低能量密度超声波/碱协同溶胞—隐性生长污泥减量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前污水处理厂的污泥产量大且处理处置成本高,使得污泥源头减量技术日益受到关注。溶胞-隐性生长技术可同时减少污泥产量和提高氮磷去除效率,应用前景广阔。高效溶胞是该技术的关键。课题组此前的研究发现将低能量密度超声波辐射与碱处理耦合可实现低成本溶胞,并在相关小试中获得了理想的污泥减量效果。然而,该组合工艺对大规模设施的适用性和可行性仍需进一步研究。
     本研究建立和运行了400m~3/d的溶胞-隐性生长规模化实验系统,连续处理城市污水进行污泥减量研究。将低能量密度超声波/碱协同溶胞与水解酸化耦合用于其污泥预处理,并以传统活性污泥(CAS)工艺进行生物降解。
     连续运行表明规模化系统的表观产率系数可降至0.27kgVSS/kgCOD_(去除),污泥减量率达56.45%。预处理有效地促进了剩余污泥的生物降解。系统出水水质良好,其COD_(Cr)、BOD_5、SS和pH值能满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准的要求。污泥预处理对CAS体系活性污泥的活性无明显影响,活性污泥的SVI值介于80~120mL/g之间。污泥预处理体系运行稳定。在污泥层厚度53.3mm(对应的能量密度和超声时间分别为0.089W/mL和154s)和碱剂量66.0gNaOH/kgDS等优化条件下,污泥溶胞率为12.16%;溶胞后污泥上清液中SCOD、TN、NH_4~+-N和TP浓度分别增至2280.7、287.27、15.90和126.33mg/L;溶胞污泥pH值为11.84。后置反应和水解酸化改善了溶胞污泥的可生化性,其VFA产率、污泥酸化程度和氨化效率分别为2.38mol/kgVSS、19.05%和19.59%。预处理后污泥pH值降至8.70左右。
     超声装置内的污泥层厚度和碱剂量是影响溶胞效果的关键参数。需要修正小试得出的薄层超声策略。在声强为0.476W/cm~2时,理想的污泥层厚度介于40~70mm之间,最佳值为53.3mm。合适的碱剂量为66.0gNaOH/kgDS。
     规模化系统的COD、氮和磷的平衡结果分别为91.30%、97.25%和71.49%。系统存在同化作用之外的氮磷去除重要途径。系统运行成本为1.210元/m~3污水,比常规CAS系统低11.49%。其中,CAS体系的污水和污泥处理的成本占主导。
     研究表明低能量密度超声波/碱协同溶胞-隐性生长污泥减量工艺在技术上和经济上都是可行的。
Currently, the large amounts of sludge produced in wastewater treatment and itshigh cost for treatment and disposal have resulted in an increasing concern on thein-situ excess sludge reduction technologies. Lysis-cryptic growth strategy is thepromising technology with great potential, because the excess sludge reduction andthe improvement of nutrients removal can be achieved simultaneously in alysis-cryptic growth system. Effective lysis is the key of this technology. It has beenfound in our previous research that the effective sludge lysis with low cost can beaccomplished using the combined technique of low-density ultrasonication andalkaline treatment, and a desirable sludge reduction efficiency (SRE) has beenachieved in a related bench-scale investigation. However, the applicability andfeasibility of this combined method for large-scale system still needs furtherinvestigation.
     In this study, a large-scale lysis-cryptic growth system with a capacity of400m~3/dwas built and operated continuously to treat municipal wastewater for excess sludgereduction. Low density ultrasonic/alkaline disintegration and hydrolysis/acidogenesiswere integrated to pretreat its waste activated sludge (WAS). Conventional activatedsludge (CAS) process was used for its biodegradation.
