水稻ONAC家族基因重叠表达特性及其在抗病抗逆中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长发育的过程中,经常会受到干旱、高盐、低温、病原菌等各种非生物和生物胁迫的影响。这些胁迫通常会造成植物细胞的损伤,进而严重影响植物的生长发育和作物产量。在长期的进化过程中,植物形成了一系列生理、生化、代谢及防御机制,以适应和抵御各种生物和非生物逆境。在众多的适应和抗逆机制中,基因表达的转录调控在植物适应环境和抵御逆境胁迫中起重要作用。NAC (NAM/ATAF/CUC)家族基因是植物特有的一类转录因子,存在于多种植物中,其共同特点是在N端含有一段高度保守、约由150个氨基酸组成的NAC结构域,而C端为高度变异的转录调控区。研究表明,NAC转录因子不仅参与植物生长发育的调控、而且在植物抗病抗逆反应中具有重要的调控作用。本研究系统分析了ONAC家族基因对生物与非生物胁迫的响应、并分离克隆21个抗病抗逆相关的(?)NAC基因。在此基础上,研究了这21个ONAC基因在抗病信号分子处理、水稻-稻瘟菌和水稻-白叶枯病菌互作中的表达模式,以及初步分析了部分基因的生化特性和在抗病抗逆中的功能,旨在发现潜在的抗病抗逆胁迫相关的基因,为基因工程提高水稻抗病抗逆性能提供理论基础。本研究的主要内容及结果如下:
     本研究利用水稻基因芯片公共数据库[Rice Oligonucleotide Array Database (ROAD)(http://www.ricearray.org/)],对多种生物[稻瘟病(Magnaporthe grisea)、寄生植物独脚金(Striga hermonthica)、水稻条纹病毒(Rice stripe virus, RSV)、水稻白叶枯病((?)(anthomonas oryzae pv.oryzae, Xoo)、水稻细菌性条斑病菌(Xanthomonas oryzae pv. oryzicola, Xoc)]与非生物(高盐、干旱、低温)胁迫下ONAC家族基因的响应进行分析,并选择30个ONAC基因对部分胁迫因子下的响应进行验证,结果发现该家族基因有63个ONAC基因对多种胁迫因子有重叠表达的特性,在这些重叠表达的基因中,多数基因在高盐、干旱、低温、稻瘟病、寄生植物独脚金、水稻条纹病毒诱导上调表达。对于非生物胁迫,38个ONAC基因重叠表达于任意两种胁迫条件,且选择的30个ONAC基因中有16个受脱落酸(Abscisic acid、ABA)诱导表达;而对于生物胁迫,有65个基因重叠表达于任意两种生物肋迫因子。系统进化树分析表明这些重叠表达的基因分布于ONAC家族的10个亚组[OsNAC7(SND)、ONAC11(NAC1)、 SNACⅠ、SNACⅡ (NAM/CUC3)、SNACⅢ(TIP)、SNACⅣ (ANAC34)、ONAC079(ONAC6、ONAC012(ONAC7)、ONAC135(0NAC3)和ONAC100(ONAC2)],同源搜索发现在该家族有16组基因高度同源。ONAC基因对多种胁迫因子的重叠表达特性及其基因间的高度同源性,预示着ONAC基因的功能多效性和相似性。
     选择克隆了21个水稻抗病抗逆相关候选ONAC基因,研究了这些ONAC基因在抗病信号分子处理、水稻-稻瘟菌以及水稻-白叶枯病菌互作中的表达模式。结果表明分离获得的21个抗病抗逆相关ONAC基因中,除了ONAC058和(ONAC066,多数ONAC基因的表达能被水杨酸(Salicylic acid, SA)、茉莉酸(Jasmonic acid, JA)、 ACC (Ethylene, ET)多个抗病信号分子所诱导,但表达模式在不同抗病信号分子处理后不尽相同,相对于SA,多数ONAC基因对ACC (ET)或JA的响应程度较强。其中,12个ONAC基因(OsNAC8、ONAC016、ONAC022、ONAC023、ONAC049、 ONAC054、ONAC061、ONAC063、ONAC075、ONAC095、ONAC122和(ONAC131)的表达可以被ACC (ET)强烈诱导,6个ONAC基因(SNAC1、OsNAC4、OsNAC5、 OsNAC6、ONAC103和ONAC121)表达受JA强烈诱导,这些结果表明这18个抗病抗逆相关ONAC基因是通过JA/ET信号途径或通过JA/ET与SA信号途径参与水稻的抗病反应。在水稻-稻瘟菌、水稻-白叶枯病菌互作模式下,11个ONAC (ONAC022、ONAC023、ONAC049、ONAC054、ONAC061、ONAC075、ONAC095、 ONAC103、ONAC121、ONAC122和ONAC131)基因在水稻-稻瘟病菌、水稻-白叶枯病菌的非亲和性互作中特异性地诱导表达,因而可能与水稻抗稻瘟病、水稻白叶枯病反应的激活有关。此外,3个ONAC基因(OsNAC6、OsNAC8、ONAC063)在水稻-稻瘟病菌的非亲和性互作中特异性地诱导表达,而在水稻-白叶枯病菌的非亲和性互作中表达下调,这3个基因可能与抗水稻稻瘟病激活有关,且与抗水稻白叶枯病的抑制有关。4个ONAC基因(OsNAC3、OsNAC4、ONAC016和ONAC058)在水稻-白叶枯病菌非亲和性互作中上调表达,可能参与水稻对白叶枯抗病的激活有关。
     选择研究5个ONAC基因(ONAC023、ONAC063、ONAC095、ONAc122、 ONAC131)的亚细胞定位和转录活性,发现这5个基因编码的蛋白都能定位于细胞核,且都具有转录激活活性。
     采用病毒诱导的基因沉默技术(VIGS)初步对一些分离的ONAC基因的抗病功能进行初步的研究。结果发现当5个ONAC基因(ONAC023、ONAC095、ONAC122、 ONAC131(?)口(OsNAC6)分别沉默后,水稻抗稻瘟病害表现出感病性的增加,且一些抗病相关的基因(Oseds1、OsPAD4、OsLOX、OsPR3、OsPR1a、OsWRKY45、OsJamyb和(?)OsNH1/NPR1)也不同程度的表达下调,表明这5个ONAC基因通过直接或间接调控这些抗病相关的基因参与水稻对稻瘟病抗性。另外,ONAC023和ONAC095两个基因沉默后,对白叶枯病的抗病性下降,表明这两个基因可能在白叶枯抗病中具有正向调控的作用。
