中温两相厌氧消化处理低有机质剩余污泥效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于生物营养去除(Biological Nutrients Removal, BNR)工艺的普遍应用,使之产生的剩余污泥有机质含量(即挥发性固体,VS)数值偏低。目前有关污泥厌氧消化的研究,其污泥有机质含量通常较高,但对于这种有机质含量偏低的剩余污泥,其厌氧消化的研究尚未见相关报道。
     本文通过自行设计的污泥中温两相厌氧消化小试与中试装置,考察了两套装置的启动性能,在系统稳定运行的基础上,探讨了剩余污泥中温(35℃)两相厌氧消化小试运行特性,分析了消化污泥脱水性能的变化及其主要影响因素,研究了超声预处理对低VS含量剩余污泥中温两相厌氧消化效能的影响,建立了不同VS含量污泥中温两相厌氧消化小试工艺的动力学模型,并将小试拟合曲线与中试测定值进行比较分析。
     当小试工艺进入稳定运行时,随着有机负荷的增加,VS去除率随着有机负荷的增加而降低,大肠杆菌的灭活效率与VS去除率的变化相同,最大比产甲烷活性(SMA)则随着有机负荷的升高而逐渐增加。厌氧消化前后重金属的形态分析表明,Cd、Pb和Cr的稳定效果较好。污泥中Cu消化后可以实现进一步稳定,稳定率提高到98.4%。投配污泥中Zn和Ni各种存在形态分布相对比较均匀,消化后重金属的稳定率不高。
     分别采用浓缩剩余污泥以及剩余污泥与厨余垃圾混合物,研究了不同有机质含量污泥的中温两相厌氧消化特性。结果表明,随着OLR的增加,各系统出料的VS浓度、TCOD浓度均呈现增加的趋势,而且相应的VS去除率和TCOD去除率逐渐下降。随着HRT的延长,各系统的SMA活性逐渐提高,而且产气中的甲烷含量也随之增加。经过中温消化产酸相处理后性能变差,但是经过产甲烷相进一步消化后又有所改善。污泥的沉降与脱水性能与胞外聚合物有显著的相关性,而与钙、镁离子的相关性不明显。
     以低有机质剩余污泥为对象,选择超声波与CaO联合处理作为厌氧消化的预处理,考察了预处理对污泥厌氧消化的影响。结果表明,随着系统有机负荷的增加,系统的稳定性增强。当HRT由15d降至10d后,VS去除率下降了约5%,对于低VS含量的剩余活性污泥,进行中温厌氧消化时应该维持足够的HRT。不同有机负荷条件下,两相内的产甲烷活性在0.35~0.38 L CH4/gVSrem的范围内,产气量和沼气含量都没有产生较大变化,但随着系统有机负荷的增加,产酸相INT-ETS活性逐渐增加,并超过产甲烷相微生物活性。
     中试工艺运行结果表明,随着有机负荷的增加,两相VS去除率均呈现逐渐下降的趋势。在不同OLRs条件下,产酸相比甲烷产率的变化幅度不大,而产甲烷相的比甲烷产率呈现逐渐下降的趋势。随着有机负荷的增加,产酸相INT-ETS活性逐渐升高,而产甲烷相的活性变化不大。随着有机负荷的增加,消化污泥的脱水性能逐渐变差,且产酸相的CST值高于产甲烷相。热能平衡分析表明,当污泥的HRT为10d时,在寒冷地区运行污泥中温两相厌氧消化工艺,采取保温措施后,沼气所产生的热能可满足污泥消化耗热量的65.5%。
     采用Chen-Hashimoto模型,研究了不同进料基质浓度下,污泥、污泥与厨余垃圾的中温两相厌氧消化动力学特性。结果表明,当基质II的进料COD浓度略高于基质I时,基质II的两个动力学参数μmax和K值低于基质I,说明基质II中可能存在着某种抑制物质。小试拟合曲线与中试测定值的比较表明,中试VS去除率与甲烷产率测定值与小试拟合曲线趋势相近,但略低于小试动力学模型曲线拟合值。
The advanced biological nutrients removal (BNR) processes have been widely used in recent years, resulting in a low organic (volatile solids, VS) content of waste activated sludge (WAS) from these processes. However, most researchers focused on the anaerobic digestion of sludge with high VS content, and not much has been reported on the anaerobic digestion of sludge with a low VS content. And the effect of anaerobic digestion on the dewatering property of sludge is paid more attention for most researchers.
     The two-phase anaerobic digestion equipments in laboratory and pilot scale were used in this study. The start-up of two equipments was examined. The mesophilic (35℃) two-phase anaerobic digestion of WAS with different VS contents was investigated during the steady operation, and the variation and impact factors of sedimentation and dewatering properties of anaerobic digested sludge were determined. The effects of ultrasonication treatment on the anaerobic digestion of WAS with low VS content were discussed. And finally, the kinetic models for the mesophilic (35℃) two-phase anaerobic digestion of sludge with different VS contents was established, the determined value from pilot-scale test was compared with the fitted curve from laboratory-scale test.
