水稻盐胁迫全基因组表达谱及抗逆DNA甲基化时空变化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐害和干旱是影响水稻生长发育及产量的两个主要的非生物胁迫,因此通过水稻芯片研究在盐胁迫条件下全基因组的表达谱的变化,了解具有不同耐盐性的基因型在全基因组表达谱水平上的基因变化差异,对于发掘耐盐相关基因,了解基因之间的相互作用及遗传网络,了解耐盐相关的分子机理,并最终应用到实际水稻生产中提供了理论基础。DNA甲基化能够通过对基因组DNA上的胞嘧啶的共价修饰,从而对生物遗传信息进行表观遗传水平上的调控,其在植物体响应外界环境胁迫、调控基因的表达、稳定基因组等方面发挥重要作用。本研究利用本课题组培育的耐盐聚合系177-103以及其轮回亲本IR64为材料,从表型和全基因组的表达谱方面对耐盐聚合系的耐盐机理进行剖析。应用甲基化敏感性扩增多态性(MSAP)技术研究了具有不同抗旱性和耐盐性的水稻品种在不同发育时期和不同组织中干旱和盐胁迫对基因组DNA甲基化水平的影响,探讨了DNA甲基化在水稻响应干旱和盐胁迫过程中的作用。
     通过对聚合系群体进行耐盐筛选和重复的表型验证后,筛选出了一批耐盐性得到明显增强的耐盐聚合系,这些耐盐聚合系同轮回亲本IR64具有较高的遗传相似性,并且主要农艺性状和产量性状没有发生明显改变;通过对耐盐聚合系的耐盐相关表型及生理分析后得出,我们筛选出的耐盐聚合系,大部分是通过保持较低的叶片钠离子浓度和较低的钠离子转运等来降低盐害对水稻生长的抑制和毒害作用而提高其耐盐性。
     我们选择其中一个耐盐聚合系177-103以及其轮回亲本IR64进行了盐和盐+ABA处理,以了解盐胁迫以及ABA对具有不同耐盐性的基因型的表型和基因表达谱的影响。我们得出:盐胁迫时外施激素ABA能够通过提高叶片的相对含水量,降低地上部钠离子浓度以及保持较高的钾钠离子浓度比等来降低盐对水稻生长的抑制和毒害作用,能够同时提高轮回亲本IR64和耐盐聚合系177-103的耐盐性;通过全基因组表达谱分析可知:盐胁迫条件下,耐盐聚合系177-103中的差异表达基因多于轮回亲本IR64,177-103中特异上调表达的基因都是以胁迫相关的基因为主,IR64中的上调表达基因以转录相关基因为主;盐胁迫条件下差异表达基因具有很强的组织特异性,在叶片中差异表达的基因多于在根中差异表达基因,并且这些组织特异表达的基因的功能有较大差异;盐胁迫条件下,外施ABA能够引起很多基因表达的变化,其中叶片衰老相关蛋白,脱氧木酮糖磷酸盐激酶和DUF26结构域蛋白受ABA诱导并对于水稻耐盐性的提高有很大的贡献作用;在导入的DNA区段内发现了3个与植物耐盐性相关的重要基因,这些基因为透胁迫和钙离子依赖的ABA信号传导中起到重要作用的膜联蛋白Annexin,在拟南芥中被证明在葡萄糖信号传导和ABA生物合成中起重要作用的短链脱氢酶/还原酶SDR(Short-chain dehydrogenase/Reductase)和植物脂质转运蛋白等;通过比较发现,该实验所得到的差异表达基因能够与已经定位的效应较大的耐盐QTL有很好的对应,在前人定位的耐盐相关QTL区域发现了与耐盐相关的基因。
     干旱和盐害都能够诱导水稻全基因组范围的DNA甲基化状态的改变。由于干旱诱导的DNA去甲基化位点可以依据它们的可逆性分为两类,一类包括了大约70%的位点,这些位点只受到干旱胁迫诱导出现,胁迫去除后又恢复到胁迫前的甲基化状态,另一类包括了大约29%的位点,这些位点受到干旱胁迫诱导出现,即使在胁迫去除之后甲基化状态不发生改变;在水稻苗期根部组织中,盐胁迫会引起DNA甲基化水平的显著下降,而且在盐敏感品种IR29中DNA甲基化水平下降的程度比耐盐品种FL478更大;干旱和盐诱导的DNA甲基化/去甲基化具有很强的组织特异性和发育时期特异性。
Abiotic stresses such as drought and salinity are very important factors limiting rice growth and productivity around the world. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice responsive to salinity stress, try to elucidate the difference of genome-wide gene expression profiling of two contrasting rice genotypes in response to salt stress and to discover the salinity related genes and gene interaction and networks. Epigenetic mechanisms such as DNA methylation, plays a crucial role in regulating gene expression in plant responses to environmental stresses. The objectives of this study were:(1) to characterize the phenotypic and physiological traits associated with salinity tolerance (ST) pyramiding lines, (2) to understand the expression pattern of salinity tolerance pyramiding line and its recurrent parent IR64, (3) to understand the roles of DNA methylation in the epigenetic regulation of gene expression in rice responses and adaptation to drought and salinity stresses.