     为了深入的探讨ONAC基因在抗病抗逆反应中的功能,构建了多数克隆的ONAC基因的超表达载体和SRDX载体,并导入水稻秀水11品种中。目前已经获得一些基因的超表达转基因株系或SRDX转基因株系,正在通过分子生物学方法对转基因株系进行鉴定,其中ONAC075-oe、OsNAC6-oe转基因株系的T0代种子已获得,并对其在抗病抗逆中的功能进行初步分析。结果表明过量表达OsNAC6和ONAC075的水稻转基因株系,对稻瘟病抗性和干旱胁迫的耐受性增加,而这2个基因参与植物抗病、抗逆的机制还需进一步的研究。
Plants are subjected to various types of abiotic (e.g. high-salinity, drought, and cold) and biotic (e.g. pathogen infection, insect fedding, and parasitic plants) stresses in their growth and development environments. To survive under such environment, plants have developed a series of mechanisms at physiological, biochemical, and molecular levels to adapt and defend themselves against these stresses. During these processes, different types of transcription factors play critical roles in plant defense response to biotic and abiotic stresses through directly or indirectly regulation of stress-related genes. NAC (NAM/ATAF/CUC) transcription factor, as one of largest and plant-specific gene families exsists in many different plants. The common characteristics of the NAC protein are the presence of a conserved NAC domain, composing of about150amino acids in N-terminals, and a highly variable transcriptional activation region in C-terminals. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. The study systematically investigated the expression characterization of ONAC genes under the different biotic and abiotic stresses. Based on the overlapping expression characteization, we isolated21ONAC genes from rice and investigated the expression patterns of these21ON AC genes after pathogens infection, and exogenous hormones salicylic acid (SA), methyl jasmonate (MeJA), ACC (ethylene,ET). The molecular characterization and the function of some ONAC genes were also investigated in this study. All of these studies will provide potential utility in rice genetic improvement of stress resistacne in rice.The major results of ONAC genes in this study were showed in the following aspects:
     Microarray data analyses revealed that about63ONAC genes were overlapping expression during in various abiotic (salinity, drought, and Cold) and biotic stress (Magnaporthe grisea, Striga hermonthica, Xoo, Xoc, and RSV) conditions. Most of ONAC genes were up-regulated expression response to salt, dry, cold, Magnaporthe grisea, Striga hermonthica,and RSV. For the abotic stresses.38genes were overlapping expression in any two stress