     The results from laboratory system showed that the stability was not greatly influenced due to the increase of organic loading rate (OLR), however, the VS removal efficiencies decreased with the increase of OLR, and the variation of deactivation efficiency of total coliform was the same as the VS removal efficiencies. The speciation analyses of heavy metals before and after anaerobic digestion showed that Cd, Pb and Cr had better stabilization efficiencies. The stabilization efficiency of Cu was enhanced and reached 98.4% after anaerobic digestion. The speciation of Zn and Ni were relatively average in the feeding sludge, however the stabilization efficiencies of them was lower. In addition, the stabilization efficiencies occurred mainly in the acidogenic phase other than the methanogenic phase.
     The thickened WAS and mixture of WAS with kitchen garbage were used to examine the mesophilic (35℃) two-phase anaerobic digestion of sludge with different VS contents. The results showed that the acidification efficiency of acidogenic phase was better than the others for the system with addition of kitchen garbage. There existed good stabilization for the methanogenic phases of three systems. The effluent VS and TCOD concentrations increased with the increase of OLR, and the corresponding VS and TCOD removal efficiencies decreased. The specific methanogenic acivity (SMA) of each system increased with the increase of HRT, and the methane content of biogas also increased. The change of sedimentation and dewatering properties was similar for three systems, the sedimentation and dewatering properties became poorer after the treatment of acidogenic phase, and were improved again after the treatment of methanogenic phase. The sedimentation and dewatering properties correlated well with the content of extracellular polymer (ECP) other than the concentrations of Ca2+ and Mg2+. The particle size of digested sludge became smaller, which was also an important influence factor of dewatering property.
     The combination of physicochemical treatment was used to improve the efficiency of subsequent anaerobic digestion of WAS with low VS content. According to the results from batch tests, the combined treatment of ultrasonication and lime was used as the pretreatment of anaerobic digestion. The effects of combined treatment on the efficiency of subsequent anaerobic digestion were investigated. The results showed that the stabilization of system increased with the increase of OLR. The VS removal efficiency decreased 5% when the HRT decreased from 15 d to 10 d, which suggested that the sufficient HRT must be maintained for the mesophilic anaerobic digestion of WAS with low VS content. The SMA of two phases was in a range of 0.35~0.38 L CH4/gVSrem at different OLRs, and the variations of biogas production and methane content were not apparent. However, the specific INT-ETS of acidogenic phase increased with the increase of OLR, and the value exceeded that of methanogenic phase.
     The results of pilot-scale test showed that the effluent VS concentration increased with the increase of OLR, and the corresponding VS removal efficiency decreased. The specific methane yield of acidogenic phase was stable under different OLRs, and that of methanogenic phase decreased gradually. The specific INT-ETS activity increased with the increasing of OLR for acidogenic phase, and that of methanogenic phase was stable. However, the dewatering property of digested sludge became poor with the increasing of OLR, and the CST value of acidogenic phase was higher than that of methanogenic phase, the change of dewatering property was similar with the sedimentation property. The analyses of heat balance for pilot-scale system showed that in the cold zone, the heat energy produced from biogas could compensate about 65.5 percent of heat exhausted for the operation of mesophilic TPAD process when the HRT was 10 days and the equipment was kept warm.
     The Chen-Hashimoto model was used to examine the kinetic characteristics of mesophilic two-phase anaerobic digestion under different influent VS concentrations. The results showed that the kinetic parameters ofμmax and K of substrate II was lower than that of substrate I when the influent VS concentration of substrate II was higher than that of substrate I, which suggested that there existed some inhibitory matter in substrate II. The kinetic parameters ofμmax and K of substrate III were both higher than the others. The comparison of determined value from pilot-scale test and fitted curve of laboratory-scale test showed that the VS removal efficiency and methane yield from pilot-scale test was lower than those of laboratory-scale test, however, the change trends of them were similar.