     A set of pyramiding lines with significantly improved salinity tolerance were selected by salinity screening of pyramiding population and phenotypic confirmation. The genetic background, morphological and yield traits of those ST pyramiding lines were highly similar with IR64. Most of the salinity tolerance pyramiding lines can improve their salinity tolerance through lower shoot Na+ concentration and lower root to shoot Na+ translocation et al, but there were two pyramiding lines 177-71 and 183-33 may have different mechanisms for salinity tolerance.
     A ST pyramiding line 177-103 and its recurrent parent IR64 were used for phenotypic and gene expression analysis under salinity and salinity +ABA conditions. We found that exogenous ABA under salinity condition improved rice salinity tolerance by increasing leaf relative water content, decreasing shoot Na+ concentration and root to shoot Na+ translocation. Under salinity condition, the number of differentially expressed genes (DEGs) in 177-103 was more than that in IR64, and most of up-regulated DEGs in 177-103 are response to stress. But in IR64, most of up-regulated DEGs are transcription related genes. The DEGs under salinity showed very strong tissue specificity, the number of DEGs in leaf was more than that in root. A lot of genes differentially expressed by exogenous ABA treatment under salinity condition, such as Leaf senescence protein,1-deoxy-D-xylulose 5-phosphate synthase 2 precursor and Protein of unknown function DUF26 were induced by ABA and contributed to salinity tolerance.
     We also found some important genes related with salinity in intrgression DNA regeions, such as Annexin, SDR (Short-chain dehydrogenase/Reductase) and plant liqid transferase proteion (LTP) et al.
     MSAP results indicate that drought and salinity could induce genomewide changes in DNA methylation/demethylation. Most of drought induced methylation/demethylation sites were of two major types distinguished by their reversibility, including 70% of methylation/demethylation sites at which drought induced epigenetic changes were reversed to their original status after recovery, and 29% of sites at which the drought induced DNA demethylation/methylation changes remain even after recovery. Significant decrease of DNA methylation induced by salt stress was specifically detected in roots at seedling stage, and the decreasing extent of DNA methylation in IR29 was more than that in FL478. The drought and salinity induced DNA methylation/demethylation alteration showed a significant level of developmental and tissue specificity.
引文
1. 杜金友,孟宪强,徐兴友,王同坤,郭学民.植物耐盐相关基因克隆与基因工程的研究进展.河北科技师范学院学报.2006,20:70-74
    2. 顾兴友,梅曼彤,严小龙,郑少玲,卢永根.水稻耐盐性数量性状位点的初步检测.中国水稻科学.2000,14(2):65-70
    3. 郭蓓,邱丽娟,李向华.植物盐诱导基因的研究进展.农业生物技术学报.1999,7(4):401-408
    4. 黑淑梅,慕明涛.DNA甲基化在植物生长发育中的作用.安徽农业科学.2007,35(21):6368-6369
    5. 黄有总,张国平.大麦耐盐机理与化控增强耐盐性的研究进展.大麦科学.2003,2:29-32
    6. 李诚斌.水稻OsLTP1基因的克隆、表达分析及功能鉴定.[硕士学位论文].南宁:广西大学,2004
    7. 黎志康.我国水稻分子育种计划的策略.分子植物育种.2005,3:603-608
    8. 林鸿宣,柳原城司,庄杰云等.应用分子标记检测水稻耐盐性的QTL.中国水稻科学.1998,12(2):72-78
    9. 刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报.2000,45:1465-1474
    10.刘三宏.水稻抗旱QTL定位及不同抗逆性的遗传重叠与细胞学机制研究.[博士学位论文].北京:中国农业科学院研究生院,2007
    11.刘炜.干旱胁迫诱导的水稻基因组胞嘧啶甲基化变化.[硕士学位论文].长春:东北师范大学,2006
    12.马雅琴,翁跃进,赵勇,郭宝生,许兴.植物耐盐相关基因克隆的研究进展.植物遗传资源学报.2004,5(1):81-86
    13.马廷臣,陈荣军,余蓉蓉,曾汉来,张端品.全基因组分析PEG胁迫下水稻根系转录因子表达变化.作物学报.2009,35(6):1030-1037
    14.吕慧颖,李银心,孔凡江.植物Na+/H+逆向转运蛋白的研究进展.植物学通报.2003,20(3):363-369
    15.彭海,张静.胁迫与植物DNA甲基化:育种中的潜在应用与挑战.自然科学进展.2009,19(3):248-256
    16.祁栋灵,郭桂珍,李明哲,曹桂兰,张俊国,周庆阳,张三元,徐锡哲,韩龙植.水稻耐盐碱性生理和遗传研究进展.植物遗传资源学报.2007,8(4):486-493
    17.单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展.分子植物育种.20064(1):15-22
