PVDF基复合型聚合物电解质的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文引入一种新型纳米型无机材料制备出了具有优异电化学性能的复合型聚合物电解质,全面研究了无机纳米填料对聚合物电解质电化学性能的影响并对其作用机理进行分析;首次对聚合物电解质、无机填料和新型锂盐双乙二酸硼酸锂(LiBOB)与铝集流体之间的腐蚀性进行了系统的研究;将LiBOB作为锂盐添加剂,研究其对铝集流体腐蚀性、正极材料的兼容性等性能的作用和影响;最后用本文制备复合型聚合物电解质的方法对生产用的液态锂离子电池隔膜进行改性,制备出型号为383562的航模用聚合物锂离子电池,全面研究了该聚合物锂离子电池的电化学性能和安全性能。
     本文首次将具有纳米结构的PC-401型气相Al2O3引入到聚合物电解质体系中。以PVDF-HFP共聚物为基体、丙酮/乙醇为溶剂/非溶剂体系,采用倒相法制备出具有优异电化学性能的复合型聚合物电解质。通过多种电化学实验手段表明,由于具有纳米尺寸、较高的比表面积及表面活性基团,无机填料能够较大程度地降低聚合物电解质的结晶度、提高孔隙率、吸液率及离子导电率、锂离子迁移数和与金属锂的界面性能等。对无机填料的含量进行调整以获取最优化的物理和电化学性能。一系列的实验表明,无机填料对共聚物的比为1:10时为最佳值。
     当PC-401的含量为10%时,聚合物电解质的结晶度从不含无机填料时的23%降至9%左右,降低幅度超过60%;同时,聚合物电解质的孔隙率和吸液率也有较大幅度的提高。聚合物电解质的离子导电率为0.89 mS/cm,能较好地满足锂离子电池的实际需求;锂离子迁移数达到0.47,远远高于液态电解质0.2-0.3的水平。因此该聚合物电解质适合应用于高功率锂离子电池中。
     本文首次对锂离子电池中铝集流体的腐蚀性行为进行了全面系统的研究,并提出一种新型的等效电路对铝集流体的腐蚀性行为进行分析和拟合。通过电势阶跃法、交流阻抗法、循环伏安法等电化学方法表明,PC-401能够较好地衰减铝集流体的腐蚀电流,而且工作电压越高其抑蚀效果越突出。无机纳米填料的添加能够改变铝集流体上界面钝化层的结构与厚度,从而达到降低铝腐蚀电流的保护作用。
     全面比较了LiPF6、LiBF4、LiClO4和LiBOB四种常用锂盐对铝集流体的腐蚀性行为。结果表明,LiBOB具有最低的腐蚀电流。不同锂盐对铝箔的稳定性从强到弱的顺序为:LiBOB>LiBF4>LiPF6>LiClO4。LiBOB对铝集流体的高温稳定性非常优异,在70℃下依然对铝箔保持较高的稳定性。这对提高锂离子电池的高温性能具有一定的实际意义。
     本文首次将LiBOB作为添加剂应用于聚合物电解质中并系统研究了其对各项电化学性能的影响。研究结果表明在LiPF6电解液中添加5%的LiBOB能有效地抑制铝集流体的腐蚀行为。该发现有利于改善电池的循环寿命和储存性能。LiBOB作为锂盐添加剂还能明显改善正极材料的首次充放电效率及其界面膜的稳定性和界面阻抗。LiMn2O4的结构稳定性较差,特别是在高温下,其会逐渐溶解于LiPF6电解液中,从而导致LiMn2O4锂离子电池的循环与高温性能较差。在70℃下存放10天,5%的LiBOB使LiMn2O4锂离子电池的不可逆容量损失从35%降至26%。因而LiBOB添加剂能够显著降低LiMn2O4锂离子电池的自放电速率。这对聚合物锂离子电池的应用也有一定的现实意义。
     将复合型聚合物电解质的制备方法和体系应用于常规液态锂离子电池使用的隔膜中,对其进行改性。通过SEM清晰地观察到表面和断面的微观形貌,其孔径及厚度分布都较为均匀。选择LiFePO4为正极、复合石墨为负极材料,使用改性后的隔膜制备成使用于航模中的383562型聚合物锂离子电池,其初始容量超过500 mAh。使用该隔膜的电池具有优异的大电流充放电性能,10C放电依然有初始容量的90%,其高功率循环性能也较好,10C充放电循环200次后容量衰减在5%左右。不过其电压平台及高温循环性能欠佳。这主要是受正极材料本身和LiPF6电解液的影响。
     依据国际通用标准对电池进行各类安全性测试。结果表明,该电池具有优异的安全性能,其抗过放、过充、150℃热冲击及短路性能等都较好,所有安全性实验均未出现漏液、着火或爆炸等现象。
In this dissertation, we prepared composite polymer electrolytes (CPE) with high electrochemical performances by introducing a unique nano-sized inorganic material. The effects of inorganic fillers on the electrochemical performances of CPE and the mechanism were fully studied and analyzed, as well as the effects of the inorganic fillers and lithium salts on aluminum current collector’s corrosion at both room and high temperature. The unique lithium salt-lithium bis(oxalate) borate (LiBOB) was applied as lithium salt additive, and its effect on aluminum corrosion, the compatibility with cathode active materials were thoroughly studied. We also combined the theoretical research and knowledge with practical application, applied the CPE preparation system to modify the separator used in commercial liquid Li-ion batteries. 383562-typed polymer Li-ion batteries used in airplane models were assembled. The electrochemical and safety performances of the battery were systematically studied.