引文
1.金儒霖.中国城市污水厂污泥处理的综述.武汉城市建设学院学报. 1994, 11(2): 1~12
    2.王宝贞.水污染控制工程.北京:高等教育出版社, 1994:103~105
    3. K. H. Linder. Anforderungen an die Klarschlammentsorgung in Europa. Korrespondenz Abwasser,1993, 40(1):80~84
    4.顾国维.水污染治理研究.上海:同济大学出版社,1997:276~277
    5.杭世珺,刘旭东,梁鹏.污泥处理处置的认识误区与控制对策.中国给水排水. 2004,20(12):89~92
    6.杭世珺,陈吉宁,郑兴灿,等.污泥处理处置的认识误区与控制对策.污泥处置专刊. 2004, 6:14~20
    7.张自杰.排水工程.北京:中国建筑工业出版社, 1981:72~75
    8.张青敏,陈卫平,胡过臣,等.污泥有效利用研究进展.农业环境保护. 2000, 19(1): 33~34
    9.尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社, 2004:12~15
    10. J. Kopp, J. Muller, N. Dicht, et al. Anaerobic digestion and dewatering characteristics of mechanically disintegrated excess sludge. Wat. Sci. Tech. 1997, 36(11): 129~136
    11.申荣艳,骆永明,章钢娅,等.城市污泥农用对植物和土壤中有机污染物的影响.农业环境科学学报. 2007, 26(2):651~657
    12.丁文,卢敏州,林芗华,等.漳州市城市污泥的农用价值及农业利用途径.福建农业科技. 2005, 1: 54~55
    13.王新,周启星.污泥堆肥土地利用对树木生长和土壤环境的影响.农业环境科学学报. 2005, (1):174~177
    14.赵鸣,吴广芬,李刚.污泥资源化利用的途径与分析.环境科学与技术. 2005, 28(2):92~94
    15.张清敏,陈卫平,胡国臣,等.污泥有效利用研究进展.农业环境保护. 2000, 19(1):58~61
    16.邹绍文,张树清,王玉军,等.中国城市污泥的性质和处置方式及土地利用前景.中国农学通报. 2005, 21(1):198-201
    17.刘春光,孙红文,朱琳.污水厂污泥在天津滨海地区盐渍土改良上的应用前景分析.环境卫生工程. 2005, 13(2):10~15
    18. M. Weemaes, H. Grootaerd, F. Simorns, et al. Anaerobic digestion of ozonized biosolids. Wat. Res. 2000, 34(8): 2330~2336
    19.杨波,陈季华,奚旦立.剩余污泥的处理与处置技术.东华大学学报(自然科学版). 2005, 31(2): 126~130
    20.陈荣柱,任琳.日本污泥处理技术现状与动态.给水排水. 1999, 25(10):20~21
    21.姚刚.德国污泥利用和处置(I).城市环境和城市生态. 2002, 13(1):43~47
    22.薛栋森.美国污水污泥的研究和利用概况.国外农业环境保护. 1991, 31(1):31~33
    23.刘庆余.污水污泥的厌氧消化研究.农业环境保护. 1995, 14(5):231~234
    24. J. A. Hudson. Operating experience of sludge disinfection and stabilization at Colburn Sewage-treatment works. J. Instn. Wat. And Envir. Mangt. 1988, 2(4):429~441
    25. J. Holliday. The effect of surplus activated sludge on the sludge thickening strategy for a large sewage-treatment works. In European conf. on sludge and organic waste. University of Leeds. 1994, 4
    26. C. P. Chu, D. G. Tsai, D. J. Lee, et al. Size-dependent anaerobic digestion rates of flocculated activated sludge: Role of intrafloc mass transfer resistance. Journal of Environmental Management. 2005, 76: 239~244
    27. C. P. Chu, D. J. Lee, B. V. Chang, et al. Anaerobic digestion of polyelectrolyte flocculated waste activated sludge. Chemosphere. 2003, 53: 756~764
    28. Y. C. Song, S. J. Kwon, J. H. Woo. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic disgetion of sewage sludge. Wat. Res. 2004, 38: 1653~1662
    29. Q. Zhao, G. Kugel. Thermophilic/mesophilic digestion of sewage sludge and organic wastes. J. Environ. Sci. Health. 1996, A31(9): 2211~2231
    30. M. Kim, Y. H. Ahn, R. E. Speece. Comparative process stability and efficiency of anaerobic digestion: mesophilic vs. thermophilic. Wat. Res. 2002, 36: 4369~4385
    31. H. Q. Yu, H. H. P. Fang, G. W. Gu. Comparative performance of mesophilicand thermophilic acidogenic upflow reactor. Process Biochem. 2002, 38: 447~454
    32. H. N. Gavala, U. Yenal, I. V. Skiadas, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge: Effect of pre-treatment at elevated temperature. Wat. Res. 2003, 37: 4561~4572
    33.周春生,尹军.剩余污泥好氧消化处理的效能及机理研究.中国给水排水. 1992, 8(1): 13~18
    34.尹军,刘韬,宋显东.污泥好氧消化处理的若干问题探讨.中国给水排水. 2001, 17(8): 23~25
    35. H. W. Campbell. Sludge management-future issues and trends. Wat. Sci. Technol. 2000, 41(8): 1~8
    36.魏源送,王敏健,王菊思.堆肥技术及进展.环境科学进展. 1999, 7(3): 11~20
    37. M. J. Jackson. A line assessment of periodic turning as an aeration mechanism for pulp and paper mill sludge composting. Waste Management and Research. 1998, 16(4): 312~319
    38.席北斗,孟伟,刘鸿亮,等.三阶段控温堆肥过程中接种复合微生物菌群的变化规律研究.环境科学. 2003, 24(2): 152~155
    39. T. A. Butler, L. J. Sikora, P. M. Steinhilber, et al. Compost age and sample storage effects on maturity indicators of biosolids compost. Journal of Environmental Quality. 2001, 30(6): 2141~2149
    40.彭新华,陆才正,杨英.快速堆肥的可拉技术及温控模型研究.华东工学院学报. 1992, 62: 80~84