    18.沈波,蒋靓,於卫东,樊叶杨,庄杰云.水稻苗期盐胁迫下叶绿素荧光参数的QTL分析.中国水稻科学.2009,23(3):319-322
    19.孙勇.水稻耐盐QTL表达的遗传背景与环境效应研究.[硕士学位论文].北京:中国农业科学院研究生院,2007
    20.潘雅姣.水稻干旱胁迫全基因组表达谱及DNA甲基化变化分析.[博士学位论文].北京:中国农业科学院研究生院,2008
    21.汪斌,兰涛,吴为人.盐胁迫下水稻苗期Na+含量的QTL定位.中国水稻科学.2007,21(6):585-590
    22.王迪.水稻旱胁迫条件下的全基因组时空表达谱.[博士学位论文].辽宁:沈阳农业大学,2008
    23.汪宗立,刘晓忠,王志霞.水稻耐盐性的生理研究盐逆境下水稻品种间水分关系和渗透调节的差异.江苏农业学报.1986,2(3):1-10
    24.吴振敏.应用基因芯片技术筛选野生大豆耐盐碱基因及功能研究.[硕士学位论文].长春:吉林农业大学,2008
    25.徐小万,雷建军,罗少波,李颖,王恒明.作物基因聚合分子育种.植物遗传资源学报.2010,11(3):364-368
    26.杨传平,王玉成,刘桂丰,姜静NaHCO3胁迫下紫杆怪柳一些基因的表达.植物生理与分子生物学学报.2004,30(2):229-233
    27.杨颖,高世庆,唐益苗,冶晓芳,王永波,刘美英,赵昌.植物bZIP转录因子的研究进展.麦类作物学报.2009,29(4):730-737
    28.晁代印.水稻高盐胁迫下的转录谱及耐盐相关基因分析.[博士学位论文].上海:中国科学院研究生院(上海生命科学研究院),2007
    29.于凤池.基因芯片技术及其在植物研究中的应用.中国农学通报.2009,25(06):64-65
    30.於卫东,蒋靓,庄杰云,樊叶杨,沈波.盐胁迫下水稻部分生化性状的QTL定位.核农学报.2009,23(1):150-153
    31.藏金萍,孙勇,王韵,杨静,李芳,周永力,朱苓华,REYS Jessica, FOTOKIAN Mohammadhosein,徐建龙,黎志康.利用回交导入系剖析水稻苗期和分蘖期耐盐性的遗传重叠.中国科学C辑.2008,38(9):841-850
    32.张慧,董伟,周骏马.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育.生物工程学报.1998,14(2):181-186.
    33.张津津,严成其,金志华,陈剑平.基因芯片技术在水稻研究中应用进展.浙江农业学报.2008,20(4):308-311
    34.赵可夫,范海,Harris PJC等.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报.1995,37(4):295-300
    35.钟兰,王建波.DNA超甲基化在小麦耐盐胁迫中的作用.武汉植物学研究.2007,25(1):102-104
    36. Aceituno FF, Nick M, Seung YR and Rodrigo AG. The rules of gene expression in plants:Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics.2008,9:438
    37. Akhtar, N. Salt tolerance studies in rice (Oryza sativa L.). Ph.D. Thesis. School of Biological Sciences, University of Wales, Bangor, UK.2002
    38. Akimoto K, Katakami H, Kim HJ. Epigenetic inheritance in rice plants. Ann Bot.2007,100(2): 1205-1217
    39. Alina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum. 2004,121:472-480
    40. Ammar MHM, Singh RK, Singh AK, Mohapatar T, Sharma TR and Singh NK. Mapping QTLs for salinity tolerance at seedling stage in rice (Oryza sative L). African Crop Science Conference Proceeding.2007,8:612-620
    41. Amzallag GN, Lerner HR, Poljakoff-Mayber A. Exogenous ABA as a modulator of response of sorghum to high salinity. J Exp Bot.1990,41:1389-1394
    42. Angers B, Castonguay E, and Massicotte R. Environmentally induced phenotypes and DNA methylation:how to deal with unpredictable conditions until the next generation and after. Molecular Ecology.2010,19:1283-1295
    43. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol.2004,55:373-99
    44. Apes MP, Aharon GS. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science.1999,285:1256-1258
    45. Arnaud P, Goubely C, Pelissier T, Deragon JM. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol. Cell. Biol.2000,20:3434-3441
    46. Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant molecular Biology.2001,45:31-39
    47. Bastow R, Mylne JS, Uster C, Uppman Z, Martlenssen RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature.2004,427:64-67
    48. Basyuni M, Babab S, Inafukua M, Hironori I, Kazutoshi K and Hirosuke O. Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. Journal of Plant Physiology.2009,166:1786-1800
    49. Bellinger Y, Bensaoud A, Larher F. Physiological significance of proline accumulation, a trait of use to breeding for stress tolerance. In:Physiology Breeding of Winter Cereals for Stressed Mediter2 ranean Environments. Paris,1991 INRA Les Collogues,55
    50. Bohnert HJ, Cushman J. The ice plant cometh:lesson in abiotic stress tolerance. J. Plant Growth Regul.2001,19:334-346
    51. Bonilla P, Dvorak J, Mackill D, Deal K and Gregorio G. RFLP and SSLP mapping of salinity tolerance genes in chromosome-1 of rice (Oryza sativa L.) using recombinant inbred lines. The Philippine Agric Scientist 2002,85:68-76.
