极端盐碱土壤细菌的分离筛选及抗盐特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松嫩平原是世界三大苏打盐碱土集中分布区之一,主要盐成分以Na2CO3和NaHCO3为主。在松嫩平原重度盐碱地区域内分布着大量无植物覆盖的裸地,常称为“碱斑”,碱斑上除有时零星生长耐盐碱的碱蓬、碱蒿、碱地肤等外,大多是寸草不生的光碱斑。碱斑是普通生物不能生存的极端盐碱土壤环境,微生物是该环境中主要的生物成分。在极端盐碱土壤中微生物由于受到长期自然选择的压力,形成了稳定的生理生态适应机制,是宝贵的抗盐碱基因资源。对极端盐碱土壤微生物的分离鉴定和抗性特性的研究有利于获得优良的抗盐碱基因资源,从而为分子选育抗盐碱植物新品种提供丰富的耐盐碱基因。另外,目前在土壤生态学领域内,为了改善和利用极端盐碱土壤,开展了许多盐生植物生理生态的科学研究,而对极端盐碱土壤细菌的系统研究较少,尤其是针对松嫩平原这一生态环境中细菌资的源系统研究更是罕见报道。
     松嫩平原主要分布着是碳酸盐水解而形成的盐碱地,与氯化物相比,具有高pH值的Na2CO3和NaHCO3对微生物的影响更加复杂。本文以极端盐碱土壤(Extreme soda saline-alkali soil)为研究材料,以非盐碱普通土壤(non-saline soil)为对照,在培养基中分别使用了不同浓度的pH、Na2CO3、NaHCO3作为胁迫因素,比较分析了盐碱土壤与非盐碱土壤细菌的抗盐碱性水平差异,揭示了极端盐碱土壤环境微生物资源的整体特征,在此基础上,使用NaCl、pH、Na2CO3作为筛选压,对土壤中的高抗盐碱的细菌进行筛选。利用实体显微镜、扫描电子显微镜对细菌的菌落和细胞形态特征进行观察,从菌落和菌体形态特征两方面揭示了极端盐碱土壤细菌种类的多样性。利用细菌的16S rDNA序列分析技术,初步对分离获得的细菌进行了鉴定,并对潜在的新物种进行了多相分类学的研究,分析了极端盐碱土壤中高抗盐碱细菌的多样性。同时研究了该环境中的细菌分别在不同浓度NaC1、pH、Na2CO3胁迫下的生长特性,根据抗性特征对此环境细菌进行分类,其结果揭示了极端盐碱土壤中细菌群落组成特征。本研究首次针对松嫩平原内无植物覆盖的极端盐碱土壤环境特点、及其中生活的细菌种类、细菌抗性等方面特征进行了较系统的研究,其成果有利于抗性基因资源的获取,对极端盐碱土壤的恢复治理具有很实际的指导意义。
     上述研究主要成果如下:
     1.总体上讲,极端盐碱土壤(soda saline-alkali soil)生存着大量的高耐盐碱的细菌,而普通非盐碱土壤(non-saline soil)中耐盐碱细菌相对较少,两种类型的土壤存在一定的差异。在培养基中Na2CO3含量超过50mM或pH高于10.0时,从非盐碱土壤多次培养都分离不到细菌,而对于极端盐碱土壤,即便培养基含有高达200mM的Na2CO3或pH值为10.0时仍能从中分离到大量的细菌;同样利用含有较高浓度NaHCO3的培养基从极端盐碱土壤中分离获得的细菌数量高于从非盐碱土壤中获得的细菌数量。相反,在含有低pH或低Na2CO3含量或低NaHCO3培养条件下,从非盐碱土壤中分离到的细菌数量高于极端盐碱土壤,可见,在极端盐碱土壤中分布着大量的喜盐碱细菌,非耐盐碱细菌不占有优势。
     2.本研究分离筛选获得28株具有代表性的细菌,通过对其观察结果显示,这些菌株的菌落大小、颜色和边缘都有一定的差异,其个体形态以杆状的细菌为主,仅有一株为球状。可见,菌落和菌体形态的差异特征反应了28个菌株蕴含了不同的种类,暗示着极端盐碱土壤细菌具有丰富的多样性。
     3.对具有代表性的28个菌株进行基于16S rDNA序列的系统发育分析,结果共检测到了21个种,分布于细菌域的4个大的系统发育类群(Bacteroidetes, Firmicutes, Actinobacteria, Gamma-Proteobacteria)的5个科(Micrococcaceae, Bacillaceae, Cytophagaceae, Halomonadaceae, Xanthomonadaceae)及Gamma-Proteobacteria门中一个未定的科(Alkalimonas属)、7个属(Bacillus, Nesterenkonia, Zhihengliuella, Halomonas, Stenotrophomonas, Alkalimonas, Litoribacter)。多数菌株属于Firmicutes和Gamma-Proteobacteria门,其次是Bacteroidetes门和Actinobacteria门。
     4.对分离到的潜在新种H1进行了多项分类学鉴定,结果显示,菌株H1是革兰氏阴性、严格好氧、不运动的可形成桔红色菌落的细菌。该菌株生长温度范围是10~30℃、pH范围7.5~9.2、NaCl范围是0.5~4%。16S rDNA序列系统发育分析结果显示,菌株H1与Litoribacter ruber YIM CH208T同源性最近,其相似性为93.2%。该菌株DNAG+C含量为39.1mo1%。主要的脂肪酸是C15:0iso(27.50%)、C17:0iso3OH(13.95), summed feature9(C17:1iso w9c or C16:010-methyl10.63%)和C17:1iso w9c10.63%。基于表型,化学分类和系统发育的数据的基础上,菌株H1可归为Bacteroidetes门中一个新属中的新菌种,命名为Andtalea andensis,模式菌株为ANESC-ST(原名称为H1)(=CICC10485T=NCCB100412T)。
     5.以细菌对碳酸钠和氯化钠的抗性为依据,对碱斑环境中的细菌提出以下分类系统,把松嫩平原碱斑中的细菌分为强耐碳酸钠嗜盐菌、中度耐碳酸钠嗜盐菌、轻度耐碳酸钠嗜盐菌,强耐碳酸钠耐盐菌、中度耐碳酸钠耐盐菌、轻度耐碳酸钠耐盐菌六类。
Songnen Plain is one of the world's three concentrated regions of saline-alkali soil, and its main salt compositions are sodium carbonate and sodium bicarbonate. In the heavily saline-alkali region of Songnen Plain, all are the contiguous saline-alkali spots most of which are bare spots except for sporadic growth of some seepweed, Artemisia, Kochia scoparius and so on. The environment which common creature cannot survive in is termed extreme environment, and saline-alkali spot soil environment is extremely alkaline. Extreme environment is often the main habitat of extremophiles. Due to the long-term pressure of natural selection, microorganisms in extreme saline-alkali soil environments enjoy the special microbial species and their associated functions which just lack of in the general environmental, and its saline-alkali tolerant characteristics suggest a wealth of saline-alkali tolerant genes. These resources will be useful for selective breeding saline-alkali resistance new varieties of plants. Therefore, the related research of soil microorganisms and their resistance characteristics in this extreme saline-alkali environment is a prerequisite to obtain good gene resistant to saline-alkali.