     PC-401-a nano-sized fumed alumina with ultra-fine surface structure-was firstly introduced into the CPE system. CPE were prepared through phase inversion method. PVDF-HFP copolymer was used as matrix host, acetone and ethanol as solvent/non-solvent system and PC-401 as inorganic filler. The results revealed that the addition of inorganic fillers can significantly affect the physical and electrochemical performances of the composite polymer electrolyte, such as cystallinity, porosity, electrolyte uptake rate, as well as the ionic conductivity, Li ion transference number and the compatibility with metallic lithium. Through adjusting the content of inorganic fillers in the polymer electrolyte can optimize these properties. Series experiments showed that the inorganic fillers to copolymer ratio of 1:10 is optimization. With this ration, the crystallinity of the PE decreases from 23% (no filler is added) to 9%; in the meanwhile, the porosity and electrolyte uptake ration are also enhanced with similar extent. The ionic conductivity of the PE is 0.89 mS/cm, which can meet the practical application in commercial Li-ion batteries properly. The Li ion transference number is as high as 0.47, much higher than the liquid electrolytes with values in the level of 0.2-0.3. Therefore, the PE we prepared can be used in high power Li-ion batteries which ask for high rate charge and discharge.
     The aluminum corrosion behavior in Li-ion batteries was systematically studied for the first time. A novel equivalent circuit to analyze the aluminum corrosion behavior was proposed. The results obtained through various electrochemical methods show that the inorganic filler acts as a good inhibitor of aluminum corrosion behavior. And the higher of the working voltage, the better of the inhibiting effect. The research revealed that the addition of the inorganic filler can modify the composition, construction and the thickness of the passivation layer in the interface between the PE and aluminum. All these factors result in the protection of aluminum from corroding.
     We compared the aluminum corrosion behaviors of different lithium salts, the results showed that LiBOB exhibits the lowest corrosion current. Moreover, the high temperature stability of LiBOB towards aluminum foil is quite high: the corrosion current remains relatively low at temperatures as high as 70℃. The order of the stability of different lithium salts with aluminum is: LiBOB>LiBF4>LiPF6>LiClO4.
     The LiBOB was used as additive in commercial electrolytes and it’s effect on the performance of the electrolyte was studied. It is shown that only 5% of LiBOB in LiPF6 electrolytes can greatly inhibit the aluminum corrosion behavior. This fact is beneficial to improve the cycle life and storage performance of the batteries. As additive, LiBOB can also enhance the initial cycle efficiency, as well as the stability and impedance of the interface layer of cathode material.
     The structural stability of LiMn2O4 is relatively low, especially at high temperatures. LiMn2O4 will dissolve in the LiPF6-based electrolyte and results in poor high temperature performances of LiMn2O4 Li-ion batteries. Storing at for 10 days, addition of 5% LiBOB can decrease the irreversible capacity loss of LiMn2O4 Li-ion batteries from 35% to 26%. It means that LiBOB can effectively decrease the self-discharge rate of LiMn2O4 Li-ion batteries. This fact is of certain practical importance to the application of polymer Li-ion batteries.
     We applied our preparation method and system of composite polymer electrolyte into modifying the separator used in commercial liquid Li-ion batteries. The SEM graphs clearly display the micrographic morphology of the surface and cross-section of the modified separator. 383562-typed polymer Li-ion batteries were assembled using the modified separator, LiFePO4 and complex graphite were used as cathode and anode active materials, respectively. The initial nominal capacity of the battery is over 500 mAh. The prepared battery performs well in high current rate charge and discharge. The discharge capacity at 10 C remains 90% of initial capacity. The high power cycle performance of the battery is very good, the capacity fading after 200 cycles at 10 C is about 5% of initial capacity. However, the discharge plateau at high rates and the high temperature performance of the battery is relatively poor. This is mainly limited by the cathode active material and the electrolyte based on LiPF6.
     The battery has high safety performance. It survives after various safety testings, including overdischarge to 0V, overcharge at 3 C to 10V and heat shock at 150℃for 1h and external short circuit. There was no electrolyte leakage, fire or explosion after all these tests.
引文
[1] 2005-2006中国电池行业市场分析报告.
