimidazolium cation [C4mim]+with the anions such as [CH3COO]-, [HCOO]-[CH3CHOHCOO]-, [H2NCH2COO]-, [HOCH2COO]-, [(C6H5]COO]-and [N(CN)2]-based on the relationship between structure and property. The ILs were characterized by means of'H NMR spectra. The physico-chemical data such as densities (p), viscosities (η) and electrical conductivities (σ) were determined at the temperature range from 303.15 to 343.15 K. The results indicate that with increasing temperature, the densities of the ILs slightly decrease, and the viscosities along with electrical conductivities increase markedly. The alkyl chain length of anions of the ILs has a considerable effect on their physico-chemical properties. The increase of alkyl chain length would lead to the decrease of densities and electrical conductivities and the increase in viscosities. The temperature dependence of densities of the ILs could be described with the Tait equation. The temperature dependence of viscosities of [C4mim][HCOO], [C4mim][HOCH2COO] and [C4mim][N(CN)2] is more consistent with the VFT equation, whereas the Arrhenius equation is more suitable for other ILs. In addition, the temperature dependence of the conductivity of the ILs can be described well by VFT equation.
     2. Solubilities of cellulose in the ILs at different temperatures were systematically measured, and the main factors of the effect of the ILs on the solubility property were investigated by means of 1H NMR chemical shift and solvatochromic UV/vis probe. The anionic structure of the ILs was found to have a significant impact on cellulosic solubility, and the hydrogen bond accepting ability of anions of the ILs predominated the solubility performance of cellulose. The replacement of H in [CH3COO]- anion of [C4mim][CH3COO] by an electron-withdrawing group such as OH, SH, NH2 or CH3OH leads to the decreased solubility.
     3. As an example, the influence of the addition of a small amount of lithium salt LiX(X=Cl-,Br-, NO3-, ClO4-, [CH3COO]-) into [C4mim][CH3COO] on cellulose solubility was investigated, and the possible mechanism was analyzed by 13C NMR technology. The results indicate that the addition of a small amount of lithium salts increase cellulose solubility, and this is mainly due to the disruption of the inter-molecular hydrogen bond, O(6)H…O(3) owing to the interaction of Li+with the hydroxyl oxygen O(3) of cellulose. The non-derivatizing cellulose can be regenerated by adding water into [C4mim][CH3COO]/LiX/cellulose system, indicating that [C4mim][CH3COO]/LiX is the direct solvent of cellulose. The regenerated cellulose exhibited a quite similar thermal stability to the original cellulose.
     4. The effect of the additon of polar aprotic solvents like dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF) and N,N-dimethyl-acetamide(DMAc) in [C4mim][CH3COO] on the solubility of cellulose and the possible mechanism were studied. The results indicate that the addition of the polar aprotic solvents drastically increase solubility of cellulose in [C4mim][CH3COO]. At 25℃, cellulose is insoluble in a single solvent of [C4mim][CH3COO], DMSO, DMF or DMAc. However, after [C4mim][CH3COO] is mixed with DMSO, DMF or DMAc at a suitable ratio, cellulose becomes efficiently soluble. The results from 1H NMR and 13C NMR indicate that the [C4mim]+cations are solvated preferentially by polar aprotic solvent, more [C4mim][CH3COO] ion pairs were dissociated into free [CH3COO]- and solvated [C4mim]+ions, and the free [CH3COO]- is more beneficial to disrupting the hydrogen bonds of cellulose and therefore promoting cellulose dissolution. The impact of differnt polar aprotic solvents on cellulose solubility depends on the interaction between solvent molecules and the catons of the ILs. On this basis, the IL based composite solvents which could quickly dissolve significant amounts of cellulose were developed.
     5. Based on the solubility difference of cellulose, hemicellulose and lignin in the ILs, the selective separation of three components of model biomass was conducted. The weight percentage of the separated cellulose, hemicellulose and lignin was 99.7,75.4 and 76.9%, respectively. The recovery and recycling usage of the ILs were investigated as well. This provides a new way for the seperation and use of biomass components.
引文
[1]J. SWilkes. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem.,2002,4,73-80.
    [2]T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.,1999,99,2071-2084.
    [3]P. Wasserscheid, W. Keim, Ionic liquid new "solutions" for transition metal catalysis. Angew. Chem. Int. Ed.,2000,39,3772-3789.
    [4]J. Dupont, R. F., de Souza, P. A. Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.,2002,102,3667-3692.
    [5]J. F. Brennecke, E. J. Maginn, Ionic liquids:innovative fluids for chemical processing. AIChE. J.,2001,47,2384-2389.