     Compared with NaCl stress, the impact of Na2CO3and NaHCO3stress on microorganism is more complex. In this paper, extreme saline soil and non-saline soil were choosed as experimental material and control respectively, and we compared and analyzed the different tolerance level of bacteria between these two soils. Based on three types of selection pressure(high salt and low pH, high salt and high pH, high pH), we screened a variety of bacteria with high saline-alkali tolerance from extreme saline soil. And then, through microscopes and scanning electron microscopy, the colony morphology and individual morphology of bacteria obtained were analyzed, and by bacterial16S rDNA sequence analysis, the molecular identification of the bacteria isolated was completed. Morver, we studied the resistance characteristics of these strains on NaCl, pH and Na2CO3in details. This study reveals the extreme saline soil microbial resources in the overall characteristics of bacterial community composition and resistance characteristics. The result has practically instructional significance on understanding of physiological and ecological mechanisms of salt-tolerance of bacteria. More importantly, it is the first time to complete a systematic study in the resistance characteristics of bacteria which survived in extreme saline soil without plant cover of Songnen Plain soda saline-alkali soil on saline-alkali stress, and this study laid a theoretical foundation for microbial resistance resource development of Songnen plain.
     Main results of the above research are as follows:
     1. In conclusion, there were more high salinity bacteria in extreme soda saline-alkali soil than in non-saline soil. There were significant differences between these two soil types, when take Na2CO3and pH as stress factors. The bacteria were disappeared in repeated cultivated non-saline soil, but many bacterial colonies were survived in extreme soda saline-alkali soil when the concentration of Na2CO3was higher than30mmol/L and pH value was higher than10.0. When take NaC1as a stress factor, most of bacteria was moderately salt-tolerant bacteria in extreme soda saline-alkali soil. Compared with bacteria in extreme soda saline-alkali soil, the higher concentrate of NaHCO3has inhibited bacteria in non-saline soil, but the inhibitory potency was lighter than the other inhibiting factors.
     2. Twenty-eight of bacteria which had high saline-alkali resistance were selected through various filter selection pressure. Physical microscope image showed that there were some certain differences in these bacteria's size, color and edges. Scanning electron microscope showed that the individual morphological characteristics of the bacteria from alkali spot soil were mainly rod-shaped, only one spherical bacterium was separated.
     3. Twenty-eight of the isolated strains were analyzed by the method which based on phylogenetic development of16S rRNA gene sequence. The results showed that the isolates are members of twenty one species of five families(Micrococcaceae, Cytophagaceae, Halomonadaceae, Xanthomonadaceae) and an unclassified family in the Gamma-Proteobacteria group of seven genera(Bacillus, Nesterenkonia, Zhihengliuella, Halomonas, Stenotrophomonas, Alkalimonas, Litoribacter) in four major phylogenetic groups(Bacteroidetes, Firmicutes, Actinobacteria, Gamma-Proteobacteria). Most of the strains belonged to Firmicutes and Gamma-Proteobacteria category, followed by Bacteroidetes and Actinobacteria category.