    [2] Wang H P, Polymer gel electrolyte for rechargeable lithium polymer batteries, Temple University, 2001
    [3] Xu M, Electrochemical Kinetics Studies of Copper Anode Materials in Lithium Battery Electrolyte, [博士学位论文]: Ohio;Ohio University, 2005
    [4] Schalkwijk W v, Scrosati B. Advances in Lithium-Ion Batteries. Springer US, 2002
    [5] Harris W S, [博士学位论文]: University of California, 1958
    [6] Chilton J E, Cook G M. in Abstract. ECS fall meeting, Boston, pp. 90-911962).
    [7]郑洪河.锂离子电池电解质.北京:化学工业出版社, 2008
    [8] Whittingham M S. ELECTRICAL ENERGY-STORAGE AND INTERCALATION CHEMISTRY. Science, 1976, 192: 1126-1127
    [9] Armand M. In: Materials for Advanced Batteries. (Plenum Press, New York, 1980).
    [10] Lazzari M, Scrosati B. J. Electrochem. Soc., 1980, 134: 766
    [11] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0    [12]吴宇平,戴晓兵,马军旗, et al.锂离子电池-实验与应用.北京:化学工业出版社, 2004
    [13] Dees D W, Battaglia V S, Redey L, et al. Toward standardizing the measurement of electrochemical properties of solid-state electrolytes in lithium batteries. J. Power Sources, 2000, 89: 249-255
    [14] ERICKSON M J, Synthesis, structure and electrochemical performance of poly(ethylenimine)-based electrolytes, UNIVERSITY OF OKLAHOMA, 2004
    [15]郭炳焜,徐徽,王先友, et al.锂离子电池.长沙:中南大学出版社, 2002
    [16] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367
    [17]贺艳兵,锂离子电池阻燃剂的研究和开发, [硕士学位论文]:天津;天津大学, 2006
    [18] Arora P, Zhang Z. Battery Separators. Chem. Rev., 2004, 104: 4419-4462
    [19] Xie H, Tang Z, Li Z, et al. PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries J. Solid State Electrochem., 2008, 12: 1497-1502
    [20] Zhang S S, Xu K, Jow T R. Alkaline composite film as a separator for rechargeable lithium batteries. J. Solid State Electrochem., 2003, 7: 492-496
    [21] Lee Y M, Kim J-W, Choi N-S, et al. Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. J. Power Sources, 2005, 139: 235-241
    [22] Zhang S S, Xu K, Jow T R. An inorganic composite membrane as the separator of Li-ion batteries. J. Power Sources, 2005, 140: 361-364
    [23]王占良,锂离子电池用聚合物电解质应用基础研究, [博士学位论文]:天津;天津大学, 2003
    [24] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589
    [25] Wright P V. Polymer, 1975, 7: 319-331
    [26] Feullade G, Perche P. J. Appl. Electrochem., 1975, 14: 589
    [27] Armand M, Chabagno J M, Duclot M. Fast Ion Transport In Solids. New York: North Holland, 1979
    [28] Weston J E, Steele B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1982, 7: 75-79
    [29] Berthier C, Gorecki W, Armand B. Solid State Ionics, 1983, 11: 91
    [30] Quartarone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes. Solid State Ionics, 1998, 110: 1
    [31] Killis A, Cheradame H, Gandini A, et al. Ionic Conductivity of Polyether-Polyurethane Networks Containing Alkali Metal Salts: An Analysis of the Concentration Effect. Macromolecules, 1984, 17: 63
    [32] Hall P G, Bannister D J, Davies G R, et al. Polymer Communication, 1986, 27: 98
    [33] Watanabe M, Yamada S, Sanui K, et al. J Chem Soc Chem Commu, 1993, 82:
    [34] Angell C A, Liu C, Sanchez E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. nature, 1993, 362: 137-139
    [35] Boudin F, Andrieu X, Jehoulet C. Microporous PVdF gel for lithium-ion batteries. J. Power Sources, 1999, 81-82: 804-807
    [36] Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources, 1999, 77: 183-197
    [37] Dias F B, Plomp L, Veldhuis J B J. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources, 2000, 88: 169-191
    [38] Pai S J, Bae Y C. Open circuit voltage for solid polymer electrolyte/salt systems in lithium batteries. Journal of Applied Electrochemistry, 2005, 35: 259-265
    [39] Maitra P, Surface modified nanomaterials and their use in solid polymer electrolytes for rechargeable lithium batteries, Temple University, 2003
    [40] Geiculescu O E, Analytic methods for solid polymer electrolytes used in rechargeable lithium batteries, [博士学位论文]: Celson University, 2004
    [41] Chojnacka J, Acosta J L, Morales E. New gel electrolytes for batteries and supercapacitor applications. J. Power Sources, 2001, 97-98: 819-821
    [42] Zhang S S, Xu K, Jow T R. Li-ion cell with poly(acrylonitrile-methyl methacrylate)-based gel polymer electrolyte. Solid State Ionics, 2003, 158: 375-380
    [43] Prosini P P, Passerini S. A lithium battery electrolyte based on gelled polyethylene oxide. Solid State Ionics, 2002, 146: 65-72