    [6]L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Green processing using ionic liquid and CO2. Nature,1999,399,28-29.
    [7]P. Walden, Bull. Acad. Imper. Scl., (St. Petersburg) 1914,1800.
    [8]F. H, Hurley, T. P. Wier, Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc,1951,98,203-206.
    [9]H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc,1975,97,3264-3265.
    [10]J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem.,1982,21,1263-1264.
    [11]T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, P. D. Armitage, Copper(I) and copper(Ⅱ) chloro complexes in the basic aluminum chloride-l-methyl-3-ethylimidazolium chloride ionic liquid. Inorg. Chem.,1983,22,3247-3251.
    [12]D. A. Appleby, C. L. Hussey, K. R. Seddon, J. E. Turp, Room-temperature ionic liquids as solvents for electronic absorption-spectroscopy of halide-complexes. Nature,1986,323, 614-616.
    [13]J. S. Wilkes, M. J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids.J. Chem. Soc. Chem. Commun.,1992,965-967.
    [14]N. E. Leaderbeater, H. M. Torenius, A study of the ionic liquid mediated microwave heating of organic solvents. J. Org. Chem.,2002,67,3145-3148
    [15]J. G. Huddleston R. D. Rogers, Room temperature ionic liquids as novel media for 'clean'liquid-liquid extraction. Chem. Commun.,1998,1765-1766.
    [16]M. Antonietti, D. Kuang, B. Smarsly, Ionic liquids for the conenient synthesis of functional nanolparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.,2004, 43,4988-4992.
    [17]P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.,1996,35, 1168-1178.
    [18]Ionic liquids:Industrial Applications to Green Chemistry; R. D. Rogers, K. R. Seddon, Eds.; ACS Symposium Series 818; American Chemical Society:Washington DC,2002.
    [19]Ionic liquids as Green Solvents:Progress and Prospects; R. D. Rogers, K. R. Seddon, Eds.; ACS Symposium Series; AmericanChemical Society:Washington DC,2003.
    [20]Ionic liquids ⅢA:Fundamentals, Progress, Challenges, and Opportunities:Properties and Structure; R. D. Rogers, K. R. Seddon, Eds.; ACS Symposium Series 901; American Chemical Society:Washington DC,2005.
    [21]李汝雄.绿色溶剂-离子液体的合成与应用.化学工业出版社,2004.
    [22]邓友全.离子液体-性质、制备与应用.中国石化出版社,2006.
    [23]张锁江,吕兴梅.离子液体—从基础研究到工业应用.科学出版社,2006.
    [24]K.-S. Kim, D. Demberelnyamba, H. Lee, Size-selective synthesis of gold and platinum nanoparticles using Novel thiol-functionalized ionic liquids. Langmuir,2004,20,556-560.
    [25]A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, Jr. R. D. Rogers, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun.,2001,135-136.
    [26]A. Visser, R. Swatloski, W. M. Reicheet, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, Jr., R. D. Rogers, Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+and Cd2+:synthesis, characterization, and extraction studies. Environ. Sci. Technol,2002,36,2523-2529.
    [27]R. J. C. Brown, P. J. Dyson, D. J. Ellis, T. Welton, 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]:a catalytically active organometallic ionic liquid. Chem. Commun.,2001,1862-1863.
    [28]E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis Jr., CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc,2002,124,926-927.
    [29]J. M. Zhang, S. J. Zhang, K. Dong, Y. Q. Zhang, Y. Q. Shen, X. M. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem. Eur. J.,2006, 12,4021-4026.
    [30]J. N. C. Lopes, J. Deschamps, A. A. H. Padua, Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B,2004,108,2038-2047.
    [31]J. N. C. Lopes, A. A. H. Padua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B,2004,108,16893-16898.
    [32]O. Engkvist, P.-O. Astrand, G. Karlstrom, Accurate intermolecular potentials obtained from molecular wave functions:bridging the gap between quantum chemistry and molecular simulations. Chem. Rev.,2000,100,4087-4108.
    [33]N. Bicak, A new ionic liquid:2-hydroxy ethylammonium formate. J. Mol. Liq.,2005, 271,11615-11618.
    [34]Y. F. Masahiro, J. Katarina, N. Peter, D. R.MacFarlane, M. Forsyth,Novel Lewis base ionic liquids replacing typical anions. Tetrahedron Lett.,2006,47,2755-2758.
    [35]G. H. Song, Y. Q. Cai, Y. Q. Peng, Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis. J. Comb. Chem.,2005,7,561-566.
