辣椒疫霉菌诱导的辣椒CaRGA1和CaPOD基因的表达分析与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒(Capsicum annuum L.)是一种重要的蔬菜作物,具有极高的经济价值,在全世界范围内广泛栽培。然而,辣椒的病虫害却日益加重。尤其是以辣椒疫霉菌(Phytophthora capsici)引起的疫病(Phytophthora blight),现已成为制约辣椒产业化发展的主要因素之一。人们采取各种方法来防治疫病的发生,但是效果不明显,甚至造成农药残留物超标的严重后果。因此,利用分子生物技术开展抗病育种具有很重要的现实意义。本研究探讨了辣椒与P. capsici亲和与非亲和的互作防御机制,建立了辣椒的病毒诱导基因沉默(VIGS)优化体系,利用VIGS结合转基因技术对辣椒基因CaRGA1和CaPOD的功能在辣椒上进行了鉴定,并在此基础上利用第二代高通量测序技术对辣椒与不同亲和组合P. capsic i互作的转录组进行测序分析,旨在为以后的辣椒抗病育种提供理论依据。主要研究成果如下:
     1.探讨了辣椒与不同亲和组合辣椒P. capsici互作过程中的防御机制。主要包括:防御相关酶(β-1,3-葡聚糖酶和过氧化物酶)活性的测定以及防御相关基因(CABPR1、CABGLU和CAPO1)的表达模式分析。结果表明,不同亲和组合辣椒P. capsici中防御酶活性高低及变化趋势不一致;实时定量RT-PCR分析认为,不同亲和组合中防御相关基因的表达模式不同,叶片中的表达量明显高于根系中,非亲和组合中的表达也明显高于亲和组合。
     2.建立了辣椒的VIGS优化体系。在前人研究的基础上,以辣椒的八氢番茄红素脱氢酶基因CaPDS为阳性报告基因,构建了重组病毒沉默载体pTRV2-CaPDS;利用农杆菌注射法,对影响沉默效率的主要因素:不同品种(A5、A3和EC)、植株苗龄(两叶、四叶、六叶和八叶期)、接种浓度OD600(0.5、0.8、1.0、2.0和3.0)和培养温度(18、20、22、25和28℃)进行了分析,最终得到了适合辣椒的VIGS优化体系,为今后辣椒基因的高通量功能分析提供了技术支持。
     3.对辣椒CaRGA1和CaPOD基因进行了生物与非生物因素逆境胁迫下的表达模式分析。结果表明:在辣椒P. capsici侵染下,CaRGA1和CaPOD基因均被不同程度的诱导表达;在非生物因素胁迫处理下,CaRGA1受高盐、干旱和茉莉酸甲酯(MeJA)的诱导而上调表达,但其表达却受到水杨酸(SA)的抑制,说明CaRGA1基因可能参与了MeJA的信号转导途径;CaPOD基因参与了辣椒的抗盐与抗旱反应,另外,该基因可能也与SA和MeJA介导的信号转导途径有关。
     4.利用VIGS技术对辣椒基因CaRGA1和CaPOD的功能进行了初步鉴定。对获得的CaRGA1和CaPOD基因沉默辣椒植株进行观察,发现沉默植株与阴性对照植株之间并没有明显的表型差异,实时定量RT-PCR结果显示基因在沉默植株中的表达有不同程度的降低;对沉默植株进行离体叶片抗病性鉴定,分别于接种后第3d和第5d在CaPOD和CaRGA1沉默植株的离体叶片上出现坏死病斑,从而初步推断出这两个目的基因的沉默降低了辣椒对P. capsici的抗性反应。
     5.构建了CaRGA1基因的过量植物表达载体,通过农杆菌介导的遗传转化方法,最终获得了4株转基因辣椒植株。与阴性对照相比,CaRGA1转基因株系并没有发生表型上的变化;离体叶片接种辣椒P. capsici后,我们发现转基因株系叶片上的坏死病斑少于阴性对照植株,但是防御酶活性却明显高于对照植株活性,说明CaRGA1基因参与了辣椒与P. capsici的抗性反应过程;采用离体叶圆片法对转基因植株进行了抗盐性分析,结果表明:与转基因株系相比,阴性对照植株的叶圆片有失绿现象,有些甚至呈水渍状。叶片总叶绿素含量测定数据显示,转基因植株的叶绿素含量高于阴性对照,说明CaRGA1基因可能与辣椒的抗盐反应有关。
     6.构建了CaPOD基因的过量表达载体,通过农杆菌介导的遗传转化法转到辣椒植株中,最终获得了6株CaPOD基因过量表达的转基因植株。通过表型观察,我们发现转基因与阴性对照植株之间没有差异;抗性鉴定结果表明:CaPOD转基因植株对辣椒P. capsici的抗性增强,而且提高了植株的耐盐力。以上结果,不仅说明了CaPOD基因在辣椒抵抗P. capsici的过程中发挥正向的调节作用,还参与了辣椒应答高盐胁迫的反应。
     7.利用第二代高通量Illumina/Solexa测序技术,构建了辣椒与P. capsici亲和与非亲和互作的转录组数据库。测序共获得了101,641个Unigene,其中HX-9转录组有50,795个,PC转录组有50,846个;对所获得的Unigene进行功能注释,其中33,365个Unigene被注释到NR数据库,34,658个被注释到NT数据库,20,747个比对到Swiss-Prot数据库中,18,654、11,698和27,087个Unigene分别用于KEGG代谢途径分析、COG和GO分类;在两个转录组中共找到8,144个差异表达基因,HX-9转录组中上调表达的有6,497个,PC转录组中上调表达的有1,647个;利用半定量PCR的方法对筛选出的6个候选差异表达基因进行表达分析验证,分析结果与测序结果基本一致,证明我们建立的辣椒与P. capsici互作的转录组数据库可靠,为深入挖掘辣椒疫病抗性基因及其相关基因奠定了基础。
Pepper (Capsicum annuum L.), widely cultivated in the world, is an important vegetablecrop with high economic value, but it is prone to be damaged by diseases and insects,especially the phytophthora blight caused by Phytophthora capsici. Many chemicals wereused to control this disease but it might cause high pesticide reidues in the pepper productions.Therefore, the development of pepper resistant to P. capsici through molecular technique isan important and realistic approach. The objectives of this study were: to explore themechanism of compatible and incompatible interaction between the pepper plant and the P.capsici; to establish the optimized system of virus-induced gene silencing (VIGS) in pepper;to identify the function of CaRGA1and CaPOD genes in pepper through VIGS combinedwith transgenitic technology. Based on these results, pepper transcriptome was sequenced byusing the second generation of Illumina/Solexa high-throughput transcriptome sequencingtechnique, and to provide a theoretical basis for pepper disease-resistance breeding in thefuture. The main results of the study are as follows:
     1. The defense mechanism in the pepper plant and the different compatible interactionwith P. capsici was studied. The main conclusion: the defense-related enzymes (β-1,3-glucanase and peroxidase) activities were assayed and the expression pattern of thedefense-related genes (CABPR1, CABGLU and CAPO1) was analyzed. The results showedthat the defense-selated enzymes activities of pepper plants in the compatible and theincompatible interaction were different, and the change trend of defense-related enzymeactivities is not consistent. Real-time quantitative PCR results indicated that the expressionpattern of defense-related genes in the compatible interaction were different from the other.However, theexperession level of these genes in leaves was higher than that in roots, and alsothe expression level in the incompatible interaction was higher than that in compatiblecombination.
     2. The optimized system of virus induced gene silencing (VIGS) in pepper wasestablished. Based on the results of previous studies, the CaPDS gene was used as positivereport gene, construsting virus silencing vector pTRV2-CaPDS, to test the main factorsaffecting the efficiency of VIGS. The different varieties (A5, A3and EC), the different plant ages (two-, four-, six-and eight-true leaf stage), the OD600value of Agrobacteriumconcentration (0.5,0.8,1.0,2.0and3.0) and the culture temperature (18,20,22,25and28℃)were optimized. The establishment of an optimized system of VIGS for pepper might providetechnical support for high-throughput functional analysis of genes in pepper in the future.