    41.李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标.环境科学. 1999, 20(2): 98~103
    42.王敦球,解庆林,张全洪,等.城市污水污泥农用资源化研究.重庆环境科学. 1999, 21(6): 38~40
    43.薛澄泽,张增强.我国污泥土地利用的展望.农业环境与发展. 1997, 14(4): 1~7
    44. V. T. Breslin. Retention of metals in agricultural soil after is amending with MSW: biosolids compost. Water, Air and Soil Pollution. 1999, 109(1/4): 163~178
    45. R. D. Davis. The impact of EU and UK environmental pressures in thefuture of sludge treatment and disposal. Water Environmental Management. 1996, 10(2): 65~69
    46.陈涛,熊先哲.污泥的农林处置与利用.环境保护科学. 2000, 26(6): 32~36
    47. N. J. Horan, L. Fletcher, S. M. Betmal, et al. Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Wat. Res. 2004, 38: 1113~1120
    48. C. Gantzer, P. Gaspard, L. Galvez, et al. Monitoring of bacterial and parasitological contamination during various treatments of sludge. Wat. Res. 2001, 35(16): 3763~3770
    49.邱宏俊,郝以琼.国外污泥处置技术.重庆建筑大学学报. 1998, 20(6): 51~55
    50. R. D. Davis. Use of sewage sludge on land in the united kingdom. Wat. Sci. Technol. 1987, 18(7): 1~8
    51.李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析.中国土木工程学会排水委员会. 2003, 3: 1~11
    52.朱南文,高廷耀,周增炎.我国城市污水厂污泥处置途径的选择.上海环境科学. 1998, 17(11): 40~42
    53.汪恂.略述城市污水厂污泥热化学处理技术.武汉工业大学学报. 1999, 21(6): 40~43
    54. N. Okuno, S. Takahashi. Full scale application of manufacturing bricks from sewage sludge. Wat. Sci. Technol. 1997, 36(11): 243~250
    55. H. Endo. Production of glass ceramics from sewage sludge. Wat. Sci. Technol. 1997, 36(11): 235~241
    56. B. R. Khanbilvardi, S. Afshari. Sludge ash as fine aggregate for concrete mixture. Journal of Environmental Engineering. 1995, 121(9): 633~638
    57. A. Bagreev, D. C. Locke, T. J. Bandoze. Adsorption of S02 on sewage sludge-derived materials. Environ. Sci. Technol. 2001, 35(15): 3263~3269
    58. A. Bagreev, S. Bashkova, D. C. Locke. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide. Environ. Sci. Technol. 2001, 35(7): 15~37
    59. T. R. Bridle, et al. Control of heavy metals and organochlorines using the oil from sewage process. Wat. Sci. Technol. 1990, 22(12): 249~258
    60.何品晶,顾国维,邵立明.污水污泥低温热解处理技术研究.中国环境科学. 1996, 16(4): 254~257
    61.欧围荣,陈奇洲.生活污水污泥油化试验研究.环境污染与防治. 1996, 18(4): 20~21
    62.何品晶,邵立明,陈正夫,等.污水厂污泥低温热化学转化过程机理研究.中国环境科学. 1998, 18(1): 39~42
    63.唐小辉,赵力.污泥处置国内外进展.环境科学与管理. 2005, 30(3): 68~70
    64.吴启堂,林毅,曾泽思.城市污泥作复合肥粘结剂的研究.中国给水排水. 1992, 8(4): 20~22
    65.马志毅,侯红娟,刘瑞强,等.污水厂污泥作吸附剂的试验研究.中国给水排水. 1997, 13(4): 10~13
    66.汪洪生.国外污泥处理技术进展.污染防治技术. 1998, 11(1): 32~33
    67.牟艳艳,于鑫,郑正,等.污泥厌氧消化预处理方法研究进展.中国给水排水. 2004,20(7): 31~33
    68.王琳,王宝贞.污泥减量技术.给水排水. 2000, 26(10): 28~31
    69. J. A. Muller. Pretreatment processes for the recycling and reuse of sewage sludge. Wat. Sci. Technol. 2000, 42(9): 167~174
    70. I. W. Nah, Y. W. Kang, K. Y. Hwang, et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Wat. Res. 2003, 34(8): 2362~2368
    71. J. A. Muller. Prospects and problems of sludge pre-treatment process. Wat. Sci. Technol. 2001, 44(10): 121~128
    72. U. Baier, P. Schmidheiny. Enhanced anaerobic degradation of mechanically disintegrated sludge. Wat. Sci. Technol. 1997, 36(11): 137~143
    73. K. Y. Hwang, E. B. Shin, H. B. Choi. A mechanical pretreatment of waste activated sludge for improvement of anaerobic digestion system. Wat. Sci. Technol. 1997, 36(12): 111~116
    74. D. J. Lee, Y. H. HSU. Fast freeze/thaw treatment on excess activated sludge: Floc structure and sludge dewaterability. Wat. Sci. Technol. 1994, 28(8): 1444~1449
    75. W. R. Clifford, M. Z. Alikhan, et al. Waste activated sludge conditioning by direct slurry freezing. Wat. Res.,1975, 9: 917~925
    76. Q. H. Wang, K. Fujisaki, Y. Ohsumi, et al. Enhancement of dewaterability of thickened waste activated sludge by freezing and thawing treatment. J. Environ. Sci. Health. 2001, A36(7): 1361~1371
    77.周群英,高廷耀.环境工程微生物学(第2版).北京:高等教育出版社, 2000
    78. A. Tiehm, K. Nickel, M. Zellhorn. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Wat. Res. 2001, 35(8): 2003~2009
    79. T. I. Onyeche, O. Schlafer, H. Bormann, et al. Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics, 2002, 40: 31~35
    80. C. Petrier, A. Francony. Incidence of wave frequency on the reaction rates during ultrasonic wastewater treatment. Wat. Sci. Technol. 1997, 35(4): 175~180
    81. C. Bougrier, H. Carrere, J. P. Delgenes. Solubilisation of waste-activated sludge by ultrasonic treatment. J. Chem. Eng. 2005, 106: 163~169