    [36]Y.Q. Cai, Y. Q. Peng, G. H. Song, Amino-functionalized ionic liquid as an efficient and recyclable catalyst for Knoevenagel reactions in water. Catalysis Lett,2006,109,61-64.
    [37]乔焜,邓友全.氯铝酸离子液体介质中醚化反应的研究.催化学报,2002,23,559-561.
    [38]S. A. Forsyth, D. R. Macfarlane, R. J. Thomson, M.V. Itzstein, Rapid, clean, and mild o-acetylation of alcohols and carbohydrates in an ionic liquid. Chem. Commun.,2002, 714-715.
    [39]J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J. P. Bazureau, J. Hamelin, Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catal Commun.,2002,3,185-190.
    [40]G. Y. Zhao, T. Jiang, H. X. Gao, B. X. Han, J. Huang, D.H. Sun, Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem.,2004,6,75-77.
    [41]S.W. Liu, C. X. Xie, S.T Yu, F. S. Liu, K. H. Ji, Esterification of a-pinene and acetic acid using acidic ionic liquids as catalysts. Catal. Commun.,2008,9,1634-1638.
    [42]J. H. Shen, H. Wang, H. C. Liu, Y. Sun, Z. M. Liu, Br(?)nsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Cata. A: Chem.,2008,280,24-28.
    [43]N. Gupta, Sonu, G. L. Kad, J. Singh, Acidic ionic liquid [bmim]HSO4:An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catal Commun.,2007,8,1323-1328.
    [44]A. C. Cole, J. L. Jensen, I. Ntai, Novel Br(?)sted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc,2002,124,5962-5963.
    [45]J. Z. Gui, X. H. Cong, D. Liu, X. T. Zhang, Z. D. Hu, Z. L. Sun, Novel Br(?)sted acidic ionic liquid as efficient and reusable catalyst system for esterification. Cata. Commun.,2004, 5,473-477.
    [46]D. B. Zhao, M. Wu, Y. Kou, E. Z. Min, Ionic liquid:application in catalysis. Catal. Today,2002,74,157-189.
    [47]T. Nishida, Y. Tashiro, M. Yamamoto,Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte.2003, J. Fluorine Chem.,120, 135-141.
    [48]S. G. Gull, J. D. Holbrey, V. Vargas-Mora, K. R. Seddon, G. J. Lye, Room-temperature ionic liqids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng.,2000,69,227-233.
    [49]Y. Zhu, C. Ching, K. Carpenter, R. Xu, S. Selvaratnam, N. S. Hosmane, J. A. Maguire, Synthesis of the novel ionic liquid [N-pentylpyridinium]+[closo-CB11H12]- and its usage as a reaction medium in catalytic dehalogenation of aromatic halides. Appl. Organomet. chem., 2003,17,346-350.
    [50]C. J. Bradaric, A. Downard, J. Kennedy, A. J. Robertson, Y. Zhou, Industrial preparation of phosphonium ionic liquids. Green Chem.,2003,5,143-152.
    [51]J. Z. Yang, X. M. Lu, J. S. Gui, W. G. Xu, A new theory for ionic liquids—the Interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green Chem.,2004,6, 541-543.
    [52]Y. H. Zhou, A. J. Robertson, J. H. Hillhouse. Phosphonium and imidazolium salts and methods of their preparation. WO2004016631,2004-02-26.
    [53]X. L. Yuan, S. J. Zhang, X. M. Lu, Hydroxyl ammonium ionic liquids:synthesis, properties, and solubility of SO2. J. Chem. Eng. Data,2007,52,596-599.
    [54]M. Hirao, H. Sugimoto, H. Ohno, Preparation of novel room-temperature molten salts by meutralization of amines. J. The Electrochem. Soc,2000,147,4168-4172.
    [55]R. S. Varma, V. V. Namboodiri, An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun.,2001,643-644..
    [56]V. Singh, S. Kaur, V. Sapehiyia, J. Singh, G. L. Kad, Microwave accelerated preparation of [bmim][H2O4] ionic liquid:an acid catalyst for improved synthesis of coumarins. Catal. Commun.,2005,6,57-60.
    [57]P. McKendry, Energy production from biomass (part 1):overview of biomass. Bioresour. Technol,2002,37-46.
    [58]杨洋,张玉苍,何连芳,孙岩峰.纤维素类生物质废弃物水解方法的研究进展.酿酒科技,2009,10,82-86.
    [59]王丽丽,莫卫民,卢耀平等.毛竹水解制取木糖.浙江化工,1996,27,27-31.
    [60]T. Heinze, T. Liebert, Unconventional methods in cellulose functionalization. Prog. Polym. Sci.,2001,26,1689-1762.