     4.Strains H1was characterized using a polyphasic approach. Strain H1was Gram- negative, strictly aerobic and non-motile and formed orange red colonies. Range growth conditions were10~37℃, pH7.5-9.2and0.5~4.0%NaCl. Phylogenetic analysis based on16S rRNA gene sequence comparisons showed that the isolate formed a distinct line within a clade containing the genus Litoribacter in the phylum Bacteroidetes and was related to the species Litoribacter ruber YIM CH208T(sequence similarity93.2%). The DNA G+C content was39.1mol%. The predominant cellular fatty acids were C15:0iso(27.50%)C17:0iso3OH(13.95), summed feature9(C17:1iso w9c or C16:010-methyl10.63%) and C17:1iso w9c10.63%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain H1represents a novel species of a new genus in the Bacteroidetes.
     5.Based on the resistance to sodium carbonate and sodium chloride, the bacteria under alkaline conditions of Songnen Plain could be divided into six types:halophilic bacteria of strong resistance to sodium carbonate, halophilic bacteria of moderate resistance to sodium carbonate, halophilic bacteria of slight resistance to sodium carbonate, salt-tolerant bacteria of strong resistance to sodium carbonate, salt-tolerant bacteria moderate resistance to sodium carbonate, salt-tolerant bacteria of slight resistance to sodium carbonate.
引文
[1]Land and Water Development Division, Food and Agriculture Organization of the United Nations Rome,2000, Land Resource Potential and Constraints at Regional and Country Levels In:World Soil Resources Reports:1-112.
    [2]马献发,李世龙,于志民,王立民,王宏韬.腐植酸类物质对大庆盐碱土地区草场改良效果的研究.腐植酸,2004,(03):26-29.
    [3]王有华,王素霞.东北地区盐碱灾害及其治理.东北水利水电,1994(10):27-31.
    [4]王春裕,武志杰,王汝镛,张素君,张岫岚,龙显助.黑龙江省三江平原的苏打盐渍土.土壤通报,2001,(S1):23-25.
    [5]关法春,苗彦军,Fang TB,兰小中,梁正伟.起垄措施对重度盐碱化草地土壤水盐和植被状况的影响.草地学报,2010,(06):763-767.
    [6]杨允菲,郑慧莹.松嫩平原碱斑进展演替实验群落的比较分析.植物生态学报,1998,22(03):214-221
    [7]吴乐知,李取生.松嫩平原西部盐渍荒漠化机理研究.水土保持学报,2003,17(04):79-81+93.
    [8]吴亚坤,周连仁,杨劲松.地面覆盖对苏打草甸碱土盐分及牧草生物量的影响.土壤通报,2007,38(04):816-818.
    [9]郭继勋,张为政,肖洪兴.羊草草原的植被退化与土壤的盐碱化.农业与技术,1994(02):39-43.
    [10]孙泱.吉林省半干旱草原苏打碱斑土壤水溶性盐动态规律的初步研究.吉林农业科学,1985(01):26-31.
    [11]孙秋菊,郭兴宽著.环境保护与物流.清华大学出版社,2004,pp328.
    [12]Horikoshi K. Alkaliphiles:Some Applications of Their Products for Biotechnology. Microbiol. Mol. Biol. Rev.1999,63(4):735-750.
    [13]Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001,5(2):73-83.
    [14]Arahal DR, Ventosa A, Moderately halophilic and halotolerant species of Bacillus and related genera. In:Berkeley RCW, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell, Oxford,2002, pp 83-99.
    [15]Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry:proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology,2005,55(6):2309-2315.
    [16]Krulwich TA, Hicks DB, Swartz TH. Ito M Bioenergetic adaptations that support alkaliphily. In:Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. American Society for Microbiology, Washington,2007, pp 311-329.
    [17]Grant W. D. General view of halophiles, p.15-37. In K. Horikoshiand W. D. Grant (ed.), Superbugs. Microorganisms in extreme environments. Japan Scientific Societies Press, Tokyo, Japan,1991.
    [18]Zahran HH. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils,1997,25(3):211-223.
    [19]Rietz DN, Haynes RJ. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry,2003,35(6):845-854.
    [20]柳参奎编.中国东北盐碱地植物原色图鉴.东北林业大学出版社.2006
    [21]Liu H, Zhang X, Takano T, Liu S. Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochemical and Biophysical Research Communications 2009,383(4):392-396.
    [22]Wang W-J, He H-S, Zu Y-G, Guan Y, Liu Z-G, Zhang Z-H, et al. Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China:comparison with other agents and determination of the mechanism. Plant and Soil,2011,339(1):177-191.
    [23]王遵亲等著.中国盐渍土.北京:科学出版社,1993:132.