    [44] Kang Y, Cheong K, Noh K A. A study of cross-linked PEO gel polymer electrolytes using bisphenol an ethoxylate diacrylate: ionic conductivity and mechanical properties. J. Power Sources, 2003, 119-121: 432-437
    [45] Sekhon S S, Singh H P. Ionic conductivity of PVdF-based polymer gel electrolytes. Solid State Ionics, 2002, 152-153: 169-174
    [46] J.Vondrák, J.Reiter, J.Velická. PMMA-based aprotic gel electrolytes. Solid State Ionics, 2004, 170: 79-82
    [47] Ramesh S, Arof A K. Electrical conductivity studies of polyvinyl chloride-based electrolytes with double salt system. Solid State Ionics, 2000, 136-137: 1197-1200
    [48] Rajendran S, Prabhu M R, Rani M U. Ionic conduction in poly(vinyl chloride)/poly(ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts. J. Power Sources, 2008, 180: 880-883
    [49] Min H S, J. M. Ko D W K. Preparation and characterization of porous polyacrylonitrile membranes for lithium-ion polymer batteries. J. Power Sources, 2003, 119-121: 469-472
    [50] Stephan A M, Nahm K S. Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47: 5952-5964
    [51] Wang M, Zhao F, Guo Z, et al. Poly(vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes. Electrochim. Acta, 2004, 49: 3595-3602
    [52] Wu C-G, Lu M I, Tsai C-C. PVdF-HFP/metal oxide nanocomposites: The matrices for high-conducting, low-leakage porous polymer electrolytes. J. Power Sources, 2006, 159: 295-300
    [53] Wang Y-J, Kim D. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim. Acta, 2007, 52: 3181-3189
    [54] Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries Nature, 1998, 394: 456-458
    [55] Capuano F, Croce F, Scrosati B. Composite Polymer Electrolytes. J. Electrochem. Soc., 1991, 138: 1918-1922
    [56] Sundaram N T K, Subramania A. Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim. Acta, 2007, 52: 4987-4993
    [57] Stephan A M, Nahma K S, Kulandainathanb M A, et al. Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur. Polym. J., 2006, 42: 1728-1734
    [58] Xi J, Tang X. Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic-inorganic hybrid P123@SBA-15. Chem. Phys. Lett., 2004, 400: 68-73
    [59] Croce F, Persi L, Scrosati B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta, 2001, 46: 2457-2461
    [60] Zhou J, Fumed oxide-based nanocomposite polymer electrolytes for rechargeable lithium batteries, [博士学位论文]: North Carolina State University, 2002
    [61] Marzantowicz M, Dygas J R, Krok F. Impedance of interface between PEO:LiTFSI polymer electrolyte and blocking electrodes. Electrochim. Acta, 2008, in press:
    [62] Appetecchi G B, Zane D, Scrosati B. PEO-Based Electrolyte Membranes Based on LiBC4O8 Salt. J. Electrochem. Soc., 2004, 151: A1369-A1374
    [63] Watanabe M, Kanba M, Matsuda H, et al. High lithium ionic conductivity of polymeric solid electrolytes. Makromol. Chem.-Rapid. Commun., 1981, 2: 741-744
    [64] Horibe H, Taniyama M. Poly(vinylidene fluoride) Crystal Structure of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend after Annealing J. Electrochem. Soc., 2006, 153: G119-G124
    [65] Zhang S S, Xu K, Jow T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries. J. Power Sources, 2004, 138: 226-231
    [66] Tsuchida E, Ohno H, Tsunemi K. Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I. Electrochim. Acta, 1983, 28: 591-595
    [67] Tsunemi K, Ohno H, Tsuchida E. A mechanism of ionic-conduction of poly(vinylidene fluoride)-lithium perchlorate hybrid films. Electrochim. Acta, 1983, 28: 833-837
    [68] Pasquier A D, Warren P C, Culver D, et al. Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics, 2000, 135: 249-257
    [69] Jiang Z, Carroll B, Abraham K M. Studies of some poly(vinylidene fluoride) electrolytes. Electrochim. Acta, 1997, 42: 2667-2677
    [70] Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources, 2007, 164: 351-364
    [71] Weighall M J. Recent advances in polyethylene separator technology. J. Power Sources, 1991, 34: 257-268
    [72] Chung N K, Kwon Y D, Kim D. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/ poly(ethylene glycol) hybrid-type polymer electrolytes. J. Power Sources, 2003, 124: 148-154
    [73] Wienk I M, Boom R M, Beerlage M A M, et al. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci., 1996, 113: 361-371
    [74] Huang H, Wunder S L. Preparation of microporous PVDF based polymer electrolytes. J. Power Sources, 2001, 97-98:
    [75] Zhang S S, Xu K, Foster D L, et al. Microporous gel electrolyte Li-ion battery. J. Power Sources, 2004, 125: 114-118
    [76]任旭梅,辉顾,陈立泉, et al.新型锂离子电池聚合物电解质的制备.高等学校化学学报, 2002, 23: 1383-1385
    [77] Abraham K M, Jiang Z, Carroll B. Highly Conductive PEO-like Polymer Electrolytes Chem. Mater., 1997, 9: 1978 -1988
    [78] Wang X, Yasukawa E, Mori S. Electrochemical Behavior of Lithium Imide/Cyclic Ether Electrolytes for 4 V Lithium Metal Rechargeable Batteries. J. Electrochem. Soc., 1999, 146: 3992-3998
    [79] Zhang S S, Ervin M H, Xu K, et al. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery. Electrochim. Acta, 2004, 49: 3339-3345
    [80] Hafezi H, Newman J. Verification and Analysis of Transference Number Measurements by the Galvanostatic Polarization Method J. Electrochem. Soc., 2000, 147: 3036-3042
    [81] Bruce P G, Vincent C A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem., 1987, 225: 1-2
    [82] Zhang X-W, Fedkiw P S. Ionic Transport and Interfacial Stability of Sulfonate-Modified Fumed Silicas as Nanocomposite Electrolytes. J. Electrochem. Soc., 2005, 152: A2413-A2420
    [83] Appetecchi G B, Croce F, Persi L, et al. Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta, 2000, 45: 1481-1490
    [84] Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004, 104: 4303-4417
    [85]程琥,李涛,杨勇.锂/聚合物电解质电化学固/固界面的研究.化学进展, 2006, 18: 542-549
    [86] Georén P, Lindbergh G. Characterisation and modelling of the transport properties in lithium battery polymer electrolytes. Electrochim. Acta, 2001, 47: 577-587
    [87] Wieczorek W, Florjanczyk Z, Steve J R. Composite polyether based solid electrolytes. Electrochim. Acta, 1995, 40: 2251-2258
    [88] Wieczorek W, Stevens J R, Florjaczyk Z. Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics, 1996, 85: 67-72
    [89] Aihara Y, Arai S, Hayamizu K. Ionic conductivity, DSC and self diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions. Electrochim. Acta, 2000, 45: 1321-1326
    [90]卢翠红,潘春跃.聚合物电解质离子电导率的影响因素.材料导报, 2003, 17: 58-61
    [91] Zhang J, Xie S, Wei X, et al. Lithium insertion in naturally surface-oxidized copper. J. Power Sources, 2004, 137: 88-92
    [92] Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun., 2006, 8: 1423-1428
    [93] Xing X, Fang W J, Winchester J R, Method for treating copper current collectors for Li-ion and/or Li-ion polymer batteries,美国专利, 6048646, 2000-04-11
    [94] Yamada K, Watanabe T, Kubota S, et al., Current collectors for battery,美国专利, 6410189, 2002-06-25
    [95] Chen Y, Devine T M, Evans J W, et al. Examination of the Corrosion Behavior of Aluminum Current Collectors in Lithium/Polymer Batteries. J. Electrochem. Soc., 1999, 146: 1310-1317
    [96] Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. J. Power Sources, 2002, 109: 458-464
    [97] Li Y, Fedkiw P S. Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion. Electrochim. Acta, 2007, 52: 2471-2477
    [98] Song S-W, Richardson T J, Zhuang G V, et al. Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochim. Acta, 2004, 49: 1483-1490
    [99] Zhang S, Ding M S, Jow T R. Self-discharge of Li/LixMn2O4 batteries in relation to corrosion of aluminum cathode substrates. J. Power Sources, 2001, 102: 16-20
    [100]庄全超,武山,刘文元, et al.锂离子电池电解质锂盐研究进展.化学世界, 2002, 12: 667-670
    [101] Kanamura K, Umegaki T, Shiraishi S, et al. Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc., 2002, 149: A185-A194
    [102]蒲薇华,何向明,王莉, et al.新型锂离子电池锂盐LiBOB的研究进展.云南大学学报, 2005, 27: 479-483
    [103] Xu K, Zhang S, Jow T R, et al. LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation. Electrochem. Solid-State Lett., 2002, 5: A26-A29
    [104] Zhang S S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources, 2006, 162: 1379-1394
    [105] Aravindan V, Vickraman P. A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries. Ionics, 2007, 13: 277-280
    [106] Larush-Asraf L, Biton M, Teller H, et al. On the electrochemical and thermal behavior of lithium bis(oxalato)borate (LiBOB) solutions. J. Power Sources, 2007, 174: 400-407
    [107] Yu B-T, Qiu W-H, Li F-S, et al. Kinetic study on solid state reaction for synthesis of LiBOB. J. Power Sources, 2007,
    [108] Ding M S, Jow T R. How Conductivities and Viscosities of PC-DEC and PC-EC Solutions of LiBF4, LiPF6, LiBOB, Et4NBF4, and Et4NPF4 Differ and Why. J. Electrochem. Soc., 2004, 151: A2007-A2015
    [109] Jiang J, Dahn J R. ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochem. Commun., 2004, 6: 724-728