     3. The expression patterns of genes CaRGA1and CaPOD induced by several biotic andabiotic stresses was analyzed. The results showed that the CaRGA1and CaPOD genes wereinduced at different expression levels by the P. capsici infection. Under the abiotic stresstreatment, the expression of gene CaRGA1was induced by high salt, drought and methyljasmonate (MeJA), but not significantly induced by salicylic acid (SA) stress, whichindicating that CaRGA1gene may be involved in the MeJA signal transduction pathway. TheCaPOD gene was involved in the resistance to salt and drought stress, and might be involvedin SA and MeJA mediated signal transduction pathway.
     4. The function of genes CaRGA1and CaPOD were identified by using VIGStechnology. The pepper plants with silenced CaRGA1and CaPOD genes were created. Therewere no clear phenotypic differences between the silenced plants and the negative controlplants. Real-time quantitative RT-PCR results showed that the gene expression leveldecreased up to some degree in silenced plants. The disease resistance of CaRGA1andCaPOD were detected through the detached-leaf method in the silenced plants. At the thirdday after inoculation, the necrotic lesion occurred in the leaves of CaPOD-silenced plants.But the necrotic lesion in the leaves of CaRGA1-silenced plants occurred at the fifth day, laterthan that in the leaves of CaPOD-silenced plants. So it was concluded that the CaRGA1andCaPOD gene silenced have decreased the pepper resistance to phytophthora blight.
     5. The plant over-expression vector of CaRGA1gene was constructed and transformedthrough the Agrobacterium-mediated genetic transformation method, of4transgenic pepperplants were obtained. Compared to the negative control, the CaRGA1transgenic line does nothave any phenotype change in the plant. In detached leaves inoculation of P. capsici, it wasfound that there were less necrotic lesions on the transgenic leaves than that on the leaves ofcontrol plants. However, the defense-related enzymes (β-1,3-glucanase and peroxidase)activities in transgenic plants were significantly higher than the control plants. These resultssuggested that the CaRGA1gene was involved in the pepper resistance response to the P.capsici infection. In addition, the salt tolerance was analyzed by using the leaf discs methodin the transgenic and the control pepper plants. It was showed that the leaf discs from controlplants turned yellow, some with chlorosis phenomenon, some even a water-soaked, while theleaf discs from transgenic plants were still green. The chlorophyll content of transgenic plants was higher than that of controls, which indicating that CaRGA1gene may be related with thepepper salt tolerance reaction.
     6. The over-expression vector of CaPOD gene was constructed, and transformed to thepepper B12by Agrobacterium-mediated genetic transformation method. We have obtained6CaPOD over-expressed transgenic plants. There was no phenotypic difference between thetransgenic plants and the negative controls. The results of detached leaves resistanceidentification showed that the CaPOD transgenic plants increased resistance to P. capsiciinfection and improved the salt tolerance. In conclusion, the above results indicated that theCaPOD gene might not only play positive role in regulating the pepper plant resistanceresponse to P. capsici, but also participated in response to high salt stress.
     7. The compatible and the incompatible transcriptome databases were sequenced by thesecond generation of Illumina/Solexa high-throughput sequencing technology. A total of101,641Unigenes was acquired after transcriptome sequencing, among of which were50,795and50,846Unigenes in HX-9and PC transcriptome database, respectively. Functionalannotation of the obtained Unigenes,33,365Unigenes were annotated to the NR database,34,658were annotated to the NT database,20,747compared to the Swiss-Prot database,18,654,11,698and27,087Unigenes were annotated to the KEGG metabolic pathways, COGand GO classification, respectively. There were8,144differentially expressed genes in thecompatible and incompatible transcriptome,6,497genes were up-regulated expression in theHX-9transcriptome, and1,647genes were up-regulation expressed in the PC transcriptome.Six differentially expressed genes from the compatible and incompatible transcriptomedatabases were selected and their expression patterns in response to P. capsici inoculationwere analyzed using the semi-quantitative PCR method. According to the results from PCRand sequencing results, it was indicted that the pepper transcriptome database about thepepper plant and P. capsici with different compatible interactions is confirmed, and whichmight support the further study of genes related to phytophthora blight resistance in pepperplant.
引文
包良帅,巩振辉,柴贵贤,李大伟.2011.辣椒烟酰胺腺嘌呤二核苷酸磷酸基因(NADPH)在辣椒中的遗传转化及其抗病性鉴定.农业生物技术学报,19(1):45-50
    包良帅,巩振辉,李大伟,黄炜,逯明辉,陈儒钢.2010.辣椒ML基因植物表达载体的构建及其转化.西北植物学报,30(5):901-904
    包良帅.2010.辣椒疫病抗性相关基因CanNADPH和CanML的遗传转化及抗病性分析.[硕士学位论文].陕西杨凌:西北农林科技大学
    曹亚从.2012.辣椒离体再生及遗传转化研究.[硕士学位论文].北京:中国农业科学院
    陈儒钢.2006.番茄和辣椒抗根结线虫基因的克隆与鉴定.[博士学位论文].湖北武汉:华中农业大学
    段玉娟.2012.辣椒POD基因RNAi载体的构建及遗传转化研究.[硕士学位论文].吉林长春:吉林大学
    冯宝珍.2011.辣椒疫霉(Phytophthora capsici)诱导坏死蛋白基因克隆及功能研究.[博士学位论文].山东泰安:山东农业大学
    付丽.2009.辣椒疫霉(Phytophthora capsici)10个果胶裂解酶基因克隆及pcpel1的功能研究.[硕士学位论文].山东泰安:山东农业大学
    傅达奇.2005.番茄中病毒诱导基因沉默体系的建立及LeEIN2基因功能分析.[博士学位论文].北京:中国农业大学
    高玉尧,陈长明,陈国菊,曹必好,雷建军.2012. Cry2Aa2和PamPAP双价表达载体的构建及其对辣椒的遗传转化.园艺学报,39(7):1285-1292
    贺俐.2008.辣椒应答疫霉菌的转录谱分析及相关候选抗病基因的cDNA分离.[硕士学位论文].福建福州:福建农林大学
    贾庆利.2012.辣椒与黄瓜抗疫病相关基因克隆及分析.[博士学位论文].陕西杨凌:西北农林科技大学
    蒋兰君.2012.辣椒疫霉菌复壮与保存及生长特性研究.[硕士学位论文].陕西杨凌:西北农林科技大学
    来航线,杨保伟,邱学礼,薛泉宏.2004.9株芽孢杆菌的初步分离鉴定与拮抗性试验.西北农林科技大学学报(自然科学版),32:93-96
    黎定军.2000.辣椒高效离体再生与遗传转化体系建立及抗病转基因研究.[博士学位论文].湖南长沙:湖南农业大学
    李立凤.2010.辣椒疫病病原菌鉴定及抗源筛选.[硕士学位论文].黑龙江哈尔滨:东北农业大学
    李智军,龙卫平,郑锦荣,雷建军,张衍荣,李春艳.2008.2个辣椒疫病抗性资源的抗性遗传分析.华南农业大学学报,4:30-33
    刘珂珂.2009.辣椒对疫病的抗性及其机理研究.[博士学位论文].陕西杨凌:西北农林科技大学
    吕和平,刘永刚,杜蕙,王克兰.2001.辣椒疫病综合治理技术及应用.植物保护,27:21-23
    马维.2007.辣椒疫病抗性相关基因的克隆与分析.[硕士学位论文].陕西杨凌:西北农林科技大学
    茆振川,谢丙炎,杨宇红,冯东昕,冯兰香,杨之为.2007.辣椒N基因介导抗根结线虫作用早期表达基因的抑制性消减杂交SSH分析.园艺学报,34:629-636
    裴冬丽.2011.番茄白粉病抗性反应关键基因的鉴定及功能验证.[博士学位论文].河南郑州:河南农业大学
    王兴娥,巩振辉,李大伟,陈儒钢,逯明辉,黄炜.2009.冷诱导基因C-重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析.农业生物技术学报,17(5):830-835
    王永成.2008.辣椒疫病抗性相关基因的克隆与分析.[硕士学位论文].陕西杨凌:西北农林科技大学
    杨学辉.2004.贵州辣椒疫病研究.[硕士学位论文].重庆:西南农业大学
    易图永,谢丙炎,张宝玺,杨宇红,高必达.2007.辣椒抗疫病性状遗传及其相关AFLP标记分析.农业生物技术学报,15(5):847-854
    易图永.2003.辣椒抗疫病相关基因的分析及QTL定位.[博士学位论文].湖南长沙:湖南农业大学
    张春秋.2010.辣椒Me3基因介导抗根结线虫WRKY基因CaRKNIF1的分离及其功能分析.[博士学位论文].北京:中国农业科学院
    张穗,肖培英,温广月,曹黎明.2007.氟铃脲对水稻纹枯病毒的毒力和作用机制.植物保护学报,34:187-90
    张莹丽,巩振辉,李大伟,黄炜,逯明辉,陈儒钢.2009.陕西辣椒疫病病原鉴定及其防治剂的室内筛选.西北农业学报,18(5):336-340
    Aarrouf J., Castro-Quezada P., Mallard S., Caromel B., Lizzi Y., Lefebvre V.2011. Agrobacteriumrhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicumannuum): a new and efficient tool for functional analysis of genes. Plant Cell Reports,1-11
    Abad P., Favery B., Rosso M.N., Castagnone-Sereno P.2003. Root-knot nematode parasitism and hostresponse: molecular basis of a sophisticated interaction. Molecular Plant Pathology,4(4):217-224