    82. A. Gronroos, H. Kyllonen, K. Korpijarvi, et al. Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrasonics. 2005, 12: 115~120
    83. K. Scheminske, R. Krull, D. C. Hempel. Oxidative treatment of digest sewage sludge with ozone. Wat. Sci. Technol. 2000, 42(9): 151~158
    84. G. Bunning, D. C. Hempel. Vital-fluorochreomizaiton of microorganisms using 3’,6’-diacetyl-fluorescein to determine damages of cell membranes and loss of metabolic activity by ozonation. Ozone Sci. Eng. 1996, 18: 173~181
    85. S. Saby, M. Djafer, G. H. CHEN. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process. Wat. Res. 2002, 36: 656~666
    86. S. E. Woodard, R. F. Wudasch. A Hydrolysis/thickening/filtration process for the treatment of waste activated sludge. Wat. Sci. Technol. 1994, 30: 29~38
    87.梁鹏,黄霞,钱易,等.污泥减量化技术的研究进展.环境污染治理技术与设备. 2003, 4(1): 44~52
    88. M. A. Vera, K. Nickel, U. Neis.“Disintegration of sewage sludge for improved anaerobic biodegradation”. Proceedings of the Annual Conference of the Western Canada Water and Wastewater Association, 57th. 2005, wsk05: 1~ 9
    89. H. Odegaard.‘Sludge minimization technologies-an overview’. Wat. Sci. Technol. 2004, 49(10, Wastewater Sludge as a Resource): 31~40
    90. H. J. Roman, J. E. Burgess, B. I. Pletschke.‘Enzyme treatment to decrease solids and improve digestion of primary sewage sludge’. African Journal of Biotechnology. 2006, 5(10): 963~967
    91. M. Barjenbruch, O. Kopplow. Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research. 2003, 7: 715~722
    92. M. Recktenwald, J. Wawrzynczyk, E. S. Dey, et al.‘Enhanced efficiency of industrial scale anaerobic digestion by the addition of glycosidic enzymes’. Proceedings of Facing Sludge Diversities: challenges, risks and opportunities. Antalya, Turkey. 2007 :785-792
    93.张希衡.废水厌氧生物处理工程.北京:中国环境科学出版社,1996
    94.贺延玲.废水的厌氧生物处理工程.北京:中国轻工业出版社,1998
    95. F. G. Poland, S. Ghosh. Developments in anaerobic stabilization of organic wastes- the two-phase concept. Environ. Letters. 1971, 1: 255~266
    96.张仁江.糖蜜酒精废水两相UASB处理有机物去除特征.城市环境与城市生态. 2000, (4): 23~25
    97.李建政.中药废水高效生物处理技术的研究.中国给水排水. 2000, (6): 5~8
    98.胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003, 51~55
    99. D. H. Kim, Y. C. Chang. Development of two phase anaerobic reactor with membrane filter [A]. Proc. 8th International Conf. On Anaerobic Digestion. 1997, (2): 77~78
    100. J. G. Lin, C. N. Chang, S. C. Chang. Enhancement of anaerobic digestion of waste activated sludge by allkaline solubilization. Bioresource Technology. 1997, 62: 85~90
    101.周岳溪.水葫芦加动物排泄物两相厌氧生物处理工艺.环境科学研究.1996,9(6):6~10
    102.高廷耀,周恭明,周增炎.污泥两相和单相厌氧消化性能比较研究.同济大学学报.1997,25(6):629~634
    103.高廷耀,周恭明,周增炎.气浮浓缩污泥两相厌氧消化.同济大学学报.1999,27(1):43~46
    104.赵庆良,王宝贞,G·库格尔.高温/中温两相厌氧消化处理污水污泥和有机废水.哈尔滨建筑工程学院学报. 1995,28(1):30~40
    105.王治军,王伟.热水解预处理改善污泥的厌氧消化性能.环境科学. 2005, 26(1): 68~71
    106.李白昆等.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究.环境科学学报. 1997, 10: 459~463
    107.管运涛等.两相厌氧膜生物系统处理造纸废水.环境科学. 2000, 25(4): 52~56
    108.叶芬霞,李颖.有机废物两相厌氧消化的基质特异性及其应用.中国沼气. 2002,20(3):8~12
    109.付胜涛,于水利,严晓菊.初沉污泥和厨余垃圾的混合中温厌氧消化.给水排水. 2006, 32(1): 24~28
    110.吴一平,刘莹,王旭东,等.初沉污泥厌氧水解/酸化产物作为生物脱氮除磷系统碳源的试验研究.西安建筑科技大学学报(自然科学版). 2004, 36(4): 421~423
    111. J. Raynal, J. P. Delgnes, R. Moletta. Two phase anaerobic digestion of solid waste by a multiple liquefaction reactors process. Biores. Technol. 1998,65:97~103
    112. R. Zhang, Z. Zhang. Biogasification of rice straw with an anaerobic phased solids digester system. Bioresource technology. 1999, 68:235~245
    113. L. D. Baere. Anaerobic digestion of solid waste:state the art. Water Sci. Technol. 2000,41:283~290
    114. S. Ghosh, K. Suoy, L. Dresell, et al. Pilot and full scale two phase anaerobic digestion of municipal sludge. Wat. Envioron. Res. 1995, 67(2): 206~214
    115. S. Ghosh, D. C. Taylor. Kraft-mill biosolids treatment by conventional and biphasic fermentation. Wat. Sci. Technol. 1999, 40(11-12): 169~177
    116. B. Goel, D. C. Pant, V. V. N. Kishore. Two phase anaerobic digestion of spent tea leaves for biogas and manure generation. Biores.Technol. 2001,90:153~156
    117. H. Santha, S. Sung. Valuable by-products recovery from cattle wastes using temperature-phased anaerobic digestion process. In: WEF’s Biosolids Specialty Conference. 2001, San Diego, LA.