    [110] Jiang J, Dahn J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem. Commun., 2004, 6: 39-43
    [111] Jiang J, Fortier H, Reimers J N, et al. Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt. J. Electrochem. Soc., 2004, 151: A609-A613
    [112] Zinigrad E, Larush-Asraf L, Salitra G, et al. On the thermal behavior of Li bis(oxalato)borate LiBOB. Thermochim. Acta, 2007, 457: 64-69
    [113] Xu K, Lee U, Zhang S S, et al. Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. J. Electrochem. Soc., 2004, 151: A2106-A2112
    [114] Zhuang G V, Xu K, Jow T R, et al. Study of SEI Layer Formed on Graphite Anodes inPC/LiBOB Electrolyte Using IR Spectroscopy. Electrochem. Solid-State Lett., 2004, 7: A224-A227
    [115] Panitz J-C, Wietelmann U, Wachtler M, et al. Film formation in LiBOB-containing electrolytes. J. Power Sources, 2006, 153: 396-401
    [116] Jiang J, Dahn J R. Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem. Solid-State Lett., 2003, 6: A180-A182
    [117] Jow T R, Ding M S, Xu K, et al. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells. J. Power Sources, 2003, 119-121: 343-348
    [118] Xu K, Lee U, Zhang S, et al. Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Electrochem. Solid-State Lett., 2003, 6: A144-A148
    [119] Xu K, Zhang S, Poese B A, et al. Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate. Electrochem. Solid-State Lett., 2002, 5: A259-A262
    [120] Ding M S, Xu K, Jow T R. Conductivity and Viscosity of PC-DEC and PC-EC Solutions of LiBOB. J. Electrochem. Soc., 2005, 152: A132-A140
    [121] Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J. Power Sources, 2006, 159: 702-707
    [122] Striebel K, Shim J, Sierra A, et al. The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources, 2005, 146: 33-38
    [123] Yongxing G, Zhenguo Y, Zhiyong T, et al. An advanced electrolyte for improving surface characteristics of LiMn2O4 electrode. 2008,
    [124] Wang X, Yasukawa E, Mori S. Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim. Acta, 2000, 45: 2677-2684
    [125] Censo D D, Exnar I, Graetzel M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries. Electrochem. Commun., 2005, 7: 1000-1006
    [126] Morita M, Shibata T, Yoshimoto N, et al. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta, 2002, 47: 2787-2793
    [127] Braithwaite J W, Gonzales A, Nagasubramanian G, et al. Corrosion of Lithium-Ion Battery Current Collectors. J. Electrochem. Soc., 1999, 146: 448-456
    [128] Nakajima T, Mori M, Gupta V, et al. Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sciences, 2002, 4: 1385-1394
    [129] Behl W K, Plichta E J. Stability of aluminum substrates in lithium-ion battery electrolytes. J. Power Sources, 1998, 72: 132-135
    [130] Zhao M, Xu M, Dewald H D, et al. Open-Circuit Voltage Study of Graphite-Coated Copper Foil Electrodes in Lithium-Ion Battery Electrolytes. J. Electrochem. Soc., 2003, 150: A117-A120
    [131]查全性.电极过程动力学导论.北京:科学出版社, 2002
    [132]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护.北京:化学工业出版社, 2005
    [133]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 2002
    [134] Zhang X, Devine T M. Passivation of Aluminum in Lithium-Ion Battery Electrolytes withLiBOB. J. Electrochem. Soc., 2006, 153: B365-B369
    [135] Xie H, Tang Z, Li Z, et al. Aluminum Corrosion Behavior of LiBOB in Composite Polymer Electrolyte for Li-Polymer Batteries Electrochem. Solid-State Lett., 2008, 11: C19-C22
    [136] Sanniera L, Zalewskaa A, Wieczorek W. Impact of Super Acid like filler on the properties of a PEGDME/LiClO4 system. Electrochim. Acta, 2006, 52: 5685-5689
    [137] Arai J. Nonflammable Methyl Nonafluorobutyl Ether for Electrolyte Used in Lithium Secondary Batteries. Journal of The Electrochemical Society 2003, 50: A219-A228
    [138] Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta 2002, 47: 1423-1439
    [139] Abe K, Yoshitake H, Kitakura T, et al. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta, 2004, 49: 4613-4622
    [140] Herstedt M, Rensmo H, Siegbahn H, et al. Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery. Electrochimica Acta, 2004, 49: 2351-2359
    [141] TOBISHIMA S, OGINO Y, WATANABE Y. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. Journal of Applied Electrochemistry, 2003, 33: 143-150
    [142] Shin J-S, Han C-H, Jung U-H, et al. Effect of Li2CO3additive on gas generation in lithium-ion batteries. Journal of Power Sources, 2002, 109 47-52