    [61]许凤,钟新春,孙润仓,詹怀宇.秸杆中半纤维素的结构及分离新方法综述.林产化学与工业,2005,25,179-182.
    [62]N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers, Complete dissolution and partial delignification of wood in the ionic liquidl-ethyl-3-methylimidazolium acetate. Green Chem.,2009,11,646-655.
    [63]B. Hinterstoisser, M. Akerholm, L. Salmen, Load distribution in native cellulose. Biomacromolecules,2003,4,1232-1237.
    [64]Y. Sun, L. Lin, C. S. Pang, H. B. Deng, H. Peng, J. Z. Li, B. H. He, S. J. Liu, Hydrolysis of cotton fiber cellulose in formic acid. Energy Fuels,2007,21,2386-2389.
    [65]高洁,汤烈贵.纤维素科学.北京:科学出版社,1996.
    [66]N. Rayes, S. Hansen, D. Seehofer, A. R. Muller, S. Serke, S. Bengmark, P. Neuhaus, Early enteral supply of fiber and lactobacilli versus conventional nutrition:a controlled trial in patients with major abdominal surgery. Nutrition,2002,18,609-615.
    [67]M. Dello Staffolo, N. Bertola, M. Martino, A. Bevilacqua, Influence of dietary fiber addition on sensory and rheolog ical properties of yogurt. Int. Dairy J.,2004,14,263-268.
    [68]C. Collar, P. Andreu, J. C. Martinez, E. Armero, Optimization of hydrocolloid addition to improve wheat bread dough functionality aresponse surface methodology study. Food Hydrocolloid,1999,13,467-475.
    [69]E. P. de Delahaye, P. Jimenez, E. Perez, Effects of enrichment with high content dietary fiber stabilized rice bran flour on chemical and functional properties of storage frozen pizzas. J. Food Eng.,2005,68,1-7.
    [70]X. Huang, Y. Kakuda, W. Cui, Hydrocolloids in emulsions:particles size distribution and interfacial activity. Food Hydrocolloids,2001,15,533-542.
    [71]D. Zhou, L. Zhang, J. Zhou, S. Guo, Cellulose/Chitin beads for adsorption of heavy metals in aqueous solution. Water Res.,2004,38,2643-2650.
    [72]M. M. Talukdar, I. Vicker, P Mddenaers, R. Kinget, Rheological characterization of xanthan gum and hydroxy propylmethyl cellulose with respect to controlled-release drug delivery. JPharm Sci,1996,85,537-540.
    [73]K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C Shelton, D. Tindall, Advances in cellulose ester performance and application. Prog. Polym. Sci.,2001,26,1605-1688.
    [74]C. S. Wu, H. T. Liao, A new biodegradable blends prepared from polylactide and hyaluronic acid. Polym.,2005,46,10017-10026.
    [75]A. Arbelaiz, B. Fernandez, A. Valea, Mechanical properties of short flax fibre bundle/poly(e-caprolactone) composites:Influence ofmatrixmodification and fibre content. Carbohydr. Polym.,2006,64,224-232.
    [76]M. Q. Zhang, M. Z. Rong, X. Lu, Fully biodegradable natural fiber composites from renewable resources:All-plant fiber composites. Compos. Sci. Technol.,2005,65, 2514-2525.
    [77]S. Kim, Processing and properties of gluten/zein composite. Bioresour. Technol.,2008, 99,2032-2036.
    [78]O. K. Sunmonu, Characterization of fibres from the plant ceiba pentandra. J. Text. Inst., 1981,273-274.
    [79]崔元臣,周大鹏,李德亮.田菁胶的化学改性及应用研究进展.河南大学学报(自然科学版),2004,34,30-33.
    [80]吴双全,张佩华.木棉纤维及其在纺织上的应用.国际纺织导报.2009,1,11-16.
    [81]N. G. Lewis, E. Yamamoto, Lignin:occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol,1990,41,455-496.
    [82]孙勇,李佐虎,萧忻,陈洪章.木质素综合利用的研究进展.纤维素科学与技术2005,15,52-48.
    [83]邱卫华,陈洪章.木质素的结构、功能及高值化利用.纤维素科学与技术,2006,14,52-59.
    [84]刘纲勇,邱学青,邢德松.工业木质素在木材胶粘剂中的应用的研究进展.精细化工,2007,24,190-194.
    [85]F. Mijangos, A. Navarro, Review of current and future softwood Kraft lignin process chemistry. J. Chem. Eng. Data,1995,40,875-879.