     The investigation of continuous operation indicated that the observed biomassyield of the large-scale system was0.27kg VSS/kg COD-consumed, and the SREreached56.45%. The pretreatment promoted significantly the biodegradation of WAS.The water quality of effluent was satisfactory, and the COD_(Cr), BOD_5, SS and pHvalue of effluent wastewater could steadily meet the first class B criteria specified inthe Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002). There was no significant effect of sludge pretreatment on the bioactivityof activated sludge in the CAS system. The SVI was80~120mL/g. The sludgepretreatment system performed well. Under the optimized conditions of53.3mmsludge depth, which corresponded to an ultrasonic density of0.089W/mL and anultrasonic duration of154s, and66.0g NaOH/kg DS, the degree of disintegration(DD) was12.16%, and the SCOD, TN, NH_4~+-N and TP in the supernatant ofultrasonicated sludge increased dramatically to2280.7,287.27,15.90and126.33mg/L, respectively. The pH value of ultrasonicated sludge was11.84. With thepretreatment of post-reaction and hydrolysis/acidogenesis, the biodegradability ofultrasonicated WAS could be improved. The specific VFA production, sludge acidogenesis degree (SAD) and ammonification efficiency (AE) were2.38mol/kgVSS,19.05%and19.59%, respectively. The pH of pretreated sludge decreasedto about8.70.
     The sludge depth in the ultrasonic trough and alkaline dosage were importantparameters to affect disintegration effectiveness. It was necessary to modify thestrategy of thin sludge layer for ultrasonic disintegration from bench-scaleinvestigation. With an ultrasonic intensity of0.476W/cm~2, the desirable sludge depthwas between40and70mm and the optimal value of53.3mm could be determined.The preferred alkaline dosage was66.0g NaOH/kg DS.
     The COD, nitrogen and phosphorus balances of the large-scale lysis-crypticgrowth system were determined as91.30%,97.25%and71.49%, respectively.Besides the assimilation of microorganisms, there must be other important approachesto remove the nutrients in wastewater. The operation cost of the large-scalelysis-cryptic growth system was1.210Yuan (¥)/m~3wastewater, which was11.49%less than that of a typical CAS system. The cost for wastewater and sludge treatmentof CAS system was predominant.
     It can be concluded that the combined low-density ultrasonic/alkalinelysis-cryptic growth process for excess sludge reduction was both technologically andeconomically feasible.
引文
[1]中华人民共和国住房和城乡建设部,中华人民共和国国家发展和改革委员会.城镇污水处理厂污泥处理处置技术指南(试行)[EB/OL].http://www.jshb.gov.cn/jshbw/gtfw/jsbz/201105/P020110519576232651758.pdf,2011-3-14/2012-3-18.
    [2]张自杰,林荣忱,金儒霖.排水工程(下册)[M].4版.北京:中国建筑工业出版社,2000.
    [3] GB/T23485——2009.城镇污水处理厂污泥处置混合填埋用泥质[S].2009.
    [4] Wei Y, Van Houten R T, Borger A R, et al. Minimization of excess sludgeproduction for biological wastewater treatment[J]. Water Research,2003,37(18):4453-67.
    [5] Low E W, Chase H A. Reducing production of excess biomass during wastewatertreatment[J]. Water Research,1999,33(5):1119-1132.
    [6] Khursheed A, Kazmi A A. Retrospective of ecological approaches to excess sludgereduction[J]. Water Research,2011,45(15):4287-4310.
    [7] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reducebiomass production in the activated sludge process[J]. Water Research,2000,34(12):3204-3212.
    [8] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge productionin an activated sludge process[J]. Process Biochemistry,2003,38(9):1373-1377.
    [9] Rosenberger S, Krüger U, Witzig R, et al. Performance of a bioreactor withsubmerged membranes for aerobic treatment of municipal waste water[J]. WaterResearch,2002,36(2):413-420.
    [10] Mahmood T, Elliott A. A review of secondary sludge reduction technologies forthe pulp and paper industry[J]. Water Research,2006,40(11):2093-2112.
    [11] Hendrickx T L G, Elissen H H J, Temmink H, et al. Operation of an aquatic wormreactor suitable for sludge reduction at large scale[J]. Water Research,2011,45(16):4923-4929.
    [12] Tamis J, van Schouwenburg G, Kleerebezem R, et al. A full scale worm reactorfor efficient sludge reduction by predation in a wastewater treatment plant[J].Water Research,2011,45(18):5916-5924.
    [13] Lee J W, Cha H Y, Park K Y, et al. Operational strategies for an activated sludgeprocess in conjunction with ozone oxidation for zero excess sludge productionduring winter season[J]. Water Research,2005,39(7):1199-1204.
    [14] Dytczak M A, Londry K L, Siegrist H, et al. Ozonation reduces sludgeproduction and improves denitrification[J]. Water Research,2007,41(3):543-550.