    52. Boyko A Kovalchak I. Epigenetic control of plant stress response. Environ Mol Mutagen.2007, 49(1):61-72
    53. Bozcuk S. Effect of kinetin and salinity on germination of tomato, barley and cotton seeds. Ann Bot.1981,48:81-84
    54. Carden DE. The cell physiology of barley salt tolerance. PhD Thesis, University of Sussex, UK. 1999
    55. Cattivell L, Baldi P, Crosatti C, di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, and Stanca AM. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol.2002,48(5-6):649-665
    56. Cerda S, Weltzman SA. Influence of oxygen radical injury on DNA methylation. Mutation Res-Rev Mutation Res.1997,386:141-152
    57. Cheng Wan-Hsing, Akira Endo, Li Zhou, Jessica Penney, Huei-Chi Chen, Analilia Arroyo, Patricia Leon, Eiji Nambara, Tadao Asami, Mitsunori Seo, Tomokazu Koshiba,and Jen Sheen. A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell.2002,14:2723-2743
    58. Cheng CY, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tosl7. Mol. Genet. Genomics.2006,276:378-390
    59. Choi CS and Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics Genomics. 2007,277:589-600
    60. Daniels MJ, Mirkov E, and Chrispeels MJ. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP, Plant Physiol.1994,106:1325-1333
    61. Downton WJS, Grant WJR. and Robinson SP. Photosynthetic and stomatal response of spinach leaves to salt stress. Plant Physiology.1985,78:85-88
    62. Dunlap JR, Binzel ML. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stressinduced abscisic acid. Plant Physiol.1996,112:379-384
    63. Dunwell, JM, Khuri S, Gane PJ. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev.2000,64:153-179
    64. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov Y. Effect of hypermethylation of CCWGG sequences in DNA of Mesem bryanthem um crystallinum plants on their adaptation to salt stress. Biochemistry.2006,71:461-465
    65. FAO. FAO Land and Plant Nutrition Management Service.2008 http://www.fao.org/ ag/agl/agll/spush
    66. Fieldes MA. Heritable elfects of 5-azacytidine treatments on the growth and development of flax(Linum usitatissimum) genotrophs and genotypes. Genome,1994,37(1):1-11
    67. Fieldes MA. Epigenetic control of early flowering in flax lines induced by 5-azacytidine applied to germinating seed. J Hered.1999,90 (1):199-206
    68. Fieldes MA, Schaeffer SM, Krech MJ. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet.2005,111:136-149
    69. Finegane J, Kowac KA. Plant DNAmethyltransferases. Plant Mol Biol.2000,43:189-201
    70. Finegane J, Peacock WJ Dennise. DNA methylation, a key regulation of plant development and other processes.Curr Opion Genet Develop.2000,10:217-223
    71. Flores NRL. Role of root signals in rice (Oryza sativa L.) responses to salinity stress. M.Sc. thesis, University of Philippines, Los Banos Collage, Laguna, Philippines.2004
    72. Flowers TJ. and Yeo A.R. Variability in resistance of sodium chloride salinity within rice (Oryzae sativa L.) verities. New Phytol.1981,88:363-373
    73. Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR. QTL:their place in engenearing tolerance of rice to salinity. J.Exp. Bot.2000,51:99-106
    74. Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ.2005,28:1056-71
    75. Fricke W, Akhiyarova G, Veselov D, Kudoyarova G. Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J. Exp. Bot.2004,55:1115-23
    76. Galaud JP, Gaspar T, Boyer N. Inhibition of internode growth due to mechanical stress in Biyonia doica:relationship between changes in DNA methylation and ethylene metabolism. Physiologia Plantarum.1993,87:25-30
    77. Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L and Luo J. DRTF:a database of rice transcription factors. Bioinformatics.2006,22:1286
    78. Goffard N and Weiller G. PathExpress:a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Research.2007,35:176-181
    79. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem.2005,74: 481-514
    80. Gong JM, He P, Qian QA, Shen LS, Zhu LH and Chen SY. Identification of salt tolerance QTL in rice(Oryza sativa L). Chin Sci Bull.1999,44:68-71
    81. Gong JM, Zheng XW, Du BX, Qian Q, Chen SY, Zhu LH and He P. Comparative study of QTLs for agronomic traits of rice(Oryza sativa L.) between salt stress and non-stress environment. Sci China Ser. C-Life Sci.2001,44:73-82
    82. Gourcilleau Delphine, Bogeat-Triboulot Marie-Beatrice, Thiec Didier Le, Clement Lafon-Placette, Alain Delaunay, Walid Abu El-Soud, Franck Brignolas and Stephane Maury. DNA methylation and histone acetylation:genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity. Ann. For. Sci.2010,67:208
    83. Gregorio, GB. Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Ph.D. dissertation. College, Laguna, Philippines:University of the Philippines Los Banos, Laguna 1997, pp.118
    84. Gregorio GB, Senadhira D, Mendoza RD. Screening rice for salinity tolerance. IRRI Discussion Paper Series Number 22.1997, International Rice Research Institute, Manila, Philippines.