    118. S. Sung, T. Liu. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere. 2003, 53: 43~52
    119. C. H. Ting, D. J. Lee. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. International Journal of Hydrogen Energy. 2007, 32: 677~682
    120. Y. Y. Li, T. Noice. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Wat. Sci. Technol. 1992, 26(3-4): 857~866
    121. D. C. Stuckey, P. L. McCarty. The effect of thermal pretreatment on the anaerobic biodegradability and toxiciy of waste activated sludge. Wat. Res. 1984, 18(11): 1343~1353
    122. U. Kepp, L. Machenbach, N. Welsz, et al. Enhanced stabilization of sewage sludge through thermal hydrolysis-three years of experience with full scale plant. Wat. Sci. Technol. 2000, 42(9): 89~96
    123.白晓慧.污泥厌氧消化反应器设计中不同形式的优劣比较.给水排水. 2000, 26(12): 32~34
    124.赵庆良,王宝贞,G·库格尔.高温/中温两相厌氧消化反应中有机酸的变化.环境科学. 1996,17(3):44~49
    125.国家环境保护局.水和废水监测分析方法.北京:中国环境科学出版社. 1989: 56~62
    126. E. Gonze, S. Pillot, E. Yallete, et al. Ultrasonic treatment of an aerobic activated sludge in a batch reactor. Chemical Engineering and Processing. 2003, 42(12): 965~975
    127.李欢,金宜英,张光明,等.污泥超声预处理的影响因素分析.中国给水排水. 2006, 22(3): 96~100
    128.王家玲.环境微生物学.北京:高等教育出版社. 2003: 67~70
    129.任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社. 2004, 309~311
    130. A. Tessier, P.G.C. Campbell, M. Bisson. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytic Chemistry. 1979,51:851~884
    131. M. Dubois, K.A. Gilles, J.K.Hamilton, et al. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28: 350~356
    132. O.H.Lowry, N.J. Rosebrough, A.L.Farr, et al. Protein Measurement with Folin Phenol Reagent. J. Biol. Chem. 1951, 193: 265~275
    133. J. Oles, N. Dichtl, H. Nihoff. Full sale experience of two stage thermophilic/ mesophilic sludge digestion. Proceedings of 8th International Conference on Anaerobic Digestion. 1997, (2): 224~231
    134.李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析.西南交通大学学报. 2001, 36(5): 518~522
    135. P. Buffiere, R. Moletta. Some hydrodynamic characteristics of inverse three phase fluidized bed reactors. Chem. Eng. Sci. 1999, 54(9): 1233~1242
    136.曹军,谭云飞,邢磊,等.污泥中重金属在厌氧消化前后的形态分布分析.河南化工. 2003, 6: 33~34
    137.沈晓南,谢经良,阚薇莉,等.厌氧消化后污泥中的重金属形态分布.中国给水排水. 2002, 18(11): 51~52
    138. H. M. Lo. Metals behaviors of MSWI bottom ash co-digested anaerobically with MSW. Resources, Conservation and Recycling. 2005, 43:263~280
    139. F. Czechowski, T. Marcinkowski. Sewage sludge stabilization with calcium hydroxide: effect on physicochemical properties and molecular composition. Wat. Res. 2006, 40(9): 1895~1905
    140.周立祥,沈其荣,陈同斌.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报. 2000, 20(3): 269~274
    141. G. A. Ekama, S. W. Sotemann, M. C. Wentzel. Biodegradability of activated sludge organics under anaerobic conditions. Wat. Res. 2007, 41: 244~252
    142. J.B. Copp, U. Jeppsson, C. Rosen. Towards an ASM1-ADM1 state variable interface for plant wide wastewater treatment modelling. In: Proceedings of the 76th Annual Water Environmenta Federation Conference and Exhibition, October 11~15, Los Angeles, USA
    143. D. Wild, H. Siegrist. The simulation of nutrient fluxes in wastewater treatment plants with EBPR. Wat. Res. 1999, 33(7): 1652~1662
    144. M. Kayhanian, D. Rich. Sludge management using the biodegradableorganic fraction of municipal solid waste as primary substrate. Wat. Environ. Res. 1996, 68: 240~252
    145. L. Masse, D. I. Masse, K. J. Kennedy. Effect of hydrolysis pretreatment on fat degradation during anaerobic digestion of slaughterhouse wastewater. Process Biochem. 2003, 38(9): 1365~1372
    146. M. Mosche, H. J. Jordening. Comparison of different models of substrate and product inhibition in anaerobic digestion. Wat. Res. 1999, 33(11): 2545~2554
    147. H. Bouallagui, M. Torrijos, J. J. Godon, et al. Two-phase anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochemical Engineering Journal. 2004, 21: 193~197
    148. I. I. I. Ghanem, G. Gu, J. Zhu. Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation. Renewable Energy. 2001, 23: 673~684
    149. J. T. Novak, H. Becker, A. Zurow. Factors influencing activated sludge properties. J. Environ. Eng. 1977, 103: 815~828
    150. N. Katsiris, A. Kouzeli-Katsiris. Bound water content of biological sludges in relation to filtration and dewatering. Wat. Res. 1987, 21: 1319~1327