    [24]龚子同.中国土壤系统分类:理论-方法-实践.北京:科学出版社.1999:388-416.
    [25]俞仁培,杨道平.土壤碱化过程与实质的研究1.重碳酸钠对土壤碱化的作用.土壤学报,1982,(04):344-350.
    [26]中国科学院南京土壤研究所主编.中国土嚷.科学出版,1978.
    [27]刘兴土.松嫩平原退化土地整治与农业发展.北京:科学出版社.2001:60-135
    [28]Doran, John C, Turnbull J W.Australian Trees and Shrubs:species for land rehabilitation and farm planting in thetropics.Canberra:Australian Centre for International Agricultural Research,1997
    [29]张殿发,王世杰.吉林西部土地盐碱化的生态地质环境研究.土壤通报,2002,33(02):90-93.
    [30]张殿发,王世杰.土地盐碱化过程中的冻融作用机制——以吉林省西部平原为例.水土保持通报,2000,20(06):14-17.
    [31]刘小京,刘孟雨.盐生植物利用与区域农业可持续发展.北京:气象出版社2002,221-225
    [32]郗金标,邢尚军,张建锋,宋玉民,刘德玺,马丙尧.几种重盐碱地土壤改良利用模式的比较.东北林业大学学报,2003,31(06):99-101.
    [33]张建锋,邢尚军,孙启祥,郗金标,宋玉民.黄河三角洲重盐碱地白刺造林技术的研究.水土保持学报,2004,18(06):144-147.
    [34]张建锋,乔勇进,焦明,李秀芬.盐碱地改良利用研究进展.山东林业科技, 1997(03):5-8.
    [35]黄昌勇.土壤学.北京:中国农业出版社.2000:171-179.
    [36]李秀军,李取生,王志春,刘兴土.松嫩平原西部盐碱地特点及合理利用研究.农业现代化研究,2002,23(05):361-364.
    [37]李取生,裘善文,邓伟.松嫩平原土地次生盐碱化研究.地理科学1998,18(03):268-272.
    [38]杨国荣等.东北松嫩平原苏打盐渍土资源及其开发、利用与治理.见:中国土壤学会主编.中国土壤学会苏打盐渍土改良学术讨论会论文集.长春:吉林科技出版社,1986.12-15.
    [39]郭继勋,孙刚,马文明,吴立勋,张福贵.东北羊草草原盐碱斑的自然恢复.东北师大学报(自然科学版),1998,2(02):61-64.
    [40]Hagen LJ. A wind erosion prediction system to meet user needs. Journal of Soil and Water Conservation,1991,46(2):106-111.
    [41]王力,石滨嘉夫,关胜寿,宫崎毅.黑龙江省安达市草地碱化后土壤物理性状变化.草业科学,2007,24(10):19-25.
    [42]Tejada M, Gonzalez JL. Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. European Journal of Agronomy,2005,23(4):336-347.
    [43]柳参奎(主编).植物碳酸盐逆境生理及其分子机制.东北林业大学出版社,2006.
    [44]柳参奎(主编).东北盐碱地碱斑植被恢复与资源利用.东北林业大学出版社,2008.
    [45]Giambiagi, Nelida; Lodeiro, A. Response of the bacterial microflora of a sodic saline soil to different concentrations of nitrogen and sodium in agar culture. Amsterdam, PAYS-BAS:Elsevier; 1989.
    [46]吴建慧,高野哲夫,柳参奎.碱茅(Puccinellia tenuifolra)Put-Cu/Zn-SOD基因的克隆及在酵母中的表达.基因组学与应用生物学,2009,28(01):10-14.
    [47]Rincon A, Priha O, Lelu-Walter M-A, Bonnet M, Sotta B, Le Tacon F. Shoot water status and ABA responses of transgenic hybrid larch Larix kaempferi × L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiology,2005;25(9):1101-1108.
    [48]Machuca A, Pereira G, Aguiar A, Milagres AMF. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Letters in Applied Microbiology, 2007;44(1):7-12.
    [49]Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T. Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytologist, 2003;159(3):743-756.
    [50]Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F. Diversity of the ectomycorrhiza community at a uranium mining heap. Biology and Fertility of Soils,2005,41(6):439-446.
    [51]Obase K, Tamai Y, Yajima T, Miyamoto T. Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza,2007,17(3):209-215.
    [52]Hrynkiewicz K, Haug I, Baum C. Ectomycorrhizal community structure under willows at former ore mining sites. European Journal of Soil Biology,44(1):37-44.
    [53]Kernaghan G, Hambling B, Fung M, Khasa D. In Vitro Selection of Boreal Ectomycorrhizal Fungi for Use in Reclamation of Saline-Alkaline Habitats. Restoration Ecology,2002,10(1):43-51.
    [54]Van der Heijden EW, Kuyper TW. Laboratory experiments imply the conditionality of mycorrhizal benefits for Salix repens:role of pH and nitrogen to phosphorus ratios. Plant and Soil,2001,228(2):275-290.
    [55]Yamanaka T. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia,2003;95(4):584-589.
    [56]Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza, 2001,10(4):175-183.