conditions.16among30representative ONAC genes were up-regulated expression response to Abscisic acid (ABA). For the biotic stresses,65ONAC genes were overlapping expression in any two biotic stresses. The phylogenetic tree suggested that these ONAC genes were classified into10subgroups [OsNAC7(SND), ONAC11(NAC1), SNACⅠ, SNACⅡ (NAM/CUC3), SNACⅢ (TIP), SNACⅣ (ANAC34), ONAC079(ONAC6), ONAC012(ONAC7), ONAC135(ONAC3). ONAC100(ONAC2)]. Homology sequence search found that there were many highly ortholgous genes in ONAC genes family. The overlapping expression of ONAC genes indicated that ONAC genes might play important roles in the cross-talk of different abiotic and biotic stresses and might have the multiple biological functions for the stress conditions.
     We isolated21ONAC genes from rice and investigated the expression patterns of these21ONAC genes after pathogens infection, and exogenous hormones SA, MeJA, ACC. For pathogens infection, two interaction systems of rice-Magnaporthe grisea and rice-Xanthomonas oryzae pv.oryzae (Xoo) were used. The results showed that most of them were induced by the SA, JA and ACC (ET) except ONAC066and ONAC058. Among these,12ONAC genes(OsNAC8,ONAC016,ONAC022,ONAC023,ONAC049, ONAC054,ONAC061,ONAC063,ONAC075,ONAC095,ONAC122,and ONAC131) were strongly induced by ACC(ET),6ONAC genes (SNAC1,OsNAC4,OsNAC5,OsNAC6, ONAC103, and ONAC121) were strongly induced by JA. The expression patterns of21isolated ONAC genes in incompatible and compatible combinations between rice and Magnaporthe grisea, rice and Xoo were analyzed. The results showed that11ONAC genes (ONAC022, ONAC023, ONAC049, ONAC054, ONAC061, ONAC075, ONAC095, ONAC103, ONAC121, ONAC122, and ONAC131) were more strongly induced in the incompatible interaction than compatible interaction in these two combinations. According to the expression patterns, these11ONAC genes may be involved in resistance to fungal blast disease and bacterial blight of rice. In addition,3ONAC genes (OsNAC6, OsNAC8, and ONAC063) may be involved in resistance to fungal blast disease and susceptivity to Bacterial blight of rice, and4ONAC genes (OsNAC3, OsNAC4, ONAC016, and ONAC058) may be involved in resistance to Bacterial blight of rice.
     Transient expression in tobacco epidermal cells indicated that ONAC-GFP fusion proteins including ONAC023, ONAC063, ONAC095, ONAC122, and ONAC131were localized in the nucleus. Transactivation analysis showed that ONAC023, ONAC063. ONAC095, ONAC122, or ONAC131played as a role in the activator of transcription.