    Ahl Goy P., Felix G., Matraux J.P., Meins F.J.R1992. Resistance to disease in the hybrid Nicotianaglutinosa×Nicotiana clebney is associated with high constitutive levels of β-l,3-glucanase, chitinase,peroxidase and polyphenoloxidase. Physiological and Molecular Plant Pathology,41:11-21
    Ali M., Brian A.W., Kenneth M. Schaeffer L., Wold B.2008. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nature Methods,5:621-628
    Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Ros Barceló A., Pedreno M.A.2009. Class IIIperoxidases in plant defence reactions. Journal of Experimental Botany,60:377-390
    An S.H., Sohn K.H., Choi H.W., Hwang I.S., Lee S.C., Hwang B.K.2008. Pepper pectin methylesteraseinhibitor protein CaPMEI1is required for antifungal activity, basal disease resistance and abioticstress tolerance. Planta,228:61-78
    André C. Velásquez, Suma Chakravarthy, Gregory B. Martin.2009. Virus-induced gene silencing (VIGS)in Nicotiana benthamiana and tomato. Journal of Visualized Experiments,28:1292
    Ayliffe M.A., Frost D.V., Finnegan E.J., Lawrence G.J., Anderson P.A., Ellis J.G.1999. Analysis ofalternative transcripts of the flax L6rust resistance gene. Plant Journal,17:287-292
    Bachem C.W., van der Hoeven R.S., de Bruijn S.M., Vreugdenhil D., Zabeau M., Visser R.G.1996.Visualizaiton of differential gene expression using a novel method of RNA fingerprinting based onAFLP: Analysis of gene expression during potato tuber development. Plant Journal,9(5):745-753
    Bae E.K., Lee H., Lee J.S., Noh E.W., Jo J.2006. Molecular cloning of a peroxidase gene from poplar andits expression in response to stress. Tree Physiology,26:1405-1412
    Bae H., Roberts D.P., Lim H.S., Strem M.D., Park S.C., Ryu C.M., Melnick R.L., Bailey B.A.2011.Endophytic trichoderma isolates from tropical environments delay disease onset and induce resistanceagainst Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-MicrobeInteractions,24:336-351
    Bartual R., Lacasa A., Marsal J.I., Tello J.C.1994. Epistasis in the resistance of pepper to phytophthorastem blight (Phytophthora capsici L.) and its significance in the prediction of double crossperformances. Euphytica,72:149-152
    Becker A. and Lange M.2010. VIGS-genomics goes functional. Trends in Plant Science,15:1-4
    Beffa R., Martin H.V., Pilet P.E.1990. In vitro oxidation of indoleacetic acid by soluble auxin-oxidasesand peroxidases from maize roots. Plant Physiology,94:485-491
    Benedito V.A., Visser P.B., Angenent G.C., Krens F.A.2004. The potential of virus-induced gene sileneingfor speeding up functional charaeterization of plant genes. Genetics and Molecular Research,3:323-341
    Bennypaul H.S., Mutti J.S., Rustgi S., Kumar N., Okubara P.A., Gill K.S.2011. Virus-induced genesilencing (VIGS) of genes expressed in root, leaf and meiotic tissues of wheat. Functional&Integrative Genomics,12:143-156
    Bent A.F.1996. Plant Disease Resistance Genes: Function meets structure. Plant Cell,8:1757-1771
    Bhattarai K.K, Li Q., Liu Y., Dinesh-Kumar S.P., Kaloshian I.2007. The MI-1-mediated pest resistancerequires Hsp90and Sgt1. Plant Physiology,144:312-323
    Bhattarai K.K., Atamian H.S., Kaloshian I., Eulem T.2010. WRKY72-type transcription factors contributeto basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by thetomato R gene Mi-1. Plant Journal,63:229-240
    Bird D.M. and Koltai H.2000. Plant parasitic nematodes: habitats, hormones, and horizontally acquiredgenes. Plant Growth Regulation,19:183-194
    Bradeen J.M., Iorizzo M., Mollov D.S., Raasch J., Kramer L.C., Millett B.P., Austin-Phillips S., Jiang J.,Carputo D.2009. Higher copy numbers of the potato RB transgene correspond to enhanced transcriptand late blight resistance levels. Molecular Plant-Microbe Interactions,22:437-446
    Brigneti G., Martin-Hernandez A.M., Jin H.L., Chen J., Baulcombe D.C., Baker B., Jones J.D.G.2004.Virus-induced gene silencing in solanum species. Plant Journal,39:264-272
    Burch-Smith T.M., Anderson J.C., Martin G.B., Dinesh-Kumar S.P.2004. Applications and advantages ofvirus-induced gene silencing for gene function studies in plants. Plant Journal,39:734-746
    Burch-Smith T.M., Schiff M., Liu Y., Dinesh-Kumar S.P.2006. Efficient virus-induced gene silencing inArabidopsis. Plant Physiology,142:21-27
    Cai X., Wang C., Xu Y., Xu Q., Zheng Z., Zhou X.2007. Efficient gene silencing induction in tomato by aviral satellite DNA vector. Virus Research,125:169-175
    Cal A.J., Liu D., Mauleon R., Hsing Y.C., Serraj R.2013. Transcriptome profiling of leaf elongation zoneunder drought in contrasting rice cultivars. PLoS ONE,8(1): e54537. doi:10.1371/journal.pone.0054537
    Cannon S.B., Zhu H., Baumgarten A.M., Spangler R., May G., Cook D.R, Young N.D.2002. Diversity,distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistancegene subfamilies. Journal of molecular evolution,54:548-562
    Cao Y.L., Ding X.H., Cai M., Zhao J., Lin Y.J., Li X.H., Xu C.G., Wang S.P.2007. Expression pattern of arice disease resistance gene Xa3/Xa26is differentially regulated by the genetic backgrounds anddevelopmental stages that influence its function. Genetics,177:523-533
    Chen C.W., Yang Y.W., Lur H.S., Tsai Y.G., Chang M.C.2006. A novel function of abscisic acid in theregulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiology,47:1-13
    Chen J.C., Jiang C.Z., Gookin T., Hunter D., Clark D., Reid M.2004. Chalcone synthase as a reporter invirus-induced gene silencing studies of flower senescence. Plant Molecular Biology,55:521-530
    Chen R., Li H., Zhang L., Zhang J., Xiao J., Ye Z.2007. CaMi, a root-knot nematode resistance gene fromhot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Reports,26(7):895-905
    Chmielowska J., Veloso J., Gutierrez J., Silvar C., Diaz J.2010. Cross-protection of pepper plants stressedby copper against a vascular pathogen is accompanied by the induction of a defence response. PlantScience,178:176-182
    Cho S.K., Chung H.S., Ryu M.Y., Park M.J., Lee M.M., Bahk Y.Y., Kim J., Pai H.S., Kim W.T.2006.Heterologous expression and molecular and cellular characterization of CaPUB1encoding a hotPepper U-Box E3ubiquitin ligase homolog. Plant Physiology,142:1664-1682
    Choi D.S. and Hwang B.K.2011. Proteomics and functional analyses of pepper abscisic acid-responsive1(ABR1), which is involved in cell death and defense signaling. Plant Cell,23:823-842
    Choi H.W., Kim Y.J., Lee S.C., Hong J.K., Hwang B.K.2007. Hydrogen peroxide generation by the pepperextracellular peroxidase CaPO2activates local and systemic cell death and defense response tobacterial pathogens. Plant Physiology,145:890-904
    Chung E., Seong E., Kim Y.C., Chung E.J., Oh S.K., Lee S., Park J.M., Joung Y.H., Choi D.2004. Amethod of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv.Bukang). Molecules and Cells.,17:377-380
    Clerjeau M., Laterrot H., Lecoq H.1981. Current trend in breeding disease-resistant varieties of vegetablecrop. Agronomy,1:41-48
    Cloutier S., McCallum B.D., Loutre C. Banks T.W., Wicker T., Feuillet C., Keller B., Jordan M.C.2007.Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of thelarge psr567gene family. Plant Molecular Biology,65:93-106