    [15] Campos J L, Otero L, Franco A, et al. Ozonation strategies to reduce sludgeproduction of a seafood industry WWTP[J]. Bioresource Technology,2009,100(3):1069-1073.
    [16] Chu L, Yan S, Xing X H, et al. Progress and perspectives of sludge ozonation asa powerful pretreatment method for minimization of excess sludge production[J].Water Research,2009,43(7):1811-1822.
    [17] Yasui H, Nakamura K, Sakuma S, et al. A full-scale operation of a novelactivated sludge process without excess sludge production[J]. Water Science andTechnology,1996,34(3-4):395-404.
    [18] Wang G, Sui J, Shen H, et al. Reduction of excess sludge production insequencing batch reactor through incorporation of chlorine dioxide oxidation[J].Journal of Hazardous Materials,2011,192(1):93-98.
    [19] Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduceexcess sludge in activated sludge process[J]. Water Research,2002,36(3):656-666.
    [20] Laurent J, Jaziri K, Guignard R, et al. Comprehensive insight of theperformances of excess sludge reduction by90℃thermal treatment coupledwith activated sludge at pilot scale: COD and N removal, bacterial populations,fate of heavy metals [J]. Process Biochemistry,2011,46(9):1808-1816.
    [21] Gao Y, Peng Y, Zhang J, et al. Biological sludge reduction and enhanced nutrientremoval in a pilot-scale system with2-step sludge alkaline fermentation and A2Oprocess[J]. Bioresource Technology,2011,102(5):4091-4097.
    [22] Zhang G, Zhang P, Yang J, et al. Ultrasonic reduction of excess sludge from theactivated sludge system[J]. Journal of Hazardous Materials,2007,145(3):515-519.
    [23] Zhang G, He J, Zhang P, et al. Ultrasonic reduction of excess sludge fromactivated sludge system II: Urban sewage treatment[J]. Journal of HazardousMaterials,2009,164(2-3):1105-1109.
    [24] Yoon S H, Kim H S, Lee S. Incorporation of ultrasonic cell disintegration into amembrane bioreactor for zero sludge production[J]. Process Biochemistry,2004,39(12):1923-1929.
    [25] Stouthammer A, Bettenhaussen C. Utilisation of energy for growth andmaintenance in continuous and batch cultures of microorganisms[J]. BiochimBiophys Acta,1973,301(1):53-70.
    [26] Mayhew M, Stephenson T. Biomass yield reduction: Is biochemical manipulationpossible without affecting activated sludge process efficiency?[J]. Water Scienceand Technology,1998,38(8-9):137-144.
    [27] Low E W, Chase H A. The use of chemical uncouplers for reducing biomassproduction during biodegradation[J]. Water Science and Technology,1998,37(4-5):399-402.
    [28] Strand S E, Harem G N, Stensel H D. Activated sludge yield reduction usingchemical uncouplers[J]. Water Environment Research,1999,71(4):454-458.
    [29] Chen G H, Mo H K, Liu Y. Utilization of a metabolic uncoupler,3,3′,4′,5-tetrachlorosalicylanilide (TCS) to reduce sludge growth in activatedsludge culture[J]. Water Research,2002,36(8):2077-2083.
    [30]梁鹏,黄霞,钱易等.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-52.
    [31] Liu Y, Chen G H, Rols J L. A kinetic model incorporating energy spilling forsubstrate removal in substrate sufficient batch culture of activated sludge[J].Applied microbiology and biotechnology,1999,52(5):647-651.
    [32] Liu Y. The So/Xo-dependent dissolved organic carbon distribution insubstrate-sufficient batch culture of activated sludge[J]. Water Research,2000,34(5):1645-1651.
    [33] Chudoba P, Chudoba J, Capdeville B. The aspect of energetic uncoupling ofmicrobial growth in the activated sludge process-OSA system[J]. Water Scienceand Technology,1992,26(9-11):2477-2480.
    [34] Chudoba P, Morel A, Capdeville B. The case of both energetic uncoupling andmetabolic selection of microorganisms in the OSA activated sludge system[J].Environmental Technology,1992,13(8):761-770.
    [35] Xing X H, Yu A, Feng Q, et al. Principle and practice of a novel biologicalwastewater treatment technology capable of on-site reduction of excess sludge[J].Journal of Biotechnology,2008,136(Supplement): S647-S677.