    [143] Ota H, Kominato A, Chun W-J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte. Journal of Power Sources, 2003, 119-121: 393-398
    [144] Liu J, Chen Z, Busking S, et al. Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li1.1[Ni1/3Co1/3Mn1/3]0.9O2 Li-ion cells. Journal of Power Sources, 2007, 174: 852-855
    [145] Huang S, Wen Z, Yang X, et al. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. Journal of Power Sources, 2005, 148: 72-77
    [146] LEE H-H, WANG Y-Y, WAN C-C, et al. The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. Journal of Applied Electrochemistry, 2005, 35: 615-623
    [147] Hyung Y E, Vissers D R, Amine K. Flame-retardant additives for lithium-ion batteries Journal of Power Sources, 2003, 119-121: 383-387
    [148] Izquierdo-Gonzales S, Li W, Lucht B L. Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes. Journal of Power Sources, 2004, 135: 291-296
    [149] Nakahara H, Yoon S-Y, Piao T, et al. Analysis of the passive surface film on a graphite electrode charged in polysiloxane-based electrolyte. J. Power Sources, 2006, 158: 591-599
    [150] Jow T R, Xu K, Ding M S, et al. LiBOB-Based Electrolytes for Li-Ion Batteries forTransportation Applications. J. Electrochem. Soc., 2004, 151: A1702-A1706
    [151] Xu K, Zhang S S, Lee U, et al. LiBOB: Is it an alternative salt for lithium ion chemistry? J. Power Sources, 2005, 146: 79-85
    [152] Zhang S S, Xu K, Jow T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. J. Power Sources, 2006, 156: 629-633
    [153] Xu K, Zhang S, Jow T R. LiBOB as Additive in LiPF6-Based Lithium Ion Electrolytes. Electrochem. Solid-State Lett., 2005, 8: A365-A368
    [154] Broussely M, Biensan P, Bonhomme F, et al. Main aging mechanisms in Li ion batteries. Journal of Power Sources, 2005 146: 90-96
    [155] Abraham D P, Furczon M M, Kang S-H, et al. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells. J. Power Sources, 2008, 180: 612-620
    [156] Andersson A M, Edstrom K, Raob N, et al. Temperature dependence of the passivation layer on graphite. Journal of Power Sources, 1999, 81-82: 286-290
    [157] Amine K, Chen Z, Kang S-H. Impacts of fluorine on the electrochemical properties of Li[Ni0.5Mn0.5]O2 and Li[Li0.2Ni0.15Co0.1Mn0.55]O2. Journal of Fluorine Chemistry, 2007, 128: 263-268
    [158] Capsoni D, Bini M, Chiodelli G, et al. Jahn–Teller transition in Al3t doped LiMn2O4 spinel. Solid State Communications, 2003, 126: 169-174
    [159] Pasquier A d, Blyr A, Cressent A, et al. An update on the high temperature ageing mechanism in LiMn2O4-based Li-ion cells. J. Power Sources, 1999, 81-82: 54-59
    [160] Amatucci G, Pasquier A D, Blyr A, et al. The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochimica Acta, 1999, 45: 255-271
    [161] Antolini E. Lithium loss from lithium cobalt oxide: hexagonal Li Co O to 0.5 0.5 cubic Li Co O phase transition. International Journal of Inorganic Materials, 2001 3 721-726
    [162] Sarre G, Blanchard P, Broussely M. Aging of lithium-ion batteries. J. Power Sources, 2004, 127: 65-71
    [163] Ramasamy R P, Lee J-W, Popov B N. Simulation of capacity loss in carbon electrode for lithium-ion cells during storage. J. Power Sources, 2007, 166: 266-272
    [164] Kwak G, Park J, Lee J, et al. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries. J. Power Sources, 2007, 174: 484-492
    [165] Aoshima T, Okahara K, Kiyohara C, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature. Journal of Power Sources, 2001, 97-98: 377-380
    [166] Choi S H, Kim J, Yoon Y S. Self-discharge analysis of LiCoO2 for lithium batteries. J. Power Sources, 2004, 138: 283-287
    [167] Yazami R, Ozawa Y. A kinetics study of self-discharge of spinel electrodes in Li/LixMn2O4 cells. J. Power Sources, 2006, 153: 251-257
    [168] Armand M, Tarascon J-M. Building better batteries. Nature, 2008, 451: 652-657
    [169] Li Z, Su G, Wang X, et al. Micro-porous P(VDF-HFP)-based polymer electrolyte filled withAl2O3 nanoparticles. Solid State Ionics, 2005, 176: 1903-1908
    [170] Sato T, Banno K, Maruo T, et al. New design for a safe lithium-ion gel polymer battery. J. Power Sources, 2005, 152: 264-271
    [171] Wang M, Dong S. Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays. J. Power Sources, 2007, 170: 425-432
    [172]吴宇平,张汉平,吴锋.聚合物锂离子电池.北京:化学工业出版社, 2007