    151. J. H. Bruss, J. R. Christensen, H. Rasmussen. Anaerobic storage of activated sludge: effects on conditioning and dewatering performance. Wat. Sci. Technol. 1993, 28: 350~357
    152. J. T. Novak, M. E. Sadler, S. N. Murthy. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Wat. Res. 2003, 37:3136~3144
    153. M. J. Murthy, J. T. Novak. Characterization of exocellular protein and its role in bioflocculation. J. Environ. Eng. 1997, 123: 479~485
    154. M. J. Murthy, J. T. Novak, R.D. Holbrook, et al. Mesophilic aeration of autothermal thermophilic aerobic digester (ATAD) biosolids to improve plant operation. Water Environ. Res. 2000, 72:476~483
    155. M. Kang, M. Kishimoto, S. Shioya, et al. Dewatering Characteristics of Activated Sludges and Effect of Extracellular Polymer. J. Ferment. Bioeng. 1989, 68 (2): 117~122
    156. J.I. Houghton, J. Quarmby, T. Stephenson. Municipal Wastewater SludgeDewaterability and the Presence of Microbial Extracellular Polymer. Water Sci. Technol. 2001, 44 (2–3): 373~379
    157. R. B. Brooks. Heat Treatment of Sewage Sludge. Water Pollut. Control. 1970, 69: 92~99
    158. E. Neyens, J. Baeyens, M. Weemaes, et al. Treatment of Sewage Sludge: the Economy of Using Advanced Sludge Treatment Methods for Sewage Sludge. In: Proceedings of CHISA (Prague). 2002, August 25~29. 40~41
    159. B.E. Christensen, T.H. Naper, K. Vollan, et al. Biofilm Removal by Low Concentration of Hydrogen Peroxide. Biofouling. 1990, 2: 165~175
    160. P. A. Vesilind, H. A. Davis. Using the CST device for characterizing sludge dewaterability. Water Sci. Technol. 1988, 20: 203~205
    161. R. Dewil, J. Baeyens, R. Goutvrind. The use of ultrasonics in the treatment of waste activated sludge. Chinese J. Chem. Eng. 2006, 14(1): 105~113
    162. E. Neyens, J. Baeyens, R. Dewil, et al. Advanced Sludge Treatment affects Extracellular Polymeric Substances to Improve Activated Sludge Dewatering. J. Hazard. Mat. 2004, 106B: 83~92
    163. D. Bolzonella, P. Pavan, P. Battistoni, et al. Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochemistry. 2005, 40: 1453~1460
    164. B. Nielsen, G. Petersen. Thermophilic anaerobic digestion and pasteurisation: Practical experience from Danish wastewater treatment plants. Wat. Sci. Technol. 2000, 42(9): 65~72
    165. D. Bolzonella, L. Innocenti, F. Cecchi. BNR wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Wat. Sci. Technol. 2002, 46(10): 199~208
    166. P. Fox, F. G. Pohland. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Wat. Environ. Res. 1994,
    66(5): 716~724
    167. R. Solera, L. I. Romero, D. Sales. The evolution of biomass in a two-phase anaerobic treatment process during start-up. Chem. Biochem. Eng. Q. 2002,
    16(1): 25~29
    168. P. Elefsiniotis, W. K. Oldham. Effect of HRT on acidogenic digestion of primary sludge. J. Environ. Eng. ASCE. 1994, 120: 645~660
    169. S. Ghosh, K. Buoy, L. Dressel, et al. Pilot- and full-scale two-phase anaerobic digestion of municipal sludge. Wat. Environ. Res. 1995, 67(2): 206~214
    170.王芬,季民.剩余污泥超声破解性能研究.农业环境科学学报. 2004, 23(3): 584~587
    171. T. S. Lafitte, C. F. Forster. The use of ultrasound andγ-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures. Bioresource Technology. 2002, 84: 113~118
    172. S. R. Mukherjee, A. D. Levine. Chemical solubilization of particulate organics as a pretreatment approach. Wat. Sci. Technol. 1992, 26(9~11): 2289~2292
    173. U. Baier. Thermal inactivation of plant seeds in sewage sludge. Wat. Sci. Technol. 1997, 36(11): 197~202
    174. G. Lehne, A. Muller, J. Schwedes. Mechanical disintegration of sewage sludge. Wat. Sci. Technol. 2001, 43(1):19~26
    175. Y. E. Yoo, N. Takenaka, H. Bandow, et al. Characteristics of volatile fatty acids degradation in aqueous solution by the action of ultrasound. Wat. Res. 1997, 31(6): 1532~1535
    176. Q. Wang, M. Kuninobu, K. Kakimoto, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresource Technology. 1999, 68: 309~313
    177. C. P. Chu, B. V. Chang, G. S. Liao, et al. Observations on changes in ultrasonically treated waste-activated sludge. Wat. Res. 2001, 35(4): 1038~1046
    178. Y. C. Chiu, C. N. Chang, J.G. Lin, et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Wat. Sci. Technol. 1997, 36(11):155~162
    179. C. Petries, M. Micolle, G. Merlin, et al. Ultrasound and Environment: Degradation of Phenol and Benzene Derivatives. Environ. Sci. & Technol., 1992, 26:1639~1641