    Conrath U., Thulke O., Katz V., Schwindling S., Kohler A.2001. Priming as a mechanism in inducedsystemic resistance of plants. European Journal of Plant Pathology,107:113-119
    Cristinzio G., Zema V., Errico A., Aguilar-Cordova E.1992. Introduction of resistance genes toPhytophthora capsici into cultivar of Capsicum annuum ‘Friariello’.on Capsicum and Eggplant.Genetic Breeding,92:189-193
    Dangl J.L. and Jones J.D.2001. Plant pathogens and integrated defence responses to infection. Nature,411:826-833
    Davidson C.R., Carroll R.B., Evans T.A., Mulrooney R.P.2002. First report of Phytophthora capsiciinfecting lima bean (Phaseolus lunatus) in the Mid-Atlantic Region. Plant Disease,86:1049
    Dayakar B.V., Lin H.J., Chen C., Ger M.J., Lee B.H., Pai C.H., Chow D., Huang H.E., Hwang S.Y., ChungM.C.2003. Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin (pss)-mediatedhypersensitive response shows an enhanced production of active oxygen species (AOS). PlantMolecular Biology,51(6):913-924
    Delis M., Garbaczewska G., Niemirowicz-Szczytt K.2005. Differentiation of adventitious buds fromCapsicum annuum L. hypocotyls after co-culture. Acta Biologica Cracoviensia Series Botanica,47(1):193-198
    Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K.,Gurskaya N., Sverdlov E.D., Siebert P.D.1996. Suppression subtractive hybridization: A method forgenerating differentially regulated or tissue-specific cDNA probes and libraries. National AcadSciences,93:6025-6030
    Dinesh-Kumar S.P., Anandalakshmi R., Marathe R., Schiff M., Liu Y.2003. Virus-induced gene silencingin plants. Methods in Molecular Biology,236:287-294
    Ding X.S., Schneider W.L., Chaluvadi S.R., Rouf Mian M.A., Nelson R.S.2006. Characterization of abrome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.Molecular Plant-Microbe Interactions,19:1229-1239
    Delledone M., Murgia M.I., Ederle D., bicego P.F., Biondani A., Polverari A., Lamb C.2002. Reactiveoxygen intermediates modulates nitric oxide signaling in the hypersensitive disease-resistanceresponse. Plant Physiology and Biochemistry,40:605-610
    Deng X.B., Elomaa P., Nguyen C.X., Hytonen T., Valkonen J.P.T., Teeri T.H.2012. Virus-induced genesilencing for Asteraceae-a reverse genetics approach for functional genomics in Gerbera hybrida.Plant Biotechnology Journal, pp.1-9
    Do H.M., Hong J.K., Jung H.W., Kim S.H., Ham J.H., Hwang B.K.2003. Expression of peroxidase-likegenes, H2O2production, and peroxidase activity during the hypersensitive response to Xanthomonascampestris pv. vesicatoria in Capsicum annuum. Molecular Plant-Microbe Interactions,16:196-205
    Dong X., Mindrinos M., Davis K.R., Ausubel F.M.1991. Induction of Arabidopsis Defence genes byvirulent and avirulent Pseudomonas syringae strain and by a cloned avirulence gene. Plant Cell,3:61-72
    Dasgupta B. and Chitreshwar S.1999. Assessment of phytophthora root rot of betelvine and itsmanagement using chemicals. Journal of Mycology and Plant Pathology,29:91-95
    Egea C., Ahmed A.S., Candela M., Candela M.E.2001. Elicitation of peroxidase activity and ligninbiosynthesis in pepper suspension cells by Phytophthora capsici. Journal of Plant Physiology,158:151-158
    Ekengren S.K., Liu Y., Schiff M., Dinesh-Kumar S.P., Martin G.B.2003. Two MAPK cascades, NPR1andTGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant Journal,36(6):905-917
    Ellegren H.2008. Sequencing goes454and takes large-scale genomics into the wild. Molecular Ecology,17(7):1629-1631
    Elling A.A. and Deng X.W.2009. Next-generation sequencing reveals complex relationships between theepigenome and transcriptome in maize. Plant signaling&behavior,4(8):760-762
    Ernst K., Kumar A., Kriseleit D., Kloos D.U., Phillips M.S., Ganal M.W.2002. The broad-spectrum potatocyst nematode resistance gene (Hero) from tomato is the only member of a large gene family ofNBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant Journal,31(2):127-136
    Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., Wong W.K., Mockler T.C.2010.Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research,20(1):45-58
    Flor H.H.1942. Inheritance of pathogenicity in a cross between physiological races22and24ofMelampsora lini. Phytopathology,32:5
    Fu D.Q., Zhu B.Z., Zhu H.L., Jiang W.B., Luo Y.B.2005. Virus induced gene silencing in tomato fruit.Plant Journal,43:299-308
    Gao X., Wheeler T., Li Z., Kenerley C.M., He P., Shan L.2011. Silencing GhNDR1and GhMKK2compromises cotton resistance to Verticillium wilt. Plant Journal,66:293-305
    Gayoso C., Pomar F., Merino F., Bernal M.A.2004. Oxidative metabolism and phenolic compounds inCapsicum annuum L. var. annuum infected by Phytophthora capsici Leon. Scientia Horticiculturae,102:1-13
    Ghazala W. and Varrelmann M.2007. Tobacco rattle virus29K movement protein is the elicitor of extremeand hypersensitive-like resistance in two cultivars of Solanum tuberosum. Molecular Plant-MicrobeInteractions,20:1396-1405
    Govindappa M., Lokesh S., Rai V.R., Naik V.R., Raju S.G.2010. Induction of systemic resistance andmanagement of safflower Macrophomina phaseolina root rot disease by biocontrol agents. Archives ofPhytopathology and Plant Protection,43:26-40
    Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L.,Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., Palma F., BirrenB.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A.2011. Full-length transcriptomeassembly from RNA-Seq data without a reference genome. Nature Biotechnology,29:644-652.doi:10.1038/nbt.1883
    Graham M.Y. and Graham T.L.1991. Rapid accutnulation of anionic peroxidases and phenolic polymers insoybean cotyledon tissues following treatment with Phytophthiira megasperma f. sp. ghcinea wallglucan. Plant Physiology,97:1445-1455
    Gu K.Y., Yang B., Tian D.S., Wu L.F., Wang D.J., Sreekala C., Yang F., Chu Z.Q., Wang G.L., White F.F.,Yin Z.C.2005. R gene expression induced by a type-III effector triggers disease resistance in rice.Nature,435:1122-1125
    Guerrero M.A. and Laborde J.A.1980. Current status of pepper breeding for resistance to Phytophthoracapsici in Mexico. Synopses of the Ⅳth Meeting of the Capsicum Working Group of Eucarpia.Wageningen, The Netherlands:52-56
    Guevara-Olvera L., M.L. Ruiz-Nito, Range-Cano, R.M., Torres-Pacheco I., Rivera-Bustamante R.F.,Mu oz-Sánchez C.I., González-Chavira M.M., Cruz-Hernandez A., Guevara-González R.G.2012.Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper (Capsicumchinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiological andMolecular Plant Pathology,78:45-50
    Gutierrez N., Gimenez M.J., Torres A.M., Atienza S.G., Avila C.M., Palomino C.2012. Up-regulation ofresistance gene analogs (RGA) in chickpea in the early response to Fusarium wilt. Euphytica,186:793-804
    Hajirezaei M.R., Peisker M., Tschiersch H., Palatnik J.F., Valle E.M., Carrillo N, Sonnewald U.2002.Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead toimpaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant Journal,29:281-293
    Hamilton A.J. and Baulcombe D.C.1999. A Species of Small Antisense RNA in Posttranscriptional GeneSilencing in Plants. Science,286(5441):950-952