    [36] Chen G H, An K J, Saby S, et al. Possible cause of excess sludge reduction in anoxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Research,2003,37(16):3855-3866.
    [37]王少坡,孙力平,于静洁等.原位剩余污泥减量技术的研究进展[J].天津城市建设学院学报,2009,15(2):99-106.
    [38] Pirt S J. The maintenance energy of bacteria in growing cultures[J]. Proceedingsof the Royal Society of London. Series B, Biological Sciences,1965,163(991):224-231.
    [39] Liu Y, Tay J H. Strategy for minimization of excess sludge production from theactivated sludge process[J]. Biotechnology Advances,2001,19(2):97-107.
    [40] Van Loosdrecht M C M, Henze M. Maintenance, endogeneous respiration, lysis,decay and predation[J]. Water Science and Technology,1999,39(1):107-117.
    [41] Lee N M, Welander T. Reducing sludge production in aerobic wastewatertreatment through manipulation of the ecosystem[J]. Water Research,1996,30(8):1781-1790.
    [42] Rensink J H, Rulkens W H. Using metazoa to reduce sludge production[J]. WaterScience and Technology,1997,36(11):171-179.
    [43]周可新,许木启,曹宏等.活性污泥微型动物群落结构优化的可控途径研究[J].环境污染治理技术与设备,2005,5(5):18-20.
    [44] Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge processthrough predation of Aeolosoma hemprichi[J]. Biochemical Engineering Journal,2006,28(2):117-122.
    [45] Huang X, Liang P, Qian Y. Excess sludge reduction induced by Tubifex tubifexin a recycled sludge reactor[J]. Journal of Biotechnology,2007,127(3):443-451.
    [46]王亚炜,魏源送,刘俊新.颤蚓反应器结构和曝气方式对剩余污泥处理的影响[J].中国给水排水,2006,22(z1):338-342.
    [47] Elissen H J H, Hendrickx T L G, Temmink H, et al. A new reactor concept forsludge reduction using aquatic worms[J]. Water Research,2006,40(20):3713-3718.
    [48] Dold P L, Ekama G A, Marais G R. A general model for the activated sludgeprocess[J]. Progress in Water Technology,1980,12(6):47-77.
    [49] Leslie Grady C P, Daigger G T, Lim H C. Biological wastewater treatment,revised and expanded[M]. Second edition. New York: Marcel Dekker Inc.,1999.
    [50] Mason C A, Hamer G, Bryers J D. The death and lysis of microorganisms inenvironmental processes[J]. FEMS Microbiology Letters,1986,39(4):373-401.
    [51] Kim T H, Nam Y K, Park C, et al. Carbon source recovery from waste activatedsludge by alkaline hydrolysis and gamma-ray irradiation for biologicaldenitrification[J]. Bioresource Technology,2009,100(23):5694-5699.
    [52] Tong J, Chen Y. Recovery of nitrogen and phosphorus from alkaline fermentationliquid of waste activated sludge and application of the fermentation liquid topromote biological municipal wastewater treatment[J]. Water Research,2009,43(12):2969-2976.
    [53] Baier U, Schmidheiny P. Enhanced anaerobic degradation of mechanicallydisintegrated sludge[J]. Water Science and Technology,1997,36(11):137-143.
    [54] Onyeche T I, Schl fer O, Bormann H, et al. Ultrasonic cell disruption ofstabilised sludge with subsequent anaerobic digestion[J]. Ultrasonics,2002,40(1–8):31-35.
    [55] Ahn J H, Shin S G, Hwang S. Effect of microwave irradiation on thedisintegration and acidogenesis of municipal secondary sludge[J]. ChemicalEngineering Journal,2009,153(1-3):145-150.
    [56] Tang B, Yu L, Huang S, et al. Energy efficiency of pre-treating excess sewagesludge with microwave irradiation[J]. Bioresource Technology,2010,101(14):5092-5097.
    [57] Yasui H, Shibata M. An innovative approach to reduce excess sludge productionin the activated sludge process[J]. Water Science and Technology,1994,30(9):11-20.
    [58] Yu L. Chemically reduced excess sludge production in the activated sludgeprocess[J]. Chemosphere,2003,50(1):1-7.