    [86]许凤,孙润仓,詹怀宇.非木材半纤维素研究的新进展.中国造纸学报,2003,18, 145-151.
    [87]陈洪章,李佐虎.木质纤维原料组分分离的研究.纤维素科学与技术,2003,11,31-40.
    [88]D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Cellulose:fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [89]邢宗,陈均志.天然纤维素溶剂体系的研究进展.纸和造纸,2009,28,26-31.
    [90]D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht (Eds.), Comprehensive cellulose chemistry fundamentals and analytical methods, vol.1; Functionalization of cellulose, vol.2, Wiley-VCH, Chichester,1998.
    [91]吕昂,张俐娜.纤维素溶剂研究进展.高分子学报,10,937-944.
    [92]C. L. McCormick, P. A. Callais, Jr. B. H. Hutchinson, Solution studies of cellulose in Lithium chloride and N,N-dimethylacetamide. Macromolecules,1985,18,2394-2401.
    [93]B. A. P. Assa, M. N. Belgacemb, E. Frollini, Mercerized linters cellulose: characterization and acetylation in N,N-dimethylacetamide/lithium chloride. Carbohydr. Polym.,2006,63,19-29.
    [94]K. Kamide, K. Okajima, T. Matsui, K. Kowsaka, Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym. J,1984,16,857-866.
    [95]A. Isogai, R. H. Atalla, Dissolution of cellulose in aqueous NaOH solutions. Cellulose, 1998,5,309-319.
    [96]Y. N. Kuo, J. Hong, Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym. Adv. Technol,2005,16,425-428.
    [97]T. Heinze, R. Dickel, A. Koschellal, A. H. Kull, E.-A. Klohr, Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys.,2000,201, 627-631.
    [98]H. Sun, S. G. DiMagno, Anhydrous tetrabutylammonium fluoride. J. Am. Chem. Soc, 2005,127,2050-2051.
    [99]G. Graenacher, R. Sallmann. US. patent,2179181.1939211207.
    [100]D. L. Johnson. Britain patent,1144048.1969203.
    [101]H. P. Fink, P. Weigel, H. J. Purz, J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci,2001,26,1473-1524.
    [102]S. Fischer, W. Voigt, K. Fischer, The behaviour of cellulose in hydrated melts of the composition LiX·nH2O (X=I-, NO3-, CH3COO-, ClO4-). Cellulose,1999,6,213-219.
    [103]H. Leipner, S. Fischer, E. Brendler, W. Voigt, Structural changes of cellulose dissolved in molten salt hydrates. Macromol. Chem. Phys.,2000,201,2041-2049.
    [104]梁高勇,张建春.Lyocell短纤维及其性能分析.西北纺织工学院学报,1998,12,387-390.
    [105]C. Graenacher, Cellulose solution. US. patent,1943176,1934.
    [106]R. P. Swatloski, S. K. Spear, D. John, J. D. Holbrey, R. D. Rogers, Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.,2002,124,4974-4975.
    [107]T. Heinze, K. Schwikal, S. Barthel, Ionic liquid as reaction medium in cellulose functionalization. Macromol. Biosci.,2005,5,520-525.
    [108]H. Zhang, J. Wu, J. Zhang, J. S. He, 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:a new and powerful nonderivatizing solvent for cellulose. Macromolecules,2005,38,8272-8277.
    [109]I. Nehls, W. Wagenknecht, B. Philipp, D. Stscherbina, Characterisation of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy. Prog. Polym. Sci.,1994,19,29-78.
    [110]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究.高分子材料科学与工程,2005,31,233-240.
    [111]Y. Fukaya, A. Sugimoto, H. Ohno, Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules, 2006,7,3295-3297.
    [112]Y. Fukaya, K. Hayashi, M. Wadab, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions. Green Chem.,2008,10,44-46.
    [113]郭明,虞哲良,李铭慧,王春鹏,储富祥.咪唑类离子液体对微晶纤维素溶解性能的初步研究.生物质化学工程,2006,40,9-12.
    [114]H. Zhao, G. A. Baker, Z. Y. Song, O. Olubajo, T. Crittle, D. Peters, Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem.,2008,10, 696-705.
    [115]J. Vitz, T. Erdmenger, C. Haensch, U. S. Schubert. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem.,2009,11,417-424.
    [116]M. Zavrel, D. Bross, M. Funke, J. Biichs, A. C. Spiess, High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol,2009,100,2580-2587.
    [117]Y. Q. Pu, N. Jiang, A. J. Ragauskas, Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol,2007,27,23-33.
    [118]S. H. Lee, V.T. Doherty, J. Robert, R.J. Linhardt, J.S. Dordick, Ionic liquid mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng.,2009,102,1368-1376.