    85. Habu Y, Kakutani T, Paszkowski J. Epigenetic developmental mechanisms in plants:Molecules and targets of plant epigenetic regulation. Curr Opin Genet Dev.2001,11:215-220
    86. Hare PD, Van SJ. The molecular basis of cytokinin action. Plant Growth Regul.1997,23:41-78
    87. Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol. Plant Mol Biol.2000,51:463-499
    88. Hashida SN, Kitamura K, Mikami T. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology.2003,132:1207-1216
    89. Hong SW, Jon JH, Kwak JM, and Nam HJ. Identification of a recepter-like protein kinase rapidly induced by abscisic acid, dehydration, high salt and cold treatments in Arabidopsis thaliana, Plant Physiol.1997,113(4):1203-1212
    90. Hua Y, Chen XF, Xiong JH, Zhang YP and Zhu YG. Isolation and analysis of differentially methylated fragment CJDM7 in rice induced by cold stress. Hereditas.2005,27(4):595-600
    91. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, and Kim JK. Expression of a functional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth, Plant Physiol.,2003, 131(2):516-524
    92. James RA, Rivelli AR, Munns R, von Caemmerer S. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct. Plant Biol.2002,29:1393-403
    93. Janousek B, Matsunaga S, Kejnovsky E, Zluvova J, Vyskot B. DNA methylation analysis of a male reproductive organ specific gene(MRoSl)during pollen development. Genome.2002,45: 930-938
    94. Jeschke WD, Peuke AD, Pate JS, Hartung W. Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot.1997,48:1737-1747
    95. Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol.2009,69:91-105
    96. Kakutani T. Epi-alleles in plants:Inheritance of epigenetic information over generations. Plant Cell Physiol.2002,43 (10):1106-1111
    97. Kammerloher W., Fischer U., Piechottka G.P., and Schlffner A. R. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system, Plant J., 1994,6(2):187-199
    98. Kashkush K, Fedman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet.2003,33:102-106
    99. Katsuhara, M., Otsuka, T. and Ezaki, B. Salt stressinduced lipid peroxidation is reduced by glutathione Stransferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci.2005,169:369-373
    100. Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana. Genetics.1999, 151(2):831-838
    101. King GJ. Morphological development in Brassica oleraceais modulated by in vivo treatment with 5-azacytidine.J Hort Sci,1995,70(2):333-342
    102. Kizis D, Lumbreras V, Page M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters.2001,498:187-189
    103. Kore-eda Shin, Mary Ann Cushmana, Inna Akselroda, Davina Bufforda, Monica Fredricksona, Elizabeth Clarka and John C. Cushman. Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene.2004,341: 83-92
    104. Koyama ML, A. Levesley RM, Koebner D, Flowers TJ and Yeo AR. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol.2001,125: 406-422
    105. Kovarik A, Koukalova A B, Bezdek M, Opatmny Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet.1997,95:301-306
    106. Kumar B, Singh B. Effect of plant hormones on growth and yield of wheat irrigated with saline water. Ann Agric Res.1996,17:209-212
    107. Labra M, Ghiani A, Citterrio S, Sala F, Tannini C. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol.2002,4:1694-699
    108. Lauchli A. Salt exclusion:an adaptation of legumes for crops and pastures under saline conditions. In Salinity Tolerance in Plants:Strategies for Crop Improvement, ed. RC Staples,1984, pp.171-87. New York:Wiley
    109. Laudert D, Weiler EW. Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J.1998,15:675-684
    110. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak J M, Lee IJ, Hwang I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell.2006,126:1109-1120
    111. Lee KS, Choi WY, Ko JC, Kim TS, Gregoria GB. Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta.2003,216:1043-1046
    112. Lee Sang-Choon, Lee Mi-Yeon, Kim Soo-Jin, Jun Sung-Hoon. An Gynheung and Kim Seong-Ryong. Characterization of an Abiotic Stress-inducible Dehydrin Gene OsDhn1 in Rice (Oryza sativa L.) Mol. Cells.2004,19:212-218
    113. Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS and Eun MY. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed.2007,126:43-46
    114. Lehmann J, Atzorn R, Bruckner C, Reinbothe S, Leopold J, Wasternack C, Parthier B. Accumulation of jasmonate, abscisic acid, specifi c transcripts and proteins in osmotically stressed barley leaf segments. Planta.1995,197:156-162
