用户名: 密码: 验证码:
蛋白质、多肽与DNA相互作用的共振瑞利散射和共振非线性散射光谱及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共振瑞利散射(RRS)光谱(或共振光散射)和共振非线性散射(RNLS)是近年来发展起来的一种新分析技术。由于它的简易性和高灵敏度引起了人们的关注,在生化和药物分析、有机物和金属离子的测定以及纳米微粒的研究中得到越来越多的应用。但是对于蛋白质和核酸等生物大分子,这种方法主要用于研究它们与染料、药物等小分子以及纳米微粒的相互作用,尚很少用于蛋白质和核酸等生物大分子之间相互作用的研究。鉴于RRS光谱对于分子间静电引力,疏水相互作用,氢键作用等弱结合力的结合作用以及分子大小、形貌和构象变化较吸收光谱、荧光光谱等常见的分子光谱分析法更为锐敏,这就为RRS光谱技术用于研究蛋白质、核酸等生物大分子相互作用提供了有利条件,方法具有高灵敏度和简易性,它们能够为生物大分子间的相互作用提供独特的新信息。而且从研究的生物大分子相互作用和分子识别的体系,还可发现和筛选出对于核酸、蛋白质及多糖类物质的高灵敏度和某些高选择性的分析方法。
     本文的主要研究内容及结论如下:
     1.蛋白质与DNA相互作用的RRS和RNLS光谱及其分析应用
     (1)木瓜蛋白酶与DNA相互作用的RRS和RNLS光谱及其分析应用
     在pH1.0-2.8的酸性介质中,带正电荷的木瓜蛋白酶能与带负电荷的生物大阴离子DNA发生相互作用形成结合产物。此时不仅能引起吸收光谱的变化和木瓜蛋白酶荧光的猝灭,还将导致RRS和RNLS的显著增强并出现新的散射光谱。RRS对于两者的相互作用显示了更高的灵敏度。本文根据吸收、荧光和RRS光谱的变化并结合圆二色光谱和热力学数据讨论了木瓜蛋白酶与DNA之间相互作用的主要结合力、两者的结合位点和结合模式。认为两者反应的主要作用力是静电引力、氢键作用力、疏水作用和蛋白质芳香族氨基酸残基(特别是色氨酸残基)与DNA碱基之间的芳基堆集作用。木瓜蛋白酶的芳香族氨基酸残基在DNA大沟槽中与它的碱基之间的芳基堆积作用是引起吸收光谱变化和荧光猝灭的主要原因。而结合产物体积增大,两者电荷被大量中和导致表面疏水性增强以致疏水界面的形成,产生一种表面增强的散射效应。散射位于分子的吸收光谱带中产生的共振增强作用以及蛋白质和DNA反应前后构象变化均可能是引起散射增强的重要原因。由于RRS法具有高灵敏度,对DNA和木瓜蛋白酶的检出限(3σ)分别为4.5~15.3 ng·mL-1和5.6 ng·mL-1。因此木瓜蛋白酶与DNA反应体系为用RRS快速定量测定木瓜蛋白酶和DNA创造了条件。
     (2)胰岛素与ctDNA的相互作用的RRS和RNLS光谱及其分析应用研究
     在pH 7.4 Tirs-HCl缓冲溶液中,胰岛素与ctDNA相互作用生成复合物,此时将引起吸收光谱、圆二色光谱的变化,胰岛素的荧光发生猝灭,共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射的显著增强,并出现新的散射光谱。本文研究了胰岛素与ctDNA反应的适宜条件、影响因素及相关的分析化学性质,并结合RRS、吸收、荧光、圆二色光谱及其原子力显微镜讨论了胰岛素与DNA的相互作用,认为主要结合力包括氢键作用、静电引力、疏水作用力和芳环堆积作用力。并认为胰岛素进入B型构象的DNA大沟槽中,其Try-16、Tyr-26以及phe-24和phe-25四个芳香族氨基酸残基受到与DNA结合的影响。而反应产物体积增大、疏水性增强以及吸收-散射共振能量转移作用和DNA构象变化可能是散射增强的主要原因。此外,该反应体系还可用两者作探针RRS法对DNA和胰岛素进行相互测定。当用ctDNA作探针测定胰岛素时,检出限(36)为6.0ng.mL-1。当用胰岛素作探针测定ctDNA时,检出限(3σ)为7.2 ng.mL-1。两者均具有较高灵敏度和较好地选择性,而且方法简便快速,因此这一反应体系也对发展高灵敏度测定胰岛素类药物以及DNA的新方法有重要意义。