    [119]S. Singh, B. A. Simmons, K. P. Vogel, Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol. Bioeng., 2009,75,68-75.
    [120]S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, Jr M. Pringle, J. L. Scott, Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem.,2009,11,339-345.
    [121]Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource. Technol,2002,83,1-11.
    [122]B. Yang, Y. P. Lu, The promise of cellulosic ethanol production in China. J Chem. Technol. Biotechnol,2007,82,6-10.
    [123]S. Zhu, Y. Wu, Z. Yu, X. Zhang, Y. Zhao, S. Tu, Fedbatch simultaneous saccharification and fermentation of microwave/acid/alkali/H2O2 pretreated rice straw for production of ethanol. Chem. Eng. Commun.,2006,193,639-648.
    [124]M. Vesa, A. Reijo, Dissolution method for lignocellulose materials. WO2005017001.
    [125]D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem.,2007,9,63-69.
    [126]S. Saka, "Chemical composition and distribution" in Wood and cellulosic chemistry, ed. D. N.-S. Hon, and N. Shiraishi, Marcel Dekker, New York,2001, pp.51-81.
    [127]M. Fujita, H. Harada, "Ultrastructure and formation of wood cell wall" in Wood and cellulosic chemistry, ed. D. N.-S. Hon, and N. Shiraishi, Marcel Dekker, New York,2001, pp.1-50.
    [128]I. Kilpelainen, H. B. Xie, A. King, M. Granstrom, S. Heikkinen, D. Argyropoulos, Dissolution of wood in ionic liquids. J. Agric. Food Chem.,2007,55,9142-9148.
    [129]H. B. Xie, I. Kilpelainen, A. King, T. Leskinen, P. Jarvi, D. S. Argyropoulos, Opportunities with wood dissolved in ionic liquids. Cellulose Solvents:For Analysis, Shaping and Chemical Modification, Chapter 19,2010, pp 343-363.
    [130]B. Li, J. Asikkala, I. Filpponen, D. S. Argyropoulos, Factors affecting wood dissolution and regeneration of ionic liquids. Ind. Eng. Chem. Res.,2010,49,2477-2484.
    [131]I. P. Samayam, C. A. Schall, Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour. Technol.,2010,101,3561-566.
    [132]H. B. Xie, A. King, I. Kilpelainen, M. Granstrom, D. S. Argyropoulos, Thorough chemical modification of wood-based lignocellulosic materials in ionic liquids. Biomacromolecules,2007,8,3740-3748.
    [133]D. S. Argyropoulos, H. B. Xie, Polymer derivatives and composites from the dissolution of lignocellulosic in ionic liquids. U.S.2008/0188636A1
    [134]H. B. Xie, P. Jarvi, M. Karesoja, A. King, I. Kilpelainen, D. S. Argyropoulos, Highly compatible wood thermoplastic composites from lignocellulosic material modified in ionic liquids:preparation and thermal properties. J. Appl. Polym. Sci.,2009,111,2468-2476.
    [135]O. Aaltonen, O. Jauhiainen, The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohyd. Polym.,2009,75,125-129.
    [136]Z. H. Zhang, Z. K. Zhao, Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour. Technol,2010,101,1111-1114.
    [137]R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:a 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun.,2006,1271-1273.
    [138]Q. H. Zhang, Z. P. Li, J. Zhang, S.G. Zhang, L. Y. Zhu, J. Yang, X. P. Zhang, Y. Q. Deng, Physicochemical properties of nitrile-functionalized ionic liquids. J. Phys. Chem. B, 2007,111,2864-2872.
    [139]J. D. Holbrey, K. R. Seddon, Ionic liquids. Clean Prod. Proc,1999,1,223-236.
    [140]F. Endres, S. Z. El Abedin, Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys.,2006,8,2101-2116.
    [141]J. S. Wilkes, Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A,2004, 214,11-17.
    [142]U. Kragel, M. Eckstein, N. Kaftzik, Enzyme catcatalysis in ionic liquids. Curr. Opin. Biotechnol,2002,13,565-571.
    [143]P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. Dubois, R. Noble, Gas separations using non-hexafluorophosphate [PF6]-anion supported ionic liquid membranes. J. Membr. Sci.,2004,238,57-63.
    [144]J. H. Jr. Davis, Task-specific ionic liquids. Chem. Lett.,2004,33,1072-1077.
    [145]M. C. Buzzeo, R. G. Evans, R. G. Compton, Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. ChemPhysChem.,2004,5,1106-1120.