    115. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW and Su WA. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet.2004,108:253-260
    116. Liu Q, Umeda M, and Uchimiya H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein, Plant Mol. Biol.1994,26(6):2003-2007
    117. Lizal P, Relichova J. The effect of day length, vernalization and DNA demethylation on the flowering time in Arabidopsis thaliana. Physiologia Plantarum.2001,113:121-127
    118. Logan BA. Reactive oxygen species and photosynthesis. In Antioxidants and Reactive Oxygen Species in Plants, ed. N Smirnoff,2005, pp.250-67. Oxford:Blackwell
    119. Lopez-Maury L, Marguerat S, Bahler J. Tuning gene expression to changing environments:From rapid responses to evolutionary adaptation. Nature Reviews Genetics.2008,9:583-593
    120. Lu YL, Rong TZ, Cao MJ. Analysis of DNA methylation in different maize tissues. Journal of Genetics and Genomics.2008,35:41-48
    121. Lukens LN, Zhan S. The plant genome's methylation status and response to stress:Implications for plant improvement. Curr Opin Plant Biol.2007,10(3):317-322
    122. Lutts S. and Guerrir G. Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl. Biol Plant.1995,37:577-586
    123. Maghuly F, Borroto-Fernandez EC, Khan MA, et al. Experssion of calmodulin and lipid transfer protein genes in Prunus incise serrula under different stress conditions. Tree Physiol,2009,29: 437-444
    124. Mansouri Hakimeh, Asrar, Zahra, Szopa Jan. Effects of ABA on primary terpenoids and 9-tetrahydrocannabinol in Cannabis sativa L.at flowering stage. Plant Growth Regul.2009, 58:269-277
    125. Marcel Sylvain, Sawers Ruairidh, Oakeley Edward, Angliker Herbert, and Paszkowskia Uta. Tissue-Adapted Invasion Strategies of the Rice Blast Fungus Magnaporthe oryzae. Plant cell.2010
    126. Masood MS, Seiji Y, Shinwari ZK and Anwar R. Mapping quantitative trait loci (QTLs)for salt tolerance in rice (Oryza sativa L.) using RFLPs. Pak. J. Bot.,2004,36(4):825-834
    127. Matzke MA, Mette MF, Matzke AJM. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology.2000, (43):401-415
    128. McConn M, Creelman RA, Bell F, Mullet JE, Browse J. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA.1997,94:5473-5477
    129. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant.2008, 133:481-489
    130. Moradi F. Physiological characterization of rice cultivars for salinity tolerance during vegetative and reproductive stages. Ph.D Thesis, University of the Philippines, Los Banos College, Laguna, Philippines.190p.2002
    131. Morgan PW. Effects of abiotic stresses on plant hormone systems. In:Alscher RG, Cumming JR (eds) Stress responses in plants:adaptation and acclimation mechanism. Wiley- Liss, New York. 1990
    132. Moons A, Prisen E, Bauw G, Montagu MV. Antagonistic effects of abscisic acid and jasmonates on salt-inducible transcripts in rice roots. Plant Cell.1997,92:243-259
    133. Montero E, Cabot C, Barcelo J, Poschenrieder C. Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol Plant.1997,101:17-22
    134. Mukesh Jain, Aashima Nijhawan, Rita Arora, Pinky Agarwal, Swatismita Ray, Pooja Sharma, Sanjay Kapoor, Akhilesh K. Tyagi and Jitendra P. Khurana. F-Box Proteins in Rice. Genome-Wide Analysis, Classification, Temporal and Spatial Gene Expression during Panicle and Seed Development, and Regulation by Light and Abiotic Stress. Plant Physiology.2007,143:1467-1483
    135. Munns Rana and Tester Mark. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol.2008, 59:651-81
    136. Nakhoda B. Phenotypic Analysis and Gene Expression Profiling of Rice(Oryza sativa L.) mutants with Altered Responses to Salt Stress. Ph.D Thesis, University of the Philippines, Los Banos College, Laguna, Philippines.2008
    137. Nilsen E, Orcutt DM. The physiology of plants under stress-abiotic factors. Wiley, New York, 1996, pp.118-130
    138. Parasher A, Varma SK. Effect of pre-sowing seed soaking in gibberellic acid on growth of wheat (Triticum aestivum L.) under different saline conditions. Indian J Biol Sci.1988,26:473-475
    139. Pletta Darren, Cotsaftisa Olivier, Alexander A.T. Johnsona,b, Harkamal Waliac,d, Clyde Wilsone, Abdelbagi M. Ismailf, Timothy J. Closec, Mark Testera, and Ute Baumanna. Root-Specific Transcript Profiling of Contrasting Rice Genotypes in Response to Salinity Stress. Molecular Plant. 2010,1-17