    [59] Paul E, Camacho P, Sperandio M, et al. Technical and Economical Evaluation ofa Thermal, and Two Oxidative Techniques for the Reduction of Excess SludgeProduction[J]. Process Safety and Environmental Protection,2006,84(4):247-252.
    [60] Kim T H, Lee S R, Nam Y K, et al. Disintegration of excess activated sludge byhydrogen peroxide oxidation[J]. Desalination,2009,246(1–3):275-284.
    [61] Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemicalpretreatment on the anaerobic digestion of waste activated sludge[J]. WaterScience and Technology,1997,35(8):209-215.
    [62] Rocher M, Goma G, Begue A P, et al. Towards a reduction in excess sludgeproduction in activated sludge processes: biomass physicochemical treatment andbiodegradation[J]. Applied microbiology and biotechnology,1999,55(6):883-890.
    [63] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilisation of sewage sludgethrough thermal hydrolysis-three years of experience with full scale plant [J].Water Science and Technology,2000,42(9):89-96.
    [64] Shiota N, Akashi A, Hasegawa S. A strategy in wastewater treatment process forsignificant reduction of excess sludge production[J]. Water Science andTechnology,2002,45(12):127-134.
    [65]郝晓地,蔡正清,甘一萍.剩余污泥预处理技术概览[J].环境科学学报,2011,31(1):1-12.
    [66] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermal pre-treatmentof surplus sludge[J]. Advances in Environmental Research,2003,7(3):715-720.
    [67] Jin Y, Li H, Mahar R B, et al. Combined alkaline and ultrasonic pretreatment ofsludge before aerobic digestion[J]. Journal of Environmental Sciences,2009,21(3):279-284.
    [68] Li H, Jin Y, Mahar R, et al. Effects and model of alkaline waste activated sludgetreatment[J]. Bioresource Technology,2008,99(11):5140-5144.
    [69] Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludgeprocesses by integrating biomass alkaline heat treatment[J]. Water Science andTechnology,2001,44(2-3):437-444.
    [70] Neyens E, Baeyens J, Creemers C. Alkaline thermal sludge hydrolysis[J].Journal of Hazardous Materials,2003,97(1-3):295-314.
    [71] Kim D H, Jeong E, Oh S E, et al. Combined (alkaline+ultrasonic) pretreatmenteffect on sewage sludge disintegration[J]. Water Research,2010,44(10):3093-3100.
    [72] Chang C J, Tyagi V K, Lo S L. Effects of microwave and alkali inducedpretreatment on sludge solubilization and subsequent aerobic digestion[J].Bioresource Technology,2011,102(17):7633-7640.
    [73] Cao X Q, Chen J, Cao Y L, et al. Experimental study on sludge reduction byultrasound[J]. Water Science and Technology,2006,54(9):87-93.
    [74] Salsabil M R, Laurent J, Casellas M, et al. Techno-economic evaluation ofthermal treatment, ozonation and sonication for the reduction of wastewaterbiomass volume before aerobic or anaerobic digestion[J]. Journal of HazardousMaterials,2010,174(1-3):323-333.
    [75] Mohammadi A R, Mehrdadi N, Bidhendi G N, et al. Excess sludge reductionusing ultrasonic waves in biological wastewater treatment[J]. Desalination,2011,275(1-3):67-73.
    [76]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响[J].中国环境科学,2006,26(4):459-463.
    [77] Carrère H, Dumas C, Battimelli A, et al. Pretreatment methods to improve sludgeanaerobic degradability: A review[J]. Journal of Hazardous Materials,2010,183(1-3):1-15.
    [78] Chi Y, Li Y, Fei X, et al. Enhancement of thermophilic anaerobic digestion ofthickened waste activated sludge by combined microwave and alkalinepretreatment[J]. Journal of Environmental Sciences,2011,23(8):1257-1265.
    [79] Dursun D, Turkmen M, Abu-Orf M, et al. Enhanced sludge conditioning byenzyme pre-treatment: comparison of laboratory and pilot scale dewateringresults[J]. Water Science and Technology,2006,54(5):33-41.
    [80]李俊,庞子山,朱臻.利用微生物制剂进行污泥减量的生产性试验研究[J].中国给水排水,2008,24(3):1-4.
    [81]史彦伟,钟琼,李小明等. S-TE污泥好氧减量技术的研究与应用[J].中国给水排水,2006,22(18):16-20.