    [146]Q. Gan, D. Rooney, M. Xue, G. Thompson, Y. Zou, An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J. Membr. Sci,2006,280,948-956.
    [147]H. Zhao, Innovative applications of ionic liquids as "green" engineering liquids. Chem. Eng. Commun.,2006,193,1660-1677.
    [148]Y. C. Pei, J. J. Wang, J. Fan, M. H. Fan, Factors affacting ionic liquids based removal of anionic dyes from water. Environ. Sci. Technol.,2007,41,5090-5095.
    [149]R. Sheldon, Catalytic reactions in ionic liquids. Chem. Commun.,2001,2399-2407.
    [150]Y. Yoshida, O. Baba, G. Saito, Ionic liquids based on dicyanamide anion:influence of structural variations in cationic structures on ionic conductivity. J. Phys. Chem. B.,2007, 111,4742-4749.
    [151]P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.,1996,35, 1168-1178.
    [152]K. Fukumoto, M. Yoshizawa, H. Ohno, Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc,2005,127,2398-2399.
    [153]Q. B. Liu, M. H. A. Janssen, F. V. Rantwijk, R. A. Sheldon, Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green. Chem.,2005,7,39-42.
    [154]G. S Kell. Density, thermal expansivity, and compressibility of liquid water from 0℃ to 150℃:correlations and tables for atmospheric pressure and saturation. Reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data,1975,20,97-105.
    [155]R. D. Weir. On the conversion of thermodynamic properties to the basis of the International temperature scale of 1990. J. Chem. Thermodyn.,1996,28,261-276.
    [156]J. J. Wang, Z. N. Yan, K. L. Zhuo, Partial molar volumes of some a-amino acids in aqueous sodium acetate solutions at 308.15K. Biophys. Chem.,1999,80,179-188.
    [157]P. Nandi, B. Das, Effects and concentration, relative permittivity, and temperature on the solution behavior of sodium arboxymethylcellulose as probed by electrical conductivity, J. Phys. Chem. B,2005,109,3238-3242.
    [158]J. Barthel, F. Feuerlein, R. Neueder, R. Wachter, Calibration of conductance cells at various temperatures. J. Solution Chem.,1980,9,209-219.
    [159]Y. C. Wu, W. F. Koch, W. J. Hamer, R. L. Kay, Review of electrolytic conductance standards.J. Solution Chem.,1987,17,985-997.
    [160]J. Barthel, F. Feuerlein, R. Neueder, R. Wachter, Calibration of conductance cells at various temperatures. J. Solution Chem.,1980,9,209-219.
    [161]P. Kilaru, G. A. Baker, P. Scovazzo, Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:data and correlations. J. Chem. Eng. Data,2007,52,2306-2314.
    [162]I. Bandres, B. Giner, H. Artigas, C. Lafuente, F. M. Royo, Thermophysical properties of N-octyl-3-methylpyridinium tetrafluoroborate. J. Chem. Eng. Data,2009,54,236-240.
    [163]J. H. Dymond, R. Malhotra, The Tait equation:100 years on. Int. J. Thermophys., 1988,9,941-951.
    [164]R. L. Gardas, H. F. Costa, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, J. A. P. Coutinho, Densities and derived thermodynamic properties of imidazolium-, pyridinium-, yrrolidinium-, and piperidinium-based ionic liquids. J. Chem. Eng. Data,2008,53,805-811.
    [165]O. O. Okoturo, T. J. VanderNoot, Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem.,2004,568,167-181.
    [166]Y. O. Andriyko, W. Reischl, G. E. Nauer, Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications:basic physicochemical properties. J. Chem. Eng. Data,2009,54,855-860.
    [167]K.R. Seddon, A. Stark, M. Torres, Influence of chloride water and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem.,2000,72,2275-2287.
    [168]D. Swartling, L. Ray, S. Compton, D. Ensor, Preliminary investigation into modification of ionic liquids to improve extraction parameters. Bull. Biochem. Biotechnol., 2000,13,1-7.
    [169]R. Hagiwara, Y. Ito, Review of ionic liquids with fluorine-containing anions. J. Fluorine Chem.,2000,105,221-227.
    [170]I. Bandres, B. Giner, I. Gascon, M. Castro, Carlos Lafuente, Physicochemical characterization of n-butyl-3-methylpyridinium dicyanamide ionic liquid. J. Phys. Chem. B, 2008,112,12461-12467.
    [171]E. Gomez, B. Gonzalez, N. Calvar, E. Tojo, A. Dominguez, Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J. Chem. Eng. Data,2006,51,2096-2102.