    [57]Chunleuchanon S, Sooksawang A, Teaumroong N, Boonkerd N. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand:population dynamics as affected by environmental factors. World Journal of Microbiology and Biotechnology, 2003,19(2):167-173.
    [58]Teaumroong N, Innok S, Chunleuchanon S, Boonkerd N. Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand:I. Morphology, physiology and genetic diversity. World Journal of Microbiology and Biotechnology,2002,18(7):673-682.
    [59]Singh RN. Reclamation of /'Usar/'Lands in India through Blue-green Algae. Nature 1950,165 (4191):325-326.
    [60]张巍,冯玉杰.松嫩平原盐碱化土壤蓝藻的分离鉴定.氨基酸和生物资源2008,30(01):13-17+21.
    [61]张巍,冯玉杰.松嫩平原不同盐渍土条件下蓝藻群落的生态分布.生态学杂志2008,27(05):718-722.
    [62]Fernandez Valiente E, Ucha A, Quesada A, Leganes F, Carreres R. Contribution of N2 fixing cyanobacteria to rice production:availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant and Soil,2000,221(1):107-112.
    [63]E.Fernandez Valiente,A.Ucha,A.Quesada,et al.Contribution of N2 fixingcyanobacteria to rice production:availability of nitrogen from 15 N-labelledcyanobacteria and ammonium sulphate to rice. Plant and Soil,2000,221:107-112
    [64]郭继勋,温明章.张宝田.盐碱化羊草草原分解者特征的研究.农业与技术1994(02):43-47.
    [65]周晓梅,赵丹红.松嫩平原不同生境土壤细菌数量的季节动态及与环境因子的相关 分析.吉林师范大学学报(自然科学版),2007(02):28-30.
    [66]Baas Becking, M. LG. Geobiologie of inleiding tot the milieukunde. Netherlands:W. P. van Stockum and Zoon, The Hague,1934.
    [67]Bodaker I, Sharon I, Suzuki MT, Feingersch R, Shmoish M, Andreishcheva E, et al. Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 2010,4(3):399-407.
    [68]Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, et al. Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol,2009,75(18):5750-60.
    [69]Van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science, 2005,307(5706):121-3.
    [70]Galinski EA, Truper HG. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews,1994,15(2-3):95-108.
    [71]Novitsky TJ, Kushner DJ. Planococcus halophilus sp.nov., a Facultatively Halophilic Coccus. International Journal of Systematic Bacteriology,1976,26(l):53-57.
    [72]Del Moral A, Quesada E, Ramos-Cormenzana A. Distribution and types of bacteria isolated from an inland saltern. Annales de l'Institut Pasteur. Microbiologie,138(1):59-66.
    [73]Quesada E, Ventosa A, Rodriguez-Valera F, Ramos-Cormenzana A. Types and properties of some bacteria isolated from hypersaline soils. Journal of Applied Microbiology, 1982,53(2):155-161.
    [74]Zahran HH, Moharram AM, Mohammad HA. Some ecological and physiological studies on bacteria isolated from salt-affected soils of Egypt. Journal of Basic Microbiology, 1992,32(6):405-413.
    [75]刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1999,26(03):232.
    [76]LeFevre E, Round LA. A PRELIMINARY REPORT UPON SOME HALOPHILIC BACTERIA. J. Bacteriol.1919,4(2):177-182.
    [77]Larsen PI, Sydnes LK, Landfald B, Str(?)m AR. Osmoregulation in Escherichia coli by accumulation of organic osmolytes:betaines, glutamic acid, and trehalose. Archives of Microbiology,1987,147(1):1-7.
    [78]Garcia MT, Nieto JJ, Ventosa A, Ruiz-Berraquero F. The susceptibility of the moderate halophile Vibrio costicola to heavy metals. Journal of Applied Microbiology, 1987,63(1):63-66.
    [79]Henis Y, Eren J. Preliminary studies on the microflora of a highly saline soil. Canadian Journal of Microbiology,1963,9(6):902-904.
    [80]Quesada E, Ventosa A, Rodriguez-Valera F, Megias L, Ramos-Cormenzana A. Numerical Taxonomy of Moderately Halophilic Gram-negative Bacteria from Hypersaline Soils. Journal of General Microbiology,1983,129(8):2649-2657.
    [81]Smith FB. An investigation of a taint in rib bones of bacon. The determination of halophilic vibrios (n. spp.). Proc. R. Soc. Queensl 1938,49(49):29-52.
    [82]Onishi H, Kamekura M. Micrococcus halobius sp. n. International Journal of Systematic Bacteriology,1972,22(4):233-236.
    [83]Quesada E, Bejar V, Valderrama MJ, Ventosa A, Ramos Cormenzana AR. Isolation and characterization of moderately halophilic nonmotile rods from different saline habitats, 1985.
    [84]Jeon CO, Lim J-M, Lee JR, Lee GS, Park D-J, Lee J-C, et al. Halomonas kribbensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. International Journal of Systematic and Evolutionary Microbiology,2007,57(10):2194-2198.