    [82] Zhu H, Chen J H. Study of hydrolysis and acidification process to minimizeexcess biomass production[J]. Journal of Hazardous Materials,2005,127(1-3):221-227.
    [83] Ichinari T, Ohtsubo A, Ozawa T, et al. Wastewater treatment performance andsludge reduction properties of a household wastewater treatment system combinedwith an aerobic sludge digestion unit[J]. Process Biochemistry,2008,43(7):722-728.
    [84]应崇福.超声学[M].北京:科技出版社,1990.
    [85] Pilli S, Bhunia P, Yan S, et al. Ultrasonic pretreatment of sludge: A review[J].Ultrasonics Sonochemistry,2011,18(1):1-18.
    [86]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996.
    [87] Kapucu H, Gülsoy N, Mehmeto lu ü. Disruption and protein release kinetics byultrasonication of Acetobacter peroxydans cells[J]. Biochemical EngineeringJournal,2000,5(1):57-62.
    [88] Choonia H S, Lele S S. β-Galactosidase release kinetics during ultrasonicdisruption of Lactobacillus acidophilus isolated from fermented Eleusinecoracana[J]. Food and Bioproducts Processing,2011,89(4):288-293.
    [89] Pham T T H, Brar S K, Tyagi R D, et al. Ultrasonication of wastewatersludge—Consequences on biodegradability and flowability[J]. Journal ofHazardous Materials,2009,163(2–3):891-898.
    [90]王芬.超声破解对污泥特性的影响机制与零剩余污泥排放工艺研究[D].天津:天津大学环境科学与工程学院,2006.
    [91] Wang F, Wang Y, Ji M. Mechanisms and kinetics models for ultrasonic wasteactivated sludge disintegration[J]. Journal of Hazardous Materials,2005,123(1-3):145-150.
    [92]朱昌平,何世传,单鸣雷等.水处理用声化学反应器研究进展[J].应用声学,2005,24(3):197-200.
    [93] Zhang G, Zhang P, Yang J, et al. Energy-efficient sludge sonication: Power andsludge characteristics[J]. Bioresource Technology,2008,99(18):9029-9031.
    [94] Liu X, Liu H, Chen J, et al. Enhancement of solubilization and acidification ofwaste activated sludge by pretreatment[J]. Waste Management,2008,28(12):2614-2622.
    [95] Li C, Liu G, Jin R, et al. Kinetics model for combined (alkaline+ultrasonic)sludge disintegration[J]. Bioresource Technology,2010,101(22):8555-8557.
    [96] Bunrith S, Samir K K, Chettiyappan V. Anaerobic digestion of waste activatedsludge pretreated by a combined ultrasound and chemical process[J].Environmental Technology,2010,31(3):257-265.
    [97] Chiu Y C, Chang C N, Lin J G, et al. Alkaline and ultrasonic pretreatment ofsludge before anaerobic digestion[J]. Water Science and Technology,1997,36(11):155-162.
    [98]刘勇,郝赟,张书廷.低强度超声波与酸、碱协同对污泥溶胞的影响[J].环境科学学报,2009,29(4):683-688.
    [99]吕火焰.碱和超声波促进污泥厌氧水解酸化-好氧减量研究[D].天津:天津大学环境科学与工程学院,2009.
    [100]胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [101]国际水协厌氧消化工艺数学模型课题组,张亚雷,周雪飞译.厌氧消化数学模型[M].上海:同济大学出版社,2004.
    [102] Pavlostathis S G, Giraldo-Gomez E. Kinetics of anaerobic treatment: A criticalreview[J]. Critical Reviews in Environmental Control,1991,21(5-6):411-490.
    [103]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,环境科学与工程出版中心,2004.
    [104] Feng L, Wang H, Chen Y, et al. Effect of solids retention time and temperatureon waste activated sludge hydrolysis and short-chain fatty acids accumulationunder alkaline conditions in continuous-flow reactors[J]. Bioresource Technology,2009,100(1):44-49.
    [105] Zhang P, Chen Y, Huang T Y, et al. Waste activated sludge hydrolysis andshort-chain fatty acids accumulation in the presence of SDBS in semi-continuousflow reactors: Effect of solids retention time and temperature[J]. ChemicalEngineering Journal,2009,148(2-3):348-353.