    180. B. David, M. Lhote, V. Faure, et al. Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution. Wat.Res. 1998, 32(8): 2451~2461
    181. H. Inez, M. R. Hoffmann. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ. Sci. & Technol. 1997, 31(8): 2237~2243
    182. M. H. Entezari, P. Kruus, R. Otson. Effect of frequency on sonochemical reactions III: dissociation of carbon disulfide. Ultrasonics Sonochemistry. 1997, 4(1): 49~64
    183.杨虹,王芬,季民.超声与碱耦合作用破解剩余污泥的效能分析.环境污染治理技术与设备. 2006, (7): 78~81
    184. C. L. Rai, G. Struenkmann, J. Mueller, et al. Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry. Environ. Sci. Technol. 2004, 38(21): 5779~5785
    185. T. I. Onyche, O. Schlafer, H. Boomann. Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics. 2002, 40:31~35
    186.曹秀芹,陈珺,欧阳利,等.剩余污泥的超声处理试验研究.中国给水排水. 2003, 19(2): 65~69
    187. S. K. Bhattacharya, R. L. Madural, D. A. Walling, et al. Volatile solids reduction in two-phase and conventional anaerobic sludge digestion. Wat. Res. 1996, 30(5): 1041~1048
    188.贾传兴.有机垃圾两相厌氧消化中氮素转化特性的试验研究.重庆大学硕士学位论文. 2007: 4
    189. O. Ince, G. K. Anderson, B. Kasapgil. Control of organic loading rate using the specific methanogenic activity test during start-up of an anaerobic digestion system. Wat. Res. 1995, 29(1):349~355
    190. M. D. Balaguer, M. T. Vicent, J. M. Paris. A comparison of different support materials in anaerobic fluidized bed reactors for the treatment of vinasses. Environ. Technol. 1997, 18:539~544
    191. S. Michaud, N. Bernet, P. Buffiere, et al. Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Wat. Res. 2002, 36: 1385~1391
    192. J. Yin, X. J. Tan, N. Q. Ren, et al. Selection of extraction solvent for the measure of electron transport system (ETS) activity of activated sludge.Acta Science Circumstantiae. 2004, 24(3): 413~417
    193. N. Aoki, M. Kawase. Development of high performance thermophilic two-phase digestion process. Wat. Sci. Technol. 1991, 23: 1147~1156
    194.付胜涛,于水利,严晓菊,等.剩余活性污泥和厨余垃圾的混合中温厌氧消化.环境科学. 2006, 27(7): 1459~1463
    195.马溪平等.厌氧微生物学与污水处理.北京:化学工业出版社, 2005, 120~125
    196.韩云,李玉友,任勇翔,等.城市污水处理厂预热处理混合污泥的高温厌氧消化特性研究.环境科学学报,2007, 7(7): 1174~1180
    197.杨晓奕,蒋展鹏,毛鹏生.湿式氧化—两相厌氧消化处理剩余污泥.中国给水排水,2003,19(4):48~51
    198.张光明,张信芳,张盼月.城市污泥资源化技术进展.北京:化学工业出版社,2005
    199. A. W. Lawrence, P. L. McCarty. Kinetics of methane fermentation in anaerobic treatment. Journal of WPCF. 1969, 41: 1~7
    200. D. E. Contois. Kinetics of bacterial growth relationships between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 1959, 21: 40~50
    201. P. Grau, et al. Kinetics of multicomponent substrate removal by activated sludge. Wat. Res. 1975, 9: 637~642
    202. P. L. McCarty, F. E. Mosey. Modeling of anaerobic digestion processes (A discussion of concepts). Water Sci. Technol. 1991, 24(8): 17~33
    203. F. E. Mosey. Mathematical modeling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 1983, 15: 209~232
    204. S. G. Pavlostathis, E. Giraldo. Kinetics of anaerobic treatment. Water Sci. Technol. 1991, 24(8): 35~39
    205. N. H. Gavala, I. Angelidaki, B. K. Ahring. Kinetic and modeling of anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 2002, 81: 57~93
    206. H. W. Yen, D. E. Brune. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 2007, 98: 130~134
    207. O. N. Agdag, D. T. Spoza. Co-digestion of mixed industrial sludge withmunicipal solid wastes in anaerobic simulated landfilling bioreactors. J. Hazard. Mater. 2007, 140: 75~85
    208. R. Borja, A. Martin, E. Sanchez, et al. Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phase olive pomace (TPOP). Process Biochemistry. 2005, 40: 1841~1847
    209. C. Liu, X. Yuan, G. Zeng, et al. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 2008, 99: 882~888
    210. A. Del Borghi, A. Converti, E. Palazzi, et al. Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioprocess. Biosyst. Eng. 1999, 20(6): 553~560
    211. P. Sosnowski, A. Wieczorek, S. Ledakowicz. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid waste. Adv. Environ. Res. 2003, 7: 609~616
    212. X. Gomez, M. J. Cuetos, J. Cara, et al. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes. Conditions for mixing and evaluation of the organic loading rate. Renew. Energ. 2006, 31: 2017~2024

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700