     We investigated the function of some ONAC genes in rice through virus-induced gene silencing (VIGS). The results showed that some pathogen relative genes (Oseds1, OsPAD4, OsLOX, OsPR3, OsPR1a, OsWRKY45, OsJamyb, and OsNHl/NPR1) were downregulation when ONAC023,ONAC095, ONAC122, ONAC131, or OsNAC6was silenced respectively, and finally the rice became more susceptive to rice blast.These results indicated that ONAC023, ONAC095, ONAC122, ONAC131, and OsNAC6were related to the resistance to rice blast disease. In addition, the rice seedling became more susceptive to rice bacterial blight when ONAC023or ONAC095was silenced respectively, which indicated that ONAC023and ONAC095play the positive roles in resistance to rice bacterial blitht.
     To study the function of ONAC genes in disease resistance and stress tolerance, we constructed overexpression vectors (ONAC-OE) and chimeric repressor vectors (ONAC-SRDX) of isolated ONAC genes, and introduced them into wild-type rice XiuShui-11. In the present study, we have obtained some transgenic lines of ONAC genes and To seeds of ONAC075-oe, OsNAC6-oe transgenic lines. Furthermore, the function analysis of ONAC075-oe, OsNAC6-oe transgenic lines showed that ONAC075-oe and OsNAC6-oe can improve the blast disease resistance and drought stress tolerance.
引文
Aaron S, Mark E. (2009) Recent advances and emerging trends in plant hormone signalling. Nature,459:1071-1078.
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. (1997) Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant. Plant Cell, 9:841-857.
    Baker CC, Sieber P, Wellmer F, Meyerowitz EM. (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005,15:303-315.
    Balzergue S, Morel J, Martin-Magnetite ML. (2007) Identification of rice genes differentially expressed upon virulent infection by Magnaporthe grisea. Rice Array database (http://www.ricearray.org):GSE7256.
    Bray E A. (1997) Plant responses to water deficit. Trends Plant Sci.2,48-54.
    Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang J, Wu XY, Sun JQ, Xie Q, Li CY. (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res,18:756-767.
    Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S. (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol,129:661-677.
    Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC. (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J,27:101-113.
    Chern MS, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. (2005) Over-expression of rice NPR1 homologue leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511-520.
    Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES. (2009) The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol,149:1724-1738.
    Cohen Y, Gisi U, Niderman T. (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methylester. Phytopathology,83:1054-1062.
    Collinge M, Boller T. (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding.Plant Mol Biol, 46:521-529.
    Conrath U, Pieterse CMJ, Mauch-Mani B. (2002) Priming in plant-pathogen interactions. Trends Plant Sci.7:210-216.
    Delaney TP, Uknes S, Vernooij B, Friedrich L,Weymann K,Negrotto D, Gaffney T, Gut-Rella M, Kessmann H,Ward E, Ryals J. (1994) A central role of salicylic acid in plant disease resistance. Science,266:1247-1250.
    Delessert C, Kazan K, Wilsom LW, Straetend DVD, Manners J, Dennis ES, Dolferus R. (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J,43:745-757.
    Ding XS, Schneider WL, Chaluvadi SR, Mian MA, Nelson RS. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact.19:1229-1239.
    DO NL. (2009) Comparative transcriptional profiling of rice undergoing infection by X.oryzae pv. Oryzae or by X. oryzae pv. oryzicola. Rice Array database (http://www.ricearray.org), GSE16793.
    Dong XN. (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547-552.
    Durrant WE, Dong X. (2004) Systemic acquired resistance. Annu Rev Phytopathol,42: 185-209.
    Duval M, Hsieh TF, Kim SY, Thomas TL. (2002) Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol,50: 237-248.
    Epple P, Apel K, Bohlmann H. (1995) An Arabidopsis thaliana Thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol.109:813-820.
    Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep,5:297-303.
    Eulgem T, Somssich IE. (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin plant biol,10:366-371.
    Fang YJ, You J, Xie K, Xie WB, Xiong LZ. (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics.280:547-563.