    140. Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado-Domenech E, Abdala G. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul.2003,41:149-158
    141. Prakash L, Prathapasenan G. NaCl and gibberellic acidinduced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice(Oryza sativa L). Ann Bot.1990, 365:251-257
    142. Prasad SR, Bagali PG, Hittalmani S and Shashidhar HE. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice(Oryza sativa L.). Curr Sci.2000, 78:162-164
    143. Rabbani M. Ashiq, Kyonoshin Maruyama, Hiroshi Abe, M. Ayub Khan, Koji Katsura, Yusuke Ito, Kyoko Yoshiwara, Motoaki Seki, Kazuo Shinozaki, and Kazuko Yamaguchi-Shinozaki. Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses, Plant Physiology.2003,133:1755-1767
    144. Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH and Hanson AD. Choline monooxygenase, an unusual iron- sulfur en- zyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning, Proc. Natl. Acad. Sci.1997,94(7):3454-3458
    145. Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M. DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences Uneted States of America.1999, 96(11):6107-6012
    146. Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils:an overview. Aust. J. Exp. Agric.2002,42:351-61
    147. Ribaut JM, Pilet PE. Water stress and indole-3ylacetic acid content of maize roots. Planta.1994, 193:502-507
    148. Richardse J. DNA methylation and plant development. Trends Genet.1997,13:319-323
    149. Ronemusm J, Galbiati M, Ticknor Cetal. Demethylation induced developmental plieotropy in Arabidopsis. Science.1996,273(2):654-657
    150. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, and Allen RD. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase, Plant Cell Physiol. 2000,41(11):1229-1234
    151. Sano H, Kamada I, Youssefian Set al. A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethy-lation of genomic DNA. Mol Gener Genet.1990, 220:441-447
    152. SAS Institute. SAS/Stat User's Guide, Version 8.2. SAS Inst., Cary, NC, USA.1999
    153. Saqib M, Zorb C, Rengel Z, Scheuber S. The expression of the endogenous vacuolar Na+/H+ antiporters in roots and shoots correlates positively with the salt resistance of wheat (Triticum aestivum L.). Plant Science.2005,169:959-965
    154. Sheveleva E, Chmara W, Bohnert HJ, and Jensen RG. Increased salt and drought tolerance by D-Ononitol production in transgenic Nicotiana tabaccum L. Plant Physiol.1997,115:1211-1219
    155. Shi H, IshitaniM, Kim C, et al. The A rabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA.2000,97 (12):6896-6901
    156. Song Y, Ai CR, Jing SJ, Yu DQ. Research Progress on Functional Analysis of Rice WRKY Genes. Rice Science.2010,17(1):60-72
    157. Steward N, Ho M.Yamaguchi Y. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem.2002,277(40):37741-37746
    158. Stewsrd N. Kusano T.Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent ceils. Nucleic Acids Res.2000, 28(17):3250-3259
    159. Storey R, Walker RR. Citrus and salinity. Sci. Hortic.1999,78:39-81
    160. Su CF, Wang YC, Hsieh TH, Lu CA, Lu CA, Tseng TH, Yu SM. A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice. Plant Physiology.2010,153:145-158
    161. Szabolcs I. Salt-Affected Soils. Boca Raton,1989, FL:CRC Press
    162. Taji Teruak, Ohsumi Chieko, Iuchi Satoshi, Seki Motoaki, Kasuga Mie, Kobayashi Masatomo, Kazuko Yamaguchi-Shinozaki and Kazuo Shinozaki. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal.2002,29(4):417-426
    163. Takata M, Yuji K and Yoshio S. DNA methylation polymorphisms in rice and wild rice strains: detection of epigenetic markers. Breeding Sciences.2005,55:57-63
    164. Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T and Sato T. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res.2004,89:85-95
    165. Tan M. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry.2010,48(1): 21-26
    166. Thapa BMAG. Seedling management strategies to enhance survival and growth of rice (Oryza sativa L.) under saline conditions. M.S thesis University of Philippines, Los Banos Collage, Laguna, The Philippines.160 pp 2004
    167. Thomas TH. Some reflections on the relationship between endogenous hormones and light-mediated seed dormancy. Plant Growth Regul.1992,11:239-248