    [85]Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol,2006,52(6):339-48.
    [86]Horikoshi K.Microorganisms in Alkaline Environments.Kodansia Ltd.,Tokyo:1991,5-23.
    [87]Kocur, M.1984. Genus Paracoccus Davis 1969,384al, p.399-402. In N. R.Krieg and J. G. Holt (ed.), Bergey's manual of systematic bacteriology, vol.1. The Williams & Wilkins Co., Baltimore, Md
    [88]Elazari-Volcani, B.1940. Ph.D. thesis. The Hebrew University of Jerusalem, Jerusalem. (In Hebrew.)
    [89]Greenberg, E. P., and E. Canale-Parola. Spirochaeta halophila sp.nov., a fermentative anaerobic bacterium from a high-salinity pond. Arch.Microbiol,1976,110:185-194.
    [90]DOBSON SJ, FRANZMANN PD. Unification of the Genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al.1980), and Halovibrio (Fendrich 1988) and the Species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a Single Genus, Halomonas, and Placement of the Genus Zymobacter in the Family Halomonadaceae. International Journal of Systematic Bacteriology,1996,46(2):550-558.
    [91]Qu L, Lai Q, Zhu F, Hong X, Zhang J, Shao Z, et al. Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. International Journal of Systematic and Evolutionary Microbiology,2011,61(7):1612-1616.
    [92]Menes RJ, Viera CE, Farias ME, Seufferheld MJ. Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. International Journal of Systematic and Evolutionary Microbiology,2011,61(5):1211-1217.
    [93]Gonzalez-Domenech CM, Martinez-Checa F, Quesada E, Bejar V. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. International Journal of Systematic and Evolutionary Microbiology,2009,59(6):1290-1296.
    [94]Li H-B, Zhang L-P, Chen S-F. Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. International Journal of Systematic and Evolutionary Microbiology,2008,58(11):2582-2588.
    [95]Lee J-C, Jeon CO, Lim J-M, Lee S-M, Lee J-M, Song S-M, et al. Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. International Journal of Systematic and Evolutionary Microbiology,2005,55(5):2027-2032.
    [96]Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R, Labat M. Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al.1989 emend Dobson and Franzmann 1996 emend. Ntougias et al.2007. International Journal of Systematic and Evolutionary Microbiology,2007,57(10):2307-2313.
    [97]Ntougias S, Zervakis GI, Fasseas C. Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al.1989, emend. Dobson and Franzmann 1996. International Journal of Systematic and Evolutionary Microbiology, 2007,57(9):1975-1983.
    [98]Goel U, Kauri T, Kushner DJ, Ackermann H-W. A moderately halophilic Vibrio from a Spanish saltern and its lytic bacteriophage. Canadian Journal of Microbiology, 1996,42(10):1015-1023.
    [99]Garcia MT, Ventosa A, Ruiz-Berraquero F, Kocur M. Taxonomic Study and Amended Description of Vibrio costicola. International Journal of Systematic Bacteriology, 1987,37(3):251-256.
    [100]Vreeland RH, Litchfield CD, Martin el, Elliot E. Halomonas elongata, a New Genus and Species of Extremely Salt-Tolerant Bacteria. International Journal of Systematic Bacteriology,1980,30(2):485-495.
    [101]Huval JH, Latta R, Wallace R, Kushner DJ, Vreeland RH. Description of two new species of Halomonas:Halomonas israelensis sp.nov. and Halomonas canadensis sp.nov. Canadian Journal of Microbiology,1995,41 (12):1124-1131.
    [102]陈文新.细菌系统发育.微生物学报,1998,38(03):240-243.
    [103]Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles:a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Research,1984,12(14):5837-5852.
    [104]Amann R, Ludwig W, Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev.1995,59(1):143-169.
    [105]洪义国,孙谧,张云波,李勃生16SrRNA在海洋微生物系统分子分类鉴定及分子检测中的应用.海洋水产研究,2002,23(01):58-63.
    [106]冯玉杰,张巍,陈桥,马程慧.松嫩平原盐碱化草原土壤理化特性及微生物结构分析.土壤,2007,39(02):301-305.
    [107]姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理.土壤,2006,38(03):256-262.
    [108]李取生,李秀军,李晓军,王志春,宋长春,章光新.松嫩平原苏打盐碱地治理与利用.资源科学,2003,25(01):15-20.
    [109]陈超子,杨京蓉ICP-AES同时测定土壤和沉积物中全硼与其它微量及常量元素.光谱实验室,1995,12(5):19.
    [110]魏复盛等编著水和废水监测分析方法指南中册pp.467-474中国环境科学出版社,北京,1997.
    [111]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.2000:90
    [112]孙鸿烈,刘光崧.土壤理化分析与剖而描述.北京:中国标准出版社,1996:45
    [113]李强,赵秀兰,胡彩荣.IS010390:2005土壤质量pH的测定.污染防治技术,2006,19(01):53-55.