    Hartman G.L. and Wang F.G.1992. Phytophthora blight of pepper: screening for disease resistance.Tropical Pest Management,38:319-322
    Hasnat R., Abbasi N., Hafiz I., Ahmad T., Chudhary Z.2008. Effect of different bacterial dilutions ontransformation efficiency of hot chilli (Capsicum Frutescens L.) varieties. Pakistan Journal of Botany,40(6):2655-2662
    He X.X,, Jin C.W., Li G.X., You G.Y., Zhou X.P., Zheng S.J.2008. Use of the modified viral satellite DNAvector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelatereductase gene, FRO1, as an example. Science in China Series C: Life Science,51:402-409
    Hilaire E., Young S.A., Willard L.H., McGee J.D., Sweat T.J., Chittoor M., Guikema J.A., Leach J.E.2001.Vascular defense responses in rice: Peroxidase accumulation in xylem parenchyma cells and xylemwall thickening. Molecular Plant-Microbe Interactions,14:1411-1419
    Hiraga S. and Yamamoto K.2000. Diverse expression profiles of21rice peroxidase genes. FEBS Letters,471:245-250
    Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H.2001. A large family of class III plant peroxidases. Plantand Cell Physiology,42:462-468
    Ho W.J. and Byung K.H.2002. Pepper gene encoding a basic β–1,3-glucanase is differentially expressedin pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment. Plant Science,156(2159):23-34
    Holzberg S., Brosio P., Gross C., Pogue G.P.2002. Barley stripe mosaic virus-induced gene silencing in amonocot plant. Plant Journal,30:315-327
    Huang C., Qian Y., Li Z., Zhou X.2012. Virus-induced gene silencing and its application in plantfunctional genomics. Science China Life Sciences,55(2):99-108
    Huang J.S. and Knopp J.A.1998. Involvement of nitric oxide in Ralstonia solanacearum-inducedhypersensitive reaction in tobacco. In: Prior, P., Allen C. Elphinstone J.(eds.), Bacterial Wilt Disease:Molecular and Ecological Aspects. INRA and Springer Editions, Berlin, Germany, pp.218-224
    Huang S., van der vossen E.A.G., Kuang H., Vleechouwers V.G.A.A., Zhang N., Borm T.J.A., van Eck H.J.,Baker B., Jacobsen E., Visser R.G.F.2005. Comparative genomics enabled the isolation of the R3a lateblight resistance gene in potato. Plant Journal,42:251-261
    Hubank M. and Schatz D.G.1994. Identifying differences in mRNA expression by representationaldifference analysis of cDNA. Nucleic Acids Research,20:4965
    Hulbert S.H., Webb C.A., Smith S.M., Sun Q.2001. Resistance gene complexes: evolution and utilization.Annual Review of Phytopathology,39:85-312
    Hwang B.K., Kim C.H.1995. Phytophthora blight of pepper and its control in Korea. Plant Disease,79:221-228
    Hwang E.W., Kim K.A., Park S.C., Jeong M.J., Byun M.O., Kwon H.B.2005. Expression profiles of hotpepper (Capsicum annuum) genes under cold stress conditions. Journal of Biosciences,30(5):657-667
    Hwang I.S. and Hwang B.K.2010. Role of the pepper cytochrome P450gene CaCYP450A in defenseresponses against microbial pathogens. Planta,232:1409-1421
    Iorizzo M., Senalik D.A., Grzebelus D., Bowman M., Cavagnaro P.F., Matvienko M., Ashrafi H., DeynzeA.V., Simon P.W.2011. De novo assembly and characterization of the carrot transcriptome revealsnovel genes, new markers, and genetic diversity. BMC Genomics,12:389
    Ithal N., Recknor J., Nettleton D., Maier T., Baum T.J., Mitchum M.G.2007. Developmental transcriptprofiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions,20:510-525
    Ito H., Hiraga S., Tsugawa H., Matsui H., Honma M., Otsuki Y., Murakami T., Ohashi Y.2000.Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. PlantScience,155:85-100
    Jebakumar R.S., Anandaraj M., Sarma Y.R.2002. Induction of PR-proteins and defense related enzymes inblack pepper due to inoculation with Phytophthora capsici. Phytopathology,54:23-28
    Jeum K.H. and Byung K.H.2002. Induction by pathogen, salt and drought of a basic class II chitinasemRNA and its in situ localization in pepper (Capsicum annuum). Physiologia Plantarum,114:549-558
    Jia Y., McAdams S.A., Bryan G.T., Hershey H.P., Valent B.2000. Direct interaction of resistance gene andavirulence gene products confers rice blast resistance. EMBO Journal,19:4004-4014
    Johal G.S. and Briggs S.P.1992. Reductase activity encoded by the HM1disease resistance gene in maize.Science,258:985-987
    Joosten M.H. and De Wit P.J.1989. Identification of several pathogenesis-related proteins in tomato leavesinoculated with Cladosporium fulvum (syn. Fulvia fulva) as1,3-β-glucanases and chirinases. PlantPhysiology,89:945-951
    Julia C.M., Celeste C.L., Alistair T., Shaun L., Adéle McLeod.2010. Phytophthora capsici on vegetablehosts in South Africa: distribution, host range and genetic diversity, Australasian Plant Pathology,39(5):431-439
    Jung H.W. and Hwang B.K.2000. Isolation, partial sequencing, and expression of pathogenesis-relatedcDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. MolecularPlant-Microbe Interactions,13:136-142
    Kauffmann S., Legrand M., Geoffroy P., Fritig B.1987. Biological function of pathogenesis-relatedproteins: four PR proteins of tobacco have β-1,3-glucanase activity. EMBO Journal,6:3209-3212
    Kenji M., Mizuyoshi S.,Toshiharu H., Tadahiko K.1996. Bell pepper fruit fatty acid hydroperoxide lyase isa cytochrome P450(CYP74B). FEBS Letters,394:21-24
    Kim B.S. and Hur J.M.1990. Inheritance of resistance to bacterial spot and Phytophthora blight in peppers.Journal of Korea Society for Horticultural Science,31:350-357
    Kim D. and Park H.1999. Field performance of a new fungieide ethaboxagainst cucumber downy milder,potato late blight and pepper Phytophthora blight in Korea. Plant Pathology Journal,15:48-52
    Kim D.S. and Hwang B.K.2012. The pepper MLO gene, CaMLO2, is involved in the susceptibilitycell-death response and bacterial and oomycete proliferation. Plant Journal,72(5):843-855
    Kim H.J., Nahm S.H., Lee H.R., Yoon G.B., Kim K.T., Kang B.C., Choi D., Kweon O.Y., Cho M.C.,Kwon J.K., Han J.H., Kim J.H., Park M.K., Ahn J.H., Choi S.H., Her N.N., Sung J.H., Kim B.D.2008.BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper(Capsicum annuum L.). Theoretical and Applied Genetics,118:15-27
    Kim K.J., Park C.J., An J.M., Ham B.K., Lee B.J., Paek K.H.2005. CaAlaAT1catalyzes the alanine:2-oxoglutarate aminotransferase reaction during the resistance response against Tobacco mosaic virusin hot pepper. Planta,221:857-867
    Kim K.Y., Kwon H.K., Kwon S.Y., Lee H.S., Hur Y., Bang J.W., Choi K.S., Kwak S.S.2000. Differentialexpression of four sweet potato peroxidase genes in response to abscisic acid and ethephon.Phytochemistry,54:19-22
    Kim S., Kim S., An C., Hong Y., Lee K.2001. Constitutive expression of rice MADS box gene using seedexplants in hot pepper (Capsicum annuum L.). Molecules and cells,12(2):221-226
    Kim S., Lee S., Kim B., Paek K.1997. Satellite-RNA-mediated resistance to cucumber mosaic virus intransgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Reports,16(12):825-830
    Kim S.S., Choi S.Y., Park J.H., Lee D.J.2004. Regulation of the activity of Korean radish cationicperoxidase promoter during dedifferentiation and differentiation. Plant Physiology and Biochemistry,42:763-772