    168. Tsonev TD, Lazova GN, Stoinova ZG, Popova LP. A possible role for jasmonic acid in adaptation of barley seedlings to salinity stres. J Plant Growth Regul.1998,17:153-159
    169. Tsuchiya M, Miyake M, Naito H. Physiological response to salinity in rice plant. Ⅲ. A possible mechanism for Na+ exclusion in rice root under NaCl-stress conditions. Jpn. J. Crop Sci.1994,63: 326-332
    170. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, and Shinozaki K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor, Plant Cell. 1999,11:1743-1754
    171. Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, and Shinozaki K. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stress in Arabidopsis thaliana, Mol. Gen. Genet.1994,244(4):331-340
    172. USDA-ARS. Research Databases. Bibliography on Salt Tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm?docid=8908,2008
    173. Van Staden J, Davey JE. The synthesis, transport and metabolism of endogenous cytokinins. Plant Cell Environ.1979,2:93-106
    174. Van Camp W, Capiau K, van Montague M. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dimutase in chloroplasts. Plant Physiol.1996,112: 1703-171
    175. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol.2005,139:822-35
    176. Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol.2007,63:609-23
    177. Walia Harkamal, Wilson Clyde, Ismail Abdelbagi M, Timothy J Close2 and Cui Xinping Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC Genomics.2009,10:398
    178. Walker MA, Dumbroff EB. Effects of salt stress on abscisic acid and cytokinin levels in tomato. Z Pflanzenphysiol.1981,101:461-470
    179. Wasternack C, Hause B. Jasmonates and octadecanoids-signals in plant stress response and development. In:Moldave K (ed) Progress in nucleic acid research and molecular biology. Vol.72. Academic, New York,2002, pp.165-221
    180. Wang YM, Lin XY, Dong B, Wang YD and Liu B. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to intercultivar differential gene expression. Cellular& Molecular Biology letters.2004,9:543-556
    181. Wrzaczek Michael, Brosche Mikael, Salojarvi Jarkko, Kangasjarvi Saijaliisa, Idanheimo Niina, Mersmann Sophia, Robatzek Silke, Karpinski Stanislaw, Karpinska Barbara and Kangasjarvi Jaakko. Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biology.2010,10:95
    182. Xiong LZ, Xu CG, Maroof S and Zhang QF. Patterns of cytosine methylation pattern in an elite rice hybrid and its parental lines detected by a methylation sensitive amplification polymorphism technique. Molecular and General Genetics.1999,261:439-446
    183. Xu D, Duan X, Wang B, Hong B, Ho THD, and Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley conferred tolerance to water deficit and salt stress in transgenic rice, Plant Physiol.1996,110:249-257
    184. Yao MZ, Wang JF, Chen HY, Zhai HQ, Zhang HS. Inheritance and QTL mapping of salt tolerance in rice. Rice Sci.2005,12:25-32
    185. Yi ZB, Suny N. Patterns of DNA cytosine methylation between hybrids and their parents in sorghum genome. Acta AgronSin.2005,31(9):1138-1143
    186. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.1997,13(8):335-40
    187. Yoshida S, Forna D.A, Cock J.H and Gomez K.A. Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute,1976, Los Banos, Philippines
    188. Zhao, F. and Zhang, H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tissue Org. Cult.2006, 86:349-358
    189. Zhang C K, Lang P, Dane F, Ebel R C, Singh N K, Locy R D, Dozier W A. Cold acclimation induced genes of trifoliate orange(Poncirus trifoliata). Plant Cell Rep.2005,23(10-11):764-769
    190. Zhang, G.Y., G. Yan, C. Shaolin and C. Shouyi. RFLP tagging of a salt tolerance gene in rice. Plant Sci Limerick.1995,110:227-234
    191. Zhang MS, Kimatu JN, Xu KZ and Liu B. DNA cytosine methylation in plant development. Journal of Genetics and Genomics.2010,37:1-12
    192. Zhang X, Yazaki J, Sundaredan A, Coukus S. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell.2006,126:1189-1201
    193. Zhao YL, Ye WW, Wang JJ, Fan BX. Analysis of DNA cytosine methylation on cotton under salt stress. Cotton Science.2008,20:106
    194. Zhong L, Xu YH and Wang JB. DNA-methylation changes induced by salt stress in wheat Triticum aestivum. African Journal of Biotechnology.2009,8(22),6201-6207
    195. Zhu J, Kapoor A, Sridhar VV, Agius F and Zhu JK. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Current Biology.2007,17:54-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700