    [114]Lesch SM, Strauss DJ, Rhoades JD. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques:1. Statistical Prediction Models:A Comparison of Multiple Linear Regression and Cokriging Water Resour. Res.1995,31(2):373-386.
    [115]Chang C, Sommerfeldt TG, Carefoot JM, Schaalje GB. Relationships of electrical conductivity with total dissolved salts and cation concentration of sulfate-dominant soil extracts. Canadian Journal of Soil Science,1983,63(1):79-86.
    [116]杨帆,邓伟,章光新,杨建锋,李秀军.苏打盐渍土地区芦苇地土壤盐分离子空间变异与群落关系研究.上壤学报,2008,45(04):594-600.
    [117]李学垣.土壤化学[M].北京:高等教育出版社.213-278.
    [118]郭继勋,姜世成,孙刚.松嫩平原盐碱化草地治理方法的比较研究.应用生态学报,1998,9(04):425-428.
    [119]刘峰.松嫩草原盐碱地土壤理化性质的季节变化研究.国土与自然资源研究,2010(05):55-56.
    [120]李文均,徐平,徐丽华,姜成林.极端环境中的放线菌资源.微生物学通报,2003,30(04):125-127.
    [121]Dwivedi R.S, Sreenivas K. Image transforms as a tool for the study of soil salinity and alkalinity dynamics,1998.
    [122]Khan N.M, Rastoskuev V.V, Shalina E.V, Sato Y. Mapping salt-affected soils using remote sensing indicators—a simple approach with the use of GIS-IDRSI. In Proceedings of the 22nd Asian Conference of Remote Sensing, Singapore, November,2001.
    [123]Metternicht GI, Zinck JA. Remote sensing of soil salinity:potentials and constraints. Remote Sensing of Environment,2003,85(1):1-20.
    [124]Sukchan S, Yamamoto Y. Classification of salt affected areas using remote sensing and GIS. JIRCAS Working Report,2002,30,15-19.
    [125]Echigo A, Hino M, Fukushima T, Mizuki T, Kamekura M, Usami R. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Systems,2005,1(1):8.
    [126]陈奇辉,刘祝祥,彭清忠,黄苛,贺建武,张丽等.小溪自然保护区非盐环境土壤中嗜盐和耐盐菌多样性.微生物学报,2010,50(11):1452-1459.
    [127]Poli A, Esposito E, Orlando P, Lama L, Giordano A, de Appolonia F, et al. Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Systematic and Applied Microbiology,2007,30(1):31-38.
    [128]Oren A, Ventosa a, Grant WD. Proposed Minimal Standards for Description of New Taxa in the Order Halobacteriales. International Journal of Systematic Bacteriology, 1997,47(1):233-238.
    [129]中国科学院土壤研究所微生物室.土壤微生物研究方法,科学出版社,1985
    [130]J萨姆布鲁克,D.E.拉塞尔著,黄培堂等译.分子克隆实验指南第三版[M].北京:科学出版社,2002,93-96.
    [131]Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNA-and rRNA-Based Microbial Community Composition. Appl. Environ. Microbiol,2000,66(12):5488-5491.
    [132]Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, et al. Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. Journal of Bioscience and Bioengineering,2003,96(6):547-558.
    [133]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows Interface:Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research,1997,25(24):4876-4882.
    [134]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4(4):406-425.
    [135]Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev,1996,60(2):407-438.
    [136]Stackebrandt E, Goebel BM. Taxonomic Note:A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal of Systematic Bacteriology,1994,44(4):846-849.
    [137]Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains:proposal for nine new species. Microbiology,1995,141(7):1745-1761.
    [138]Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N, Hirsch P. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. International Journal of Systematic and Evolutionary Microbiology,2002,52(4):1145-50.
    [139]Chen Y-G, Tang S-K, Zhang Y-Q, Liu Z-X, Chen Q-H, He J-W, et al. Zhihengliuella salsuginis<,/i>, sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles,2010,14(4):397-402.
    [140]Martinez-Canovas MJ, Bejar V, Martinez-Checa F, Quesada E. Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 2004,54(4):1329-1332.
    [141]Ma Y, Xue Y, Grant W, Collins N, Duckworth A, Steenbergen R, et al. Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 2004,8(3):193-200.
    [142]Kurata A, Miyazaki M, Kobayashi T, Nogi Y, Horikoshi K. Alkalimonas collagenimarina sp. nov., a psychrotolerant, obligate alkaliphile isolated from deep-sea sediment. International Journal of Systematic and Evolutionary Microbiology,2007,57(7):1549-1553.
    [143]Miyaji T, Otta Y, Shibata T, Mitsui K, Nakagawa T, Watanabe T, et al. Purification and characterization of extracellular alkaline serine protease from Stenotrophomonas maltophilia strain S-1. Letters in Applied Microbiology,2005,41(3):253-257.
    [144]Tian S-P, Wang Y-X, Hu B, Zhang X-X, Xiao W, Chen Y, et al. Litoribacter ruber gen. nov., sp. nov., an alkaliphilic, halotolerant bacterium isolated from a soda lake sediment. International Journal of Systematic and Evolutionary Microbiology,2010,60(12):2996-3001.