    Kim Y.G., Hwang B.K., Park K.W.1989. Expression of age-related resistance in pepper plants infected withPhytophthora capsici. Plant Disease,73:745-747
    Kim Y.H., Kim C.Y., Song W.K., Park D.S., Kwon S.Y., Lee H.S., Bang J.B., Kwak S.S.2008.Overexpression of sweetpotato swpa4peroxidase results in increased hydrogen peroxide productionand enhances stress tolerance in tobacco. Planta,227:867-881
    Kim Y.J. and Hwang B.K.1994. Differential accumulation of β-1-3-glucanase and chitinase isoforms inpepper stems infected by compatible and incompatible isolates of Phytophthoracapsici. Physiologicaland Molecular Plant Pathology,45:195-209
    Kim Y.S., Lee H., Kyung K.M., Song C.E., Bae C.Y., Lee Y.H., Oh B.J.2001. Inhibition of fungalappressorium formation by pepper (Capsicum annuum) esterase. Molecular Plant-MicrobeInteractions,14:80-85
    Kothari S.L., Joshi A., Kachhwaha S., Ochoa-Alejo N.2010. Chilli peppers-A review on tissue culture andtransgenesis. Biotechnology Advances,28:35-48
    Kramer L.C., Choudoir M.J., Wielgus S.M., Bhaskar P.B., Jiang J.2009. Correlation between transcriptabundance of the RB gene and the level of the RB-mediated late blight resistance in potato. MolecularPlant-Microbe Interactions,22:447-455
    Kumagai M.H., Donson J., Della-Cioppa G., Harvey D., Hanley K., Grill L.K.1995. Cytoplasmicinhibition of carotenoid biosynthesis with virus-derived RNA. Proc. National Acad Science,92:1679-1683
    Kumar A., Reddy K., Sreevathsa R., Ganeshan G., Udayakumar M.2009. Towards crop improvement inbell pepper (Capsicum annuum L.): Transgenics(uid A::hpt II) by a tissue-culture-independentAgrobacterium-mediated in planta approach. Scientia Horticulturae,119(4):362-370
    Lamour K.H., Stam R., Jupe J., Huitema E.2012. The oomycete broad-host-range pathogen Phytophthoracapsici. Molecular Plant Pathology,13:329-337. doi:10.1111/j.1364-3703.2011.00754.x
    Lao K.Q., Tang F., Barbacioru C., Wang Y., Nordman E., Lee C., Xu N., Wang X., Tuch B., Bodeau J.,Siddiqui A., Surani M.A.2009. mRNA-sequencing whole transcriptome analysis of a single cell onthe SOLiD system. Journal of Biomolecular Techniques,20:266-271
    Lee D.H., Choi H.W., Hwang B.K.2011. The pepper E3ubiquitin ligase RING1gene, CaRING1, isrequired for cell death and the salicylic acid-dependent defense response. Plant Physiology,156:2011-2025
    Lee J.Y., Moon S.S., Hwang B.K.2003. Isolation and antifungal and antioomycete activities ofaerugineproduced by Pseudomonas fluorecens strain MM-B16. Applied and EnvironmentalMicrobiology,69:2023-2031
    Lee J.Y. and Hwang B.K.2002. Diversity of antifungal actinomycetes in various vegetative soils of Korea.Canadian joumal of microbiology,5:407-417
    Lee S., Kim S.Y., Chung E., Joung Y.H., Pai H.S., Hur C.G., Choi D.2004. EST and microarray analyses ofpathogen-responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybeanpustule pathogen (Xanthomonas axonopodis pv. glycines). Functional&Integrative Genomics,4:196-205
    Lee S.J., Kim B.D., Paek K.H.1993. In vitro plant regeneration and Agrobacterium-mediatedtransformation from cotyledon explants of hot pepper (Capsicum annuum cv. GoldenTower). KoreanJournal of Plant Tissue Culture,20:289-94
    Lee Y., Jung M., Shin S., Lee J., Choi S., Her N., Ryu K., Paek K., Harn C.2009. Transgenic peppers thatare highly tolerant to a new CMV pathotype. Plant Cell Reports,28(2):223-232
    Lee Y., Kim H., Kim J., Jung M., Park Y., Lee J., Choi S., Her N., Lee J., Hyung N.2004. A new selectionmethod for pepper transformation: callus-mediated shoot formation. Plant Cell Reports,23(1):50-58
    Lee Y.K., Hippe-Sanwald S., Jung H.W., Hong J.K., Hause B., Hwang B.K.2000. In situ localization ofchitinase Mrna and protein in compatible and incompatible interactions of pepper stems withPhytophthora capsici. Physiological and Molecular Plant Pathology,57:111-121
    Lefebvre V. and Palloix A.1996. Both epistatic and additive effects of QTLs are involved in polygenicinduced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian.Theoretical and Applied Genetics,93(4):503-511
    Leonian L.H.1922. Stem and fruit blight of pepper caused by Phytophthora capsici. Phytopathology,12:401-408
    Lichtenthaler H.K.1987. Chlorophylls and carotenoides: pigments of photosynthetic biomembranes.Methods in Enzymology,148:350-382
    Liu C.H., Zou W.X., Lu H., Tan R.X.2001. Antifungal activity of Artemisia annua endophyre culturesagainst phytopathogenic fungi. Journal of Biotechnology,88:277-282
    Liu J., Liu X., Dai L., Wang G.2007. Recent progress in elucidating the structure, function, and evolutionof disease resistance genes in plants. Journal of Genetics and Genomics,34:765-776
    Liu S., Li W., Wu Y., Chen C., Lei J.2013. De Novo Transcriptome Assembly in Chili Pepper (Capsicumfrutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids. PLoS ONE,8(1): e48156.doi:10.1371/journal.pone.0048156
    Liu W., Parrott W.A., Hildebrand D.F., Collins G.B., Williams E.G.1990. Agrobacterium induced gallformation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressingintroduced genes. Plant Cell Reports,9:360-364
    Liu X.M., Zhou Y.L., Li L.J., Zheng Y.2004. Effect of inoculum density, soil water matric potential andsoil temperature on mortality of pepper caused by Phytophthora capsici. Acta phytopathology sinica,34:254-260
    Liu Y., Schiff M., Dinesh-Kumar S.P.2004. Involvement of MEK1, MAPKK, NTF6, MAPK, WRKY/MYBtranscription factors, COI1and CTR1in N-mediated resistance to tobacco mosaic virus. Plant Journal,38:800-809
    Liu Y., Schiff M., Dinesh-Kumar S.P.2002a. Virus-induced gene silencing in tomato. Plant J.,31:777-786
    Liu Y., Schiff M., Marathe R., Dinesh-Kumar S.P.2002b. Tobacco Rar1, EDS1and NPR1/NIM1like genesare required for N-mediated resistance to tobacco mosaic virus. Plant Journal,30:415-429
    Livak K.J. and Schmittgen T.D.2001. Analysis of relative gene expression data using real time quantitativePCR and the2-ΔΔCTmethod. Methods,25:402-408
    Lu R., Martin-Hernandez A.M., Peart J.R., Malcuit I., Baulcombe D.C.2003. Virus-induced gene silencingin plants. Methods,30:296-303
    MacFarlane S.A.2010. Tobraviruses-plant pathogens and tools for biotechnology. Molecular PlantPathology,11:577-583
    Manoharan M., Vidya C.S.., Sita G.L. l998. Agrobacterium-mediated genetic transformation in chilli(Capsicum annunm L. var pusa jwala). Plant Science,13l (1):77-83
    Mantelin S., Peng H.C., Li B., Atamian H.S., Takken F.L.W., Kaloshian I.2011. The receptor-like kinaseSlSERK1is required for Mi-1-mediated resistance to potato aphids in tomato. Plant Journal,67:459-471
    Marnik V., Johan D.P., Michiel J.T. van Eijk.2007. AFLP-based transcript profiling (cDNA-AFLP) forgenome wide expression analysis. Ntiture protocols,2(6):1399-1413
    Martinez J., Patkaniowska A., Urlaub H., Luhrmann R., Tuschl T.2002. Single-stranded antisense siRNAsguide target RNA cleavage in RNAi. Cell,110:563-574
    Matin M.N., Pandeya, D., Baek, K.H., Lee, D.S., Lee, J.H., Kang, H., Kang, S.G.2010. Phenotypic andgenotypic analysis of rice lesion mimic mutants. The Plant Pathology Journal,26:159-169