    Feys BJ, Moisan LJ, Newman MA, Parker JE. (2011) Direct interaction between the Arabidopsis disease resistance signaling proteins EDS1 and PAD4.EMBO J, 20:5400-5411.
    Flor HH. (1971) Current status of the gene-for-gene concept. Annu Rev phytopathol, 9:275-296
    Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K,Ohme-Takagi M, Tran LS, Yamaguchi-shinozaki K, Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J,39: 863-876.
    Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y,Yamaguchi-Shinozaki K, Shinozaki K. (2006) Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr Opin plant biol,9:436-442.
    Gaffney T, Friedrich L. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science,261:754-756.
    Gary L, Murray G. (2007) Salicylic acid in plant defence-the players and progagonists. Curr Opin plant biol,10:466-472.
    Guo HS, Xie Q, Fei JF, Chua NH. (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell,17:1376-1386.
    Gutterson N, Reuber TL. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin plant biol,7:465-471.
    Han QQ, Zhang JH, Li HX, Luo ZD, Ziaf K, yang BO, Wang TT, Ye ZB. (2011) Identification and expression pattern of one stress-responsive NAC gene from Solarium lycopersicum. Mol Biol Rep, DOI 10.1007/s11033-011-0911-2.
    Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proc Natl Acad Sci USA, 103:12987-12992.
    Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ. (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 67:169-181.
    Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant M R, Rung JH, Collinge DB, Lyngkjaer MF. (2008)Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signaling for efficient basal defense towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J,56:867-880.
    Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB. (2007) The HvNAC6 transcription factor:a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol,38: 1030-1036.
    Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi DY, Kim M, Reuzeau C, Kim J K. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol,153:185-197.
    Jiang YQ, Deyholos MK. (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol, 6:25.
    John GT, Christine E, Alessandra D. (2002) The jasmonate signal pathway. Plant Cell, S:153-164.
    Jwa NS, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R. (2006) Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Bioch 44: 261-273.
    Kaneda T, Fujiwara S, Takai R, Takayama S, Isogai A, Che F S. (2007) Identification of genes involved in induction of plant hypersensitive cell death. Plant Biotech,24: 191-200.
    Kaneda T, Taga Y, Takai R, wano M, Matsui H, Takayama S, Isoga A, Che FS. (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J,28:926-936.
    Keen NT. (1990) Gene-for-Gene complementarity in plant pathogen interactions. Annu Rev Genet.24:447-463.
    Kenton P, Mur LAJ, Atzorn R, Wasternack C, Draper J. (1999) Jasmonic acid accumulates during the tobacco hypersensitive response (HR) and is restricted to HR lesions. Mol Plant Microbe Interact 12:74-78.
    Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY. (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet, 262(6):1047-1051
    Koornneef A, Leon-Reyes A, Ritsema T,Verhage A,Otter FCD,Van L, Pieterse CMJ. (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveals a role for redox modulation. Plant Physiol.147:1358-1368.
    Koornneef A, Pieterse CMJ. (2008) Cross talk in defense signaling. Plant Physiol 146: 839-844
    Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5.325-331
    Laufs P, Peaucelle A, Morin H, Traas J. (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 2004,131:4311-4322.
    Le D T, Nisjiyama R, Watanabe Y, Mochida K, Yamaquchi-Shinozaki K, Shinozaki K, Tran LS. (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res,18:263-276.
    Le MW, Chen S, Pan QH, Zeng RS,Liu YH,Luo SM. (2007)Induced expression of signaling pathway and defense-related genes in interaction between rice and Magnaporthe grisea. ACTA Phytopathologica Snica, (37):42-49
    Lee MW, Qi M, Yang YO. (2001) A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant-Microbe Interact 14: 527-535.
    Lin RM, Zhao WS, Meng XB, Wang M, Peng YL. (2007) Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci,172:120-130.
    Liu J, Wang XJ. (2006) An integrative analysis of the effects of auxin on jasmonic acid biosynthesis in Arabidopsis thaliana. J. Integr. Plant Biol. 48:99-103.
    Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15:165-178.
    Lorenzo O, Solano R. (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol. 8:532-540.
    Lu G, Jantasuriyarat C, Zhou B, Wang GL. (2004) Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea, TheorAppl Genet,108:525-534.
    Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 63:289-305.
    Nahar K, Kyndt T, De Vleesschauwer D, Hofte M, Gheysen G. (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice.Plant physiol,157(1):305-316.
    Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J,51:617-630.
    Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J,Nakajima M, Enju A, Shinozaki K. (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis:analysis of gene expression in cytchrome P450 gene superfamily by cDNA microarray. Plant Mol Biol,55:327-342.
    Nurnberger T, Scheel D. (2001) Signal transeission in the plant immune response. Trends Plant Sci,6:372-379.
    Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene.465:30-44.
    Mallory AC, Dugas DV, Bartel DP, Bartel B. (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 14:1035-1046.
    Michael KJ, Peter HH, Marta TZ, Murray RG, Jesper HR, David BC, Michael FL (2008) Transcriptional regulation by an NAC (NAM-ATAF1.2-CUC2) transcription factor attenuates ABA signaling for efficient basal defense towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J,56:867-880.
    Mishina TE, Zeier J. (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J,50:500-513.
    Mitsuda N, Matsui K, Ikeda M, Nakata M, Oshima Y, Nagatoshi Y, Ohme-Takagi M. (2011) CRES-T, an effective gene silencing system utilizing chimeric repressors. Methods Mol Biol,754:87-105.
    Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y. (2008) Characteristic expression of twelve rice PRI family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics,279:415-427.
    Oh SK, Lee S, Yu SH, Choi D. (2005) Expression of a novel NAC domain-containing transcription factor (CaNACl) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta,222:876-887.
    Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet syst,2005,80:135-139.
    Ohtsubo N, Mitsuhara I, Koga M, Seo S, Ohashi Y. (1999) Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. Plant Cell Physiol,40:808-817.
    Olsen AN, Ernst HA, Leggio LL, Skriver K. (2005) Transcription factors:structurally distinct, functionally diverse. Trends Plant Sci,10:79-87.
    Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.DNA Res,10:239-247.
    Peleg Z, Blumwald E. (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin plant biol.14:290-295.
    Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H. (2009a) Characterization of a chickpea(Cicer arietinum L.)NAC family gene, CarNAC5, which is both developmentally-and stress-regulated. Plant Physiol Biochem,47: 1037-1045.
    Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H. (2009b) A NAC transcription factor gene of chickpea(Cicer arietinum L.), CarNACS, is involved in drought stress response and various developmental processes. J Plant Physiol,166:1934-1945.
    Peng H, Yu XW, Cheng HY, Shi QH, Zhang H, Li JG, Ma H. (2010) Cloning and characterization of a novel NAC family gene CarNACl from chickpea(Cicer arietinum L).Mol Biotech nol,44:30-40.
    Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF. (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323.
    Pozo MJ,Van Loon LC; Pieterse CMJ. (2005) Jasmonates-Singals in plant microbe interactions. Journal of plant growth Regulation,23:211-222.
    Rao MV, Davis KR. (2001) The physiology of ozone induced cell death. Planta,213: 682-690.
    Ren T, Qu F, Morris TJ. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell, 12:1917-1926.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. (2002) Prediction of plant microRNA targets. Cell,110:513-520.
    Rock CD. (2000) Pathways to abscisic acid-regulated gene expression.New Phytol.148:357-396.
    Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ. (1999) Phloem long-distance transport of CmNACP mRNA:implications for supracellular regulation in plants. Development,126:4405-4419.
    Rushton PJ, Bokowiec MT, Han SC, Zhang HB, Brannock JF, Chen XF, Laudeman TW, Timko MP. (2008) Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae. Plant Physiol,147:280-295.
    Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S,Lee Y H, Bhoo SH, Wang GL, Hahn TR, Jeon JS. (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response, Plant Cell Rep,25:836-847.
    Scholes JD, Swarbrick PJ, Huang K, Slate J, Press MC (2008). Rice cultivars undergoing a susceptible and resistant interaction with the parasitic plant Striga hermonthica.Rice Array database (http://www.ricearray.org), GSE10373.
    Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux JP. (1997) Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol,114:79-88.
    Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA. (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell,17:311-325.
    Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H, Inoue H, Takatsuji H. (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance.Mol Plant Pathol,2012,13(1):83-94.
    Shah J, Tsui F, Klessig DF. (1997) Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mole Plant Microbe Interact 10:69-78.
    Singh K, Foley RC, Onate-Sanchez L. (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol,5:430-436.
    Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse C M. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-ependent defense pathways through a novel function in the cytosol. Plant Cell,15:760-770.
    Takahashi A, Kawasaki T, Henmi K, Shil K, Kodama O, Satoh H, Shimamoto K. (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J.17:535-545.
    Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi SK, Nakashima K. (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice, Mol Genet Genomics.284:173-183.
    Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell,16:2481-2498.
    Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J,49:46-63.
    Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F. (2008) Interplay between MAMP-triggered and SA-mediated defense responses. Plant J.53:763-775.
    Tyagi AK, Kapoor S, Khurana JP, Ray S. (2007) Expression data for stress treatment in rice seedlings. Rice Array database (http://www.ricearray.org), GSE6901.
    Van Loon LC, Rep M, Pieterse CM. (2006) Significance of inducible defense-related proteins in infected pants. Annu Rev Phytopathol,44:135-162.
    Verberne MC, Hoekstra J, Bol JF, Linthorst HJM. (2003) Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J,35:27-32.
    Wang XE, Basnayake BM, Zhang HJ, Li GJ, Li W, Virk N, Menqiste T, Song FM. (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.Mol Plant-Microbe Interact,22:1227-1238.
    Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFd, Leung J. (2008) An Update on Abscisic Acid Signaling in Plants and More. Molecular Plant,1:198-217.
    Wen N, Chu Z, Wang S. (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Gen Genomics, 269:33]-339.
    Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q. (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res,19:1279-1290.
    Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y,Wang XJ,Zhao JZ, Huang LL, Kang ZS. (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep,37:3703-3712.
    Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C. (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol,1999,39:647-656.
    Xie Q, Guo HS, Dallman G, Fang SY, Welissman AM, Chua NH. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419:167-170.
    Xu LH, Liu FQ, Huang RF, Wang ZL, Peng W, Huang RF, Huang DF, Xie DX. (2001) An Arabidopsis mutant cexl exhibits accumulation of jasmonate-regulated AtVSP Thi2.1 and PDF1.2. FEBS Lett,494:161-164.
    Yang QK, Liang CY, Zhuang W, Li J, Deng HB, Deng QY, Wang B. (2007) Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta,225:321-330.
    Yang RC, Deng CT, Yang BO, Ye ZB. (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep,38: 857-863.
    Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Shinozaki K, Yokoyama S. (2008) Structures and evolutionary origins of plant specific transcription factor DNA-binding domains. Plant Physiol Biochem,46:394-401.
    Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang G. (2000)Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact,13:869-76.
    Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta,1065-1075.
    Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH. (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One,2(7):e642.
    Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T. (2009)Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J,57:615-625.
    Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H. (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J,61:804-815.
    Zhang B, Pan X, Cobb GP, Anderson TA. (2006) Plant microRNA:a small regulatory molecule with big impact. Dev Biol,289:3-16.
    Zhang X, Wu Z, Xie L, Lin Q, Xie L. (2008) Comparative transcriptional profiling of two contrasting rice genotypes in response to rice stripe virus infection. Rice Array database (http://www.ricearray.org), GSE11025.
    Zheng XN, Zhen B, Lu GJ, Han B. (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance.Biochem Biophys Res Commun,379: 985-989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700