    [145]Rossello-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiology Reviews,2001,25(1):39-67.
    [146]Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, et al. Bacterial phylogeny based on comparative sequence analysis (review). Electrophoresis, 1998,19(4):554-568.
    [147]Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology,2007,57(1):81-91.
    [148]Anil Kumar P, Srinivas TN, Pavan Kumar P, Madhu S, Shivaji S. Nitritalea halalkaliphila gen. nov., sp. nov., an alkaliphilic bacterium of the family'Cyclobacteriaceae', phylum Bacteroidetes. Int J Syst Evol Microbiol,2010,60(Pt 10):2320-5.
    [149]Anil Kumar P, Srinivas TN, Madhu S, Manorama R, Shivaji S. Indibacter alkaliphilus gen. nov., sp. nov., an alkaliphilic bacterium isolated from a haloalkaline lake. Int J Syst Evol Microbiol,2010,60(Pt 4):721-6.
    [150]Nedashkovskaya 01, Kim SB, Kwon KK, Shin DS, Luo X, Kim S-J, et al. Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al.2004 and Chimaereicella Tiago et al.2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al.2003 emend. Nedashkovskaya et al.2004. International Journal of Systematic and Evolutionary Microbiology,2007,57(9):1988-1994.
    [151]Nedashkovskaya OI, Kim SB, Hoste B, Shin DS, Beleneva IA, Vancanneyt M, et al. Echinicola vietnamensis sp. nov., a member of the phylum Bacteroidetes isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 2007,57(4):761-763.
    [152]Ying J-Y, Wang B-J, Yang S-S, Liu S-J. Cyclobacterium lianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the South China Sea, and emended description of the genus Cyclobacterium. International Journal of Systematic and Evolutionary Microbiology,2006,56(12):2927-2930.
    [153]Schmidt M, Prieme A, Stougaard P. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland. Int J Syst Evol Microbiol,2006,56(Pt 12):2887-92.
    [154]Yoon J-H, Yeo S-H, Oh T-K. Hongiella marincola sp. nov., isolated from sea water of the East Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 2004,54(5):1845-1848.
    [155]Brettar I, Christen R, Hofle MG. Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. International Journal of Systematic and Evolutionary Microbiology,2004,54(6):2335-2341.
    [156]Brettar I, Christen R, Hofle MG. Belliella baltica gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol,2004,54(Pt1):65-70.
    [157]马延和.嗜碱微生物.微生物学通报,1999,26(04):309.
    [158]Usami R, Echigo A, Fukushima T, Mizuki T, Yoshida Y, Kamekura M. Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. International Journal of Systematic and Evolutionary Microbiology, 2007,57(4):770-774.
    [159]Echigo A, Minegishi H, Mizuki T, Kamekura M, Usami R. Geomicrobium halophilum gen. nov., sp. nov., a moderately halophilic and alkaliphilic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology,2010,60(4):990-995.
    [160]Echigo A, Fukushima T, Mizuki T, Kamekura M, Usami R. Halalkalibacillus halophilus gen. nov., sp. nov., a novel moderately halophilic and alkaliphilic bacterium isolated from a non-saline soil sample in Japan. International Journal of Systematic and Evolutionary Microbiology,2007,57(5):1081-1085.
    [161]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984:7-9.
    [162]陶天申,杨瑞馥,东秀珠.原核生物系统学.北京:化学工业出版社,2007.5.
    [163]Garrity, G. M. & Holt, J. G.. The road map to the Manual. In Bergey's Manual of Systematic Bacteriology,2nd edn,2001, vol.1, pp.119-166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York:Springer.
    [164]Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol,2000,66,5116-5122.
    [165]Nedashkovskaya, O. I., Suzuki, M., Vysotskii, M. V. & Mikhailov, V. V. Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga-Flavobacterium-Bacteroides. Int J Syst Evol Microbiol,2003,53,81-85.
    [166]Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol,2002,39,91-100.
    [167]Brettar, I., Christen, R. & Ho" fle, M. G. Belliella baltica gen.nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol,2004,54,65-70.
    [168]Nichols, D., Bowman, J., Sanderson, K., Mancuso Nichols, C.,Lewis, T., McMeekin, T. & Nichols, P. D. Developments with Antarctic microorganisms:culture collections, bioactivity screening,taxonomy, PUFA production and cold-adapted enzymes. Curr Opin Biotechnol,1999,10,240-246.
    [169]Bull, A. T., Ward, A. C. & Goodfellow, M. Search and discovery strategies for biotechnology:the paradigm shift. Microbiol Mol Biol Rev,2000,64,573-606.
    [170]Ludwig, W., Euze'by, J. & Whitman, W. B. Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes,Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi,and Gemmatimonadetes. Bergey's Taxonomic Outlines, 2008 vol.4. http://www.bergeys.org/outlines/Bergeys Vol 4 Outline.pdf
    [171]Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol,1966,45,493-496.
    [172]Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl,1990 20,16.
    [173]Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. (1977). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol,100,221-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700