    Mauch F., Mauch-Mani B., Boller T.1988. Antifungal hydrolases in pea tissue.II. Inhibition of fungalgrowth by combinations of chitinase and β-1,3-glucanase. Plant Physiology,88:936-942
    McDowell J.M. and Simon S.A.2006. Recent insights into R gene evolution. Molecular Plant Pathology,513:437-448
    Melech-Bonfil S. and Sessa G.2011. The SlMKK2and SlMPK2genes play a role in tomato diseaseresistance to Xanthomonas campestris pv. vesicatoria. Plant Signaling&Behavior,6:154-156
    Melo G.A., Shimzu M.M., Mazzafera P.2006. Polyphenoloxidase activity in coffee leaves and its role inresistance against the coffee leaf miner and coffee leaf rust. Phytochemistry,67:277-285
    Metzker M.L.2009. Sequencing technologies-the next generation. Nature Reviews Genetics,11:31-46
    Mizrachi E., Hefer C.A., Ranik M., Joubert F., Myburg A.A.2010. De novo assembled expressed genecatalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics,11:681
    Money T., Reader S., Qu L.J., Dunford R.P., Moore G.1996. AFLP-based mRNA fingerprinting. NucleicAcids Research,24(13):2616-2617
    Muangsan N. and Robertson D.2004. Germinivirus vectors for transgenic gene silencing in plants.Methods,265:101-115
    Murata N., Ishizaki N.O., Higashi S., Hayashi H., Tasaka Y., Nishida I.1992. Genetically engineeredalteration in the chilling sensitivity of plants. Nature,356:710-713
    Ou L.J., Dai X.Z., Zhang Z.Q., Zou X.X.2011. Responses of pepper to waterlogging stress.Photosynthetica,49:339-345
    Palloix A., Daubeze A.M., Phaly T., Pochard E.1990. Breeding transgreesive lines of pepper for resistanceto Phytophthora capsici in a recurrent selection system. Euphytica,51:141-150
    Park S.Y., Ryu S.H., Kwon S.Y., Lee H.S., Kim J.G., Kwak S.S.2003. Differential expression of six novelperoxidase cDNAs from cell cultures of sweetpotato in response to stress. Molecular Genetics andGenomics,269:542-552
    Park C., Shin R., Park J., Lee G., Yoo T., Paek K.2000. A hot pepper cDNA encoding a pathogenesisrelated protein4is induced during the resistance response to tobacco mosaic virus. Molecules andcells,11(1):122-127
    Passardi F., Cosio C., Penel C., Dunand C.2005. Peroxidases have more functions than a Swiss army knife.Plant Cell Reports,24:255-265
    Peart J.R., Mestre P., Lu R., Malcuit I., Baulcombe D.C.2005. NRG1, a CC-NB-LRR protein, together withN, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology,15:968-973
    Pochard F.J.1987. Reeherches sur lepiment in Rapport de activate Station de Amelioration des PlantesMaralcheres, Montfavet. France,49-66
    Polach F.J. and Webster R.K.1972. Identification of strains and inheritance of pathogenicity inPhytophthora capsici. Phytopathology,62(1):20-26
    Purkayastha A. and Dasgupta I.2009. Virus-induced gene silencing: a versatile tool for discovery of genefunctions in plants. Plant Physiology and Biochemistry,47:967-976
    Quesada-Ocampo L.M. and Hausbeck M.K.2010. Resistance in tomato and wild relatives to crown androot rot caused by Phytophthora capsici. Phytopathology,100:619-627
    Quirin E.A., Ogundiwin E.A., Prince J.P., Mazourek M., Briggs M.O., Chlanda T.S., Kim K.T., Falise M.,Kang B.C., Jahn M.M.2005. Development of sequence characterized amplified region (SCAR)primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. inpepper. Theoretical and Applied Genetics,110:605-612
    Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C.2001. Tobacco rattle virus as a vector for analysis ofgene function by silencing. Plant Journal,25:237-245
    Reifschneider F.J.B., Boiteux L.S., Della P.T., Poulos J.M., Kuroda N.1992. Inheritance of adult-plantresistance to Phytophthora capsici in pepper. Euphytica,62:45-49
    Rivera M.E., Codina J.C., Olea F., Vicente A.D., Pérez-Garc af A.2002. Differential expression of β-1,3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca.Physiological and Molecular Plant Pathology,61:257-265
    R mer P., Hahn S., Jordan T., Strauss T., Bonas U., Lahaye T.2007. Plant pathogen recognition mediatedby promoter activation of the pepper Bs3resistance gene. Science,318:645-648
    Rougemont J., Amzallag A., Iseli C., Farinelli L., Xenarios I., Naef F.2008. Probabilistic base calling ofSolexa sequencing data. BMC Bioinformatics,9:431
    Rowland O., Ludwig A.A., Merrick C.J., Baillieul F., Tracy F.E., Durrant W.E., Fritz-Laylin L., NekrasovV., Sjolander K., Yoshioka H., Jones J.D.G.2005. Functional analysis of Avr9/Cf-9rapidly elicitedgenes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance intomato. Plant Cell,17:295-310
    Ruiz M.T., Voinnet O., Baulcombe D.C.1998. Initiation and maintenance of virus-induced gene silencing.Plant Cell,10:937-946
    Ryu C.M., Anand A., Kang L., Mysore K.S.2004. Agrodrench: a novel and effective agroinoculationmethod for virus-induced gene silencing in roots and diverse solanaceous species. Plant Journal,40:322-331
    Saedler R. and Baldwin I.T.2004. Virus-induced gene silencing of jasmonate-induced direct defences,nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. Journal of Experimental Botany,55:151-157
    Saikia R., Singh B.P., Kumar R., Arora, D.K.2005. Detection of pathogenesis related proteins chitinase andβ-1,3glucanase in induced chickpea. Current Science,89:659-663
    Saini S.S. and Sharma P.P.1978. Inheritance of resistance to fruit rot (Phytophthora capsici Leon) andinduction of resistance in bell pepper (Capsicum annuum L.). Euphytica,27:721-723
    Sang M.K. and Kim K.D.2011. Biocontrol activity and primed systemic resistance by compost waterextracts against anthracnoses of pepper and cucumber. Phytopathology,101:732-740
    Sang M.K., Kim J.G., Kim K.D.2010. Biocontrol activity and induction of systemic resistance in pepper bycompost water extracts against Phytophthora capsici. Phytopathology,100:774-783
    Sarowar S., Kim Y.J., Kim E.N., Kim K.D., Hwang B.K., Islam R., Shin J.S.2005a. Overexpression of apepper basic pathogenesis-related protein1gene in tobacco plants enhances resistance to heavy metaland pathogen stresses. Plant Cell Reports,24:216-224
    Sarowar S., Kim E.N., Kim Y.J., Ok S.H., Kim K.D., Hwang B.K., Shin J.S.2005b. Overexpression of apepper ascorbate peroxidase-like1gene in tobacco plants enhances tolerance to oxidative stress andpathogens. Plant Science,169(1):55-63
    Sasaki S., Yamagishi N., Yoshikawa N.2011. Efficient virus-induced gene silencing in apple, pear andJapanese pear using Apple latent spherical virus vectors. Plant Methods,7:15
    Schena M., Shalon D., Davis R.W., Brown P.O.1995. Quantitative Monitoring of Gene Expression Patternswith a Complementary DNA Microarray. Science,270:467-470
    Schornack S., Ballvora A., Gurlebeck D., Peart J., Ganal M., Baker B., Bonas U., Lahaye T.2004. Thetomato resistance protein Bs4is a predicted non-nuclear TIR-NB-LRR protein that mediates defenseresponses to severely truncated derivatives of AvrBs4and overexpressed AvrBs3. Plant Journal,37:46-60
    Seo Y.S., Choi J.Y., Kim S.J., Kim E.Y., Shin J.S., Kim W.T.2012. Constitutive expression of CaRma1H1,a hot pepper ER-localized RING E3ubiquitin ligase, increases tolerance to drought and salt stresses intransgenic tomato plants. Plant Cell Reports,31(9):1659-1665.