    [106]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [107] Ren N Q, Chua H, Chan S Y, et al. Assessing optimal fermentation type forbio-hydrogen production in continuous-flow acidogenic reactors[J]. BioresourceTechnology,2007,98(9):1774-1780.
    [108]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].上海:同济大学环境科学与工程学院,2006.
    [109] Chen Y, Jiang S, Yuan H, et al. Hydrolysis and acidification of waste activatedsludge at different pHs[J]. Water Research,2007,41(3):683-689.
    [110]王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社,2003.
    [111] Yan Y, Feng L, Zhang C, et al. Ultrasonic enhancement of waste activatedsludge hydrolysis and volatile fatty acids accumulation at pH10.0[J]. WaterResearch,2010,44(11):3329-3336.
    [112]王雅丽.剩余污泥溶胞过程数学模型与优化[D].天津:天津大学环境科学与工程学院,2010.
    [113]郭幸丽.污泥溶胞-水解酸化-CAS减量工艺中试设计及研究[D].天津:天津大学环境科学与工程学院,2010.
    [114]张云霞.表面活性剂/碱耦合对剩余污泥溶胞的研究[D].天津:天津大学环境科学与工程学院,2010.
    [115]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [116]国家环境保护总局《水与废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [117]郝赟.低强度超声波/碱对剩余污泥破解机理的研究[D].天津:天津大学环境科学与工程学院,2009.
    [118] Brucculeri M, Bolzonella D, Battistoni P, et al. Treatment of mixed municipaland winery wastewaters in a conventional activated sludge process: a case study[J].Water Science and Technology,2005,51(1):89-98.
    [119]韦伟,张可方,张朝升等.磷化氢在水处理中的研究现状[J].中国给水排水,2009,25(12):20-23.
    [120]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003.
    [121] Zhang P, Zhang G, Wang W. Ultrasonic treatment of biological sludge: Flocdisintegration, cell lysis and inactivation[J]. Bioresource Technology,2007,98(1):207-210.
    [122] Barker P S, Dold P L. COD and nitrogen mass balances in activated sludgesystems[J]. Water Research,1995,29(2):633-643.
    [123]杨虹,王芬,季民等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备,2006,7(5):78-81.
    [124]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [125] Speight J G. Lange's Handbook of Chemistry[M].16th Edition. New York:McGraw-Hill Professional,2004.
    [126] Valsami-Jones E. Recent scientific and technical developments: Calciumphosphate precipitation[J]. SCOPE Newsletter (CEEP Publications),2001,41:8-15.(此文献无期号)
    [127] Sobeck D C, Higgins M J. Examination of three theories for mechanisms ofcation-induced bioflocculation[J]. Water Research,2002,36(3):527-538.
    [128] Higgins M J, Tom L A, Sobeck D C. Case study I: application of the divalentcation bridging theory to improve biofloc properties and industrial activatedsludge system performance–direct addition of divalent cations[J]. WaterEnvironment Research,2004,76(4):344-352.
    [129] Higgins M J, Sobeck D C, Owens S J, et al. Case study II: application of thedivalent cation bridging theory to improve biofloc properties and industrialactivated sludge system performance-using alternatives to sodium-basedchemicals[J]. Water Environment Research,2004,76(4):353-359.
    [130] Peeters B, Dewil R, Lechat D, et al. Quantification of the exchangeable calciumin activated sludge flocs and its implication to sludge settleability[J]. Separationand Purification Technology,2011,83(0):1-8.
    [131] Bruus J H, Nielsen P H, Keiding K. On the stability of activated sludge flocswith implications to dewatering[J]. Water Research,1992,26(12):1597-1604.
    [132] Wilén B M, Jin B, Lant P. The influence of key chemical constituents inactivated sludge on surface and flocculating properties[J]. Water Research,2003,37(9):2127-2139.
    [133] Park C. Cations and activated sludge floc structure[D]. Virginia: VirginiaPolytechnic Institute and State University Department of Civil and EnvironmentalEngineering,2002.
    [134] Park C, Novak J T. Characterization of activated sludge exocellular polymersusing several cation-associated extraction methods[J]. Water Research,2007,41(8):1679-1688.
    [135]蒋建国,张妍,张群芳等.超声波对污泥破解及改善其厌氧消化效果的研究[J].环境科学学报,2008,29(10):2815-2819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700