    [172]A. Fernandez, J. Garcia, J. S. Torrecilla, M. Oliet, F. Rodriguez, Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature. J. Chem. Eng. Data,2008,53,1518-1522.
    [173]J. Vila, L.M. Varela, O. Cabeza, Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochimica Acta,2007,52,7413-7417.
    [174]M. Kanakubo, K. R. Harris, N. Tsuchihashi, K. Ibuki, M. Ueno, Temperature and pressure dependence of the electrical conductivity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Fluid Phase Equilibria,2007,261,414-420.
    [175]C. A. Angell, Formation of glasses from liquids and biopolymers. Science,1995,267, 1924-1935.
    [176]F. T. Moutos, L. E. Freed, F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater.,2007,6, 162-167.
    [177]F. Hermanutz, F. Gahr, E. Uerdingen, F. Meister, B. Kosan, New developments in dissolving and processing of cellulose in ionic liquids. Macromol. Symp.,2008,262,23-27.
    [178]C. L. McCormick, T. R. Dawsey, T. R. Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N,N-dimethylacetamide. Macromolecules,1990,23,3606-3610.
    [179]Z. Wang, T. Yokoyama, H. M. Chang, Y. Matsumoto, Dissolution of beech and spruce milled woods in LiCl/DMSO. J. Agric. Food Chem.,2009,57,6167-6170.
    [180]J. S. Moulthrop, R. P. Swatloski, G. Moyna, R. D. Rogers, High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem. Commun.,2005, 1557-1559.
    [181]Y. Cao, J. Wu, J. Zhang, H. Q. Li, Y. Zhang, J. S. He, A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J.,2009,147,13-21.
    [182]M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess, High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol,2009,100,2580-2587.
    [183]S. D. Zhu, Use of ionic liquids for the efficient utilization of lignocellulosic materials. J. Chem. Technol. Biotechnol,2008,83,777-779.
    [184]E. Brendler, S. Fischer, H. Leipner,7Li NMR as probe for solvent-cellulose interactions in cellulose dissolution. Cellulose,2001,8,283-288.
    [185]A. Oehlke, K. Hofmann, S. Spange, New aspects on polarity of ionic liquids as measured by solvatochromic probes. New J. Chem.,2006,30,533-536.
    [186]C. Chiappe, D. J. Pieraccini, Ionic liquids:solvent properties and organic reactivity. J. Phys. Org. Chem.,2005,18,275-297.
    [187]J. G. Huddlestone, G. A. Broker, H. D. Willauer, R. D. Rogers, Ionic liquids:industrial applications to green chemistry. ACS Symp. Ser.,2002,818,270-278.
    [188]R. Lungwitz, S. Spange, A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J. Chem.,2008,32,392-394.
    [189]许爱荣,王键吉,轩小朋.咪唑类离子液体的阴离子对纤维素溶解性能的影响.河南师范大学学报(自然科学版),2009,37,188.
    [190]B. Morgensrern, H. W. Kammer, W. Berger,7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polymer.,1992,43,356-357.
    [191]D. Ishii, D. Tatsumi, T. Matsumoto, Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. Biomacromolecules,2003,4,1238-1243.
    [192]L. N. Zhang, D. Ruan, J. P. Zhou, Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind. Eng. Chem. Res., 2001,40,5923-5928.
    [193]L. N. Zhang, D. Ruan, S. J. Gao, Dissolution and regeneration of cellulose in NaOH/Thiourea aqueous solution. J. Polym. Sci, Part B:Polym. Phys.,2002,40, 1521-1529.
    [194]H. G. Higgins, C. M. Stewart, K. J. Harrington, Infrared spectra of cellulose and related polysaccharides. J. Polym. Sci.,1961,51,59-84.
    [195]S. M. Zhou, K. Tashiro, T. Hongo, H. Shirataki, C. Yamane, T. Li, Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules,2001,34,1274-1280.
    [196]Y. Kataoka, T. Kondo, FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules,1998,31,760-764.
    [197]曲丽君,张艳,王金泉,迟德玲.新型天然纤维龙须草纤维性能研究.青岛大学学报(工程技术版),2008,23,44-47.
    [198]A. Potthast, T. Rosenau, H. Sixta and P. Kosmaa, Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett.,2002,43,7757-7759.
    [199]H. Zhao, C. L. Jones, G. A. Baker, S. Q. Xia, O. Olubajo, V. N. Person. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol,2009, 139,47-54.
    [200]C. Reichardt, Solvatochromic dyes as solvent polarity indicators. Chem. Rev.,1994,94, 2319-2358.
    [201]C. Reichardt, Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem.,2005,7,339-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700