    [173] Yoshio M, Tanaka H, Tominaga K, et al. Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behaviour in a lithium secondary battery. Journal of Power Sources, 1992, 40: 347-353
    [174] Yoon W-S, Kim K-B. Synthesis of LiCoO2 using acrylic acid and its electrochemical properties for Li secondary batteries. Journal of Power Sources, 1999, 81-82: 517-523
    [175] Peng Z S, Wan C R, Jiang C Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials. Journal of Power Sources, 1998, 72: 215-220
    [176] Jeong E-D, Won M-S, Shim Y-B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction. Journal of Power Sources, 1998, 70: 70-77
    [177] Garcia B, Farcy J, Pereira-Ramos J P, et al. Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries. Journal of Power Sources, 1995, 54: 373-377
    [178] Burukhin A, Brylev O, Hany P, et al. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ionics, 2002, 151: 259-263
    [179] Antolini E, Ferretti M. Synthesis and Thermal Stability of LiCoO2. Journal of Solid State Chemistry, 1995, 117: 1-7
    [180] Baba Y, Okada S, Yamaki J-i. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics, 2002, 148: 311–316
    [181] Yamaki J-i, Baba Y, Katayama N, et al. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode. Journal of Power Sources, 2003, 119–121: 789–793
    [182] He Y-B, Tang Z-Y, Song Q-S, et al. The thermal stability of fully charged and discharged LiCoO2 cathode and graphite anode in nitrogen and air atmospheres. Thermochimica Acta, 2008, 480: 15-21
    [183] D.Larcher. Electrochemically avtive LiCoO2 and LiNiO2 made by cationic exchange under hydrothermal conditions. J. Electrochem. Soc., 1997, 144: 408-
    [184] Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials Journal of Power Sources, 2004, 127: 58-64
    [185] Yamada A, Tanaka M, Tanaka K, et al. Jahn-Teller instability in spinel Li-Mn-O. Journal of Power Sources, 1999, 81-82: 73-78
    [186] Pasquier A d, Blyr A, Cressent A, et al. An update on the high temperature ageing mechanism in LiMn O -based 2 4 Li-ion cells. Journal of Power Sources, 1999, 81-82: 54-59
    [187] Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochemistry Communications, 2005, 7: 669-673
    [188] Koltypin M, Aurbach D, Nazar L, et al. On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures). Electrochemical and Solid-State Letters, 2007, 10: A40-A44
    [189] Deb A, Bergmann U, Cairns E J, et al. Structural Investigations of LiFePO4 Electrodes by Fe X-ray Absorption Spectroscopy. J. Phys. Chem. B, 2004, 108: 7046-7051
    [190] Lee J, Teja A S. Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Materials Letters, 2006, 60: 2105- 2109
    [191] Gao F, Tang Z, Xue J. Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochimica Acta, 2007, 53: 1939-1944
    [192] Iltchev N, Chen Y, Okada S, et al. LiFePO4 storage at room and elevated temperatures. Journal of Power Sources, 2003, 119-121: 749-754
    [193] Kang H-C, Jun D-K, Jin B, et al. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. Journal of Power Sources, 2008 179: 340-346
    [194] Andersson A M, Abraham D P, Haasch R, et al. Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. J. Electrochem. Soc., 2002, 149: A1358-A1369
    [195] He Y-B, Tang Z-Y, Song Q-S, et al. Preparation and characterization of 18650 Li(Ni1/3Co1/3Mn1/3)O2/graphite high power batteries. J. Power Sources, 2008, 185: 526-533
    [196] He Y-B, Tang Z-Y, Song Q-S, et al. Effects of Temperature on the Formation of Graphite CoO2 Batteries. J. Electrochem. Soc., 2008, 155: A481-A487
    [197] Zhang S S, Xu K, Jow T R. Study of the charging process of a LiCoO2-based Li-ion battery. J. Power Sources, 2006, 160: 1349-1354
    [198] Zhang S S, Xu K, Jow T R. Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J. Power Sources, 2006, 160: 1403-1409
    [199] Jiang J, Dahn J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0:1Co0:8Mn0:1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 2004, 6: 39-43
    [200]美国保险商实验室, UL1642, UL Standard for Safety for Lithium Batteries,美国:美国保险商实验室, 2005-9-19
    [201]美国保险商实验室, UL2054, Household and Commercial Batteries,美国:美国保险商实验室, 1997-3-29
    [202] Biensan P, Simon B, Pe′re`s J P, et al. On safety of lithium-ion cells. Journal of Power Sources, 1999, 906–912
    [203] Ohsaki T, Kishi T, Kuboki T, et al. Overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2005, 146: 97-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700