    Shin R., Park J.M., An J.M., Paek K.H.2002. Ectopic expression of Tsil intransgenic hot pepper plantsenhances host resistance to viral, baeterial, and oomyeete pathogens. Molecular Plant-MicrobeInteractions,15:983-989
    Silvar C., Merino F., Díaz, J.2008a. Differential activation of defense-related genes in different peppercultivars infected with Phytophthora capsici. Journal of Plant Physiology,165(10):1120-1124
    Silvar C., Merino F., Diaz J.2008b. Resistance in pepper plants induced by Fusarium oxysporum f. sp.lycopersici involves different defense-related genes. Plant Biology,11:68-74
    Singh R., Adholeya A., Mukerji K.G.2000. Mycorrhiza in control of soil borne pathogens. In: K.G. Mukerji,B.P. Chamola and J. Singh (eds), Mycorrhizal Biology, Kluwer Academic Publishers, New York,pp.173-196
    Sticher L., Mauch-Mani B., Metraux J.P.1997. Systemic acquired resistance. Annual Review ofPhytopathology,35:235-270
    Sun X., Cao Y., Yang Z., Xu C., Li X., Wang S., Zhang Q.2004. Xa26, a gene conferring resistance toXanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant Journal,37:517-527
    Tai T.H., Dahlbeck D., Clark E.T., Gajiwala P., Pasion R., Whalen M.C., Stall R.E., Staskawicz B.J.1999.Expression of the Bs2pepper gene confers resistance to bacterial spot disease in tomato. PNAS,96:14153-14158
    Tan X.P., Meyers B.C., Kozik A., Al West M., Morgante M., St Clair D.A., Bent A.F., Michelmore R.W.2007. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and relatedgenes in Arabidopsis. BMC Plant Biology,7:20
    Tao X. and Zhou X.2004. A modified viral satellite DNA that suppresses gene expression in plants. PlantJournal,38:850-860
    Thabuis A., Palloix A., Pflieger S., Daubeze A.M., Caranta C. Lefebvre V.2003. Comparative mapping ofPhytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci acrosssolanaceae and for a large genetic diversity. Theoretical and Applied Genetics,106:1473-1485
    Truong N.V., Liew E.C., Burgess L.W.2010. Characterisation of Phytophthora capsici isolates from blackpepper in Vietnam. Fungal Biology,114:160-170
    Turnage M.A., Muangsan N., Peele C.G., Rorbertson D.2002. Geminivirus-based vectors for genesilencing in Arabidopsis. Plant Journal,30:107-114
    Umaerus V.M., Erjefa L., Nilsson, B.A.1983. Control of Phytophthora by host resistance: problem andprogress. In: Erwin DC, Bartnicki-Garcia S, Tsao PH, eds. Phytophthora: Its Biology, Taxanomy,Ecology and Pathology. St Paul, MN, U.S.A.: The American Phytopathological Society,315-326
    Valerio L., Meyer M.D., Penel C., Dunand C.2004. Expression analysis of the Arabidopsis peroxidasemultigenic family. Phytochemistry,65:1331-1342
    Van Loon L.C. and Van Strien E.A.1999. The families of pathogenesis-related proteins, their activities, andcomparative analysis of PR-1type protein. Physiology Molecular Plant Pathology,55:85-97
    Veloso J. and Díaz J.2012. Fusarium oxysporum Fo47confers protection to pepper plants againstVerticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. PlantPathology,61:281-288
    Voinnet O.2001. RNA silencing as a plant immune system against viruses. Trends in Genetics,17(8):449-459
    Vossen J.H., Abd-Haliem A., Fradin E.F., Van Den Berg G.C.M., Ekengren S.K., Meijer A.S., Bai Y., HaveA.T., Munnik T., Thomma B.P.H.J., Joosten M.H.A.J.2010. Identification of tomatophosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4andPLC6in HR and disease resistance. Plant Journal,62:224-239
    Walker S.J. and Bosland P.W.1999. Inheritance of phytophthora root rot and foliar blight resistance inpepper. Journal of the American Society for Horticultral Science,124:14-18
    Wan H.J., Yuan W., Ruan M., Ye Q., Wang R., Li Z., Zhou G., Yao Z., Zhao J., Liu S., Yang Y.2011.Identification of reference genes for reverse transcription quantitative real-time PCR normalization inpepper (Capsicum annuum L.). Biochemical and Biophysical Research Communications,416:24-30
    Wang C.C., Cai X.Z., Wang X.M., Zheng Z.2006. Optimisation of tobacco rattle virus-induced genesilencing in Arabidopsis. Functional Plant Biology,33:347-355
    Wang Z.X., Yamanouchi U., Katayose Y., Sasaki T., Yano M.2001. Expression of the Pibrice-blast-resistance gene family is up-regulated by environmental conditions favouring infection andby chemical signals that trigger secondary plant defences. Plant Molecular Biology,47:653-661
    Way H.M., Kazan K., Goulter K.C., Birch R.G., Manners J.M.2000. Expression of the Shpx2peroxidasegene of stylosanthes humilis in transgenic tobacco leads to enhanced resistance to Phytophthoraparasitica pv. nicotianae and Cercospora nicotianae. Molecular Plant Pathology,1:223-232
    Xu Y.P., Zheng L.P., Xu Q.F., Wang C.C., Zhou X.P. Wu Z.J., Cai X.Z.2007. Efficiency for gene silencinginduction in Nicotiana species by a viral satellite DNA vector. Journal of Integrative Plant Biology,49(12):1726-1733
    Ye X.S., Pan S.Q., Kuc J.1990. Activity, isoenzyme pattern and cellular localization of peroxidase asrelated to systemic resistance of tobaceo to blue mold (Peronospora tabacina) and to tobacco mosaicvirus. Phytopathology,80:1295-1299
    Yeom S.I., Baek H.K., Oh S.K., Kang W.H., Lee S.J., Lee J.M., Seo E., Rose J.K.C., Kim B.D., Choi D.2011. Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novelfunctions of secreted plant proteins in modulating cell death. Molecular Plant-Microbe Interactions,24:671-684
    Yoo T.H., Park C.J., Ham B.K., Kim K.J., Paek K.H.2004. Ornithine decarboxylase gene (CaODC1) isspecifically induced during TMV–mediated but salicylate-independent resistant response in hot pepper.Plant Cell Physiology,45(10):1537-1542
    Yoshida K., Kaothien P., Matsui T., Kawaoka A., Shinmyo A.2003. Molecular biology and application ofplant peroxidase genes. Applied Microbiology and Biottechnology,60:665-670
    Zenoni S., Ferrarini A., Giacomelli E., Xumerle L., Fasoli M., Malerba G., Bellin D., Pezzotti M.,Delledonne M.2010. Characterization of transcriptional complexity during berry development in Vitisvinifera using RNA-Seq. Plant Physiology,152(4):1787-1795
    Zhou X.F., Ma P.D., Wang R.H., Liu B., Wang X.Z.2006. A novel approach to functional analysis of theribulose bisphosphate carboxylase small subunit gene by Agrobacterium-Mediated gene silencing.Journal of Integrative Plant Biology,48:1225-1232
    Zhu Y.X., Ou-Yang W.J., Zhang Y.F., Chen Z.L.1996. Transgenic sweet pepper plants from Agrobacteriummediated transformation. Plant Cell Reports,16(1-2):71-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700