     (3)血红蛋白与sDNA相互作用的共振瑞利散射及荧光光谱研究
     在弱酸性介质中,血红蛋白与sDNA相互作用生成复合物,此时将引起共振瑞利散射(RRS)的显著增强,并出现新的散射光谱,同时血红蛋白的荧光发生明显猝灭。本文研究了血红蛋白与sDNA反应的适宜条件、影响因素及相关的分析化学性质。猝灭常数随温度的升高而增大,且加入sDNA后荧光寿命变短并结合荧光光谱及荧光寿命讨论了荧光猝灭的类型是动态猝灭。反应产物体积增大、疏水性增强、吸收-散射共振能量转移作用以及构象变化是散射增强的主要原因。此外,该反应体系还可用血红蛋白作探针RRS法和荧光法对DNA进行测定。方法具有较高的灵敏度,其检出限(3σ)分别为5.5 ng·mL-1和202.3 ng·mL-1。RRS法用于合成样品中DNA含量的测定,获得满意的效果。
     2.多肽与DNA相互作用的RRS和RNSL光谱及分析应用研究
     (1)多粘菌素B与DNA相互作用的RRS和RNSL光谱及分析应用研究
     在适宜的酸性介质中,多粘菌素B(PMB)能与DNA发生相互作用并形成复合物,此时将引起吸收光谱发生一定程度的变化,最大吸收波长略有红移并且吸光度有所提高。与此同时可观察到共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射的显著增强,并出现新的散射光谱。本文研究了PMB与DNA反应的适宜条件、影响因素及相关的分析化学性质,并以RRS增强和吸收以及圆二色光谱的变化讨论了PMB与DNA的主要结合力以及可能的结合模式。认为其主要结合力是静电引力、疏水作用力、氢键作用力以及芳基堆积作用等非共价键结合作用。此时PMB可能进入DNA的小沟槽并与磷酸链和相应的碱基结合而形成复合物。并认为反应产物体积增大、疏水性增强以及吸收-散射共振能量转移作用和DNA构象变化可能是散射增强的主要原因。此反应体系可用于RRS法测定DNA和PMB。当用ctDNA作探针测定PMB时,检出限(36)为9.8ng·mL-1。当用PMB作探针测定3中不同的DNA时,检出限(3σ)在3.8~9.0 ng·mL-1之间。两者均具有较高灵敏度而且方法简便快速,因此这一反应体系也对发展高灵敏度测定多肽类药物以及DNA的新方法有重要意义。
     (2)盐酸万古霉素与DNA相互作用的RRS和RNLS光谱及分析应用研究
     在适宜的酸性介质中,盐酸万古霉素(VCM)能与DNA发生相互作用并形成复合物,此时将引起共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射的显著增强,并出现新的散射光谱。本文研究了VCM与DNA反应的适宜条件、影响因素及相关的分析化学性质,并结合RRS、圆二色光谱、吸收光谱的变化和原子力显微镜讨论了VCM与DNA的相互作用。认为其主要结合力是静电引力、疏水作用力、氢键作用力以及芳基堆积作用等非共价键结合作用。此时VCM与DNA发生嵌入结合。并认为反应产物体积增大、疏水性增强以及吸收-散射共振能量转移作用和DNA构象变化可能是散射增强的主要原因。当用VCM作探针RRS法测定3种不同的DNA时,检出限(3σ)在6.8~11.1 ng.mL-1之间。方法具有较高灵敏度且简便快速,对发展高灵敏度测定DNA的新方法有重要意义。
     3.同多钨酸根RRS和RNLS光谱法测定硫酸多粘菌素B
     在pH 1.3~1.6的HCl-NaAc缓冲介质中,多粘菌素B(PMB)以及钨酸钠溶液本身的RRS和RNLS强度均十分微弱,但是当两者相互反应时,RRS和RNLS急剧增强。本文研究了PMB与钨酸根反应的适宜条件、影响因素及相关的分析化学性质,并以RRS增强、吸收和圆二色光谱的变化以及原子力显微镜照片讨论了PMB与同多钨酸的相互作用机理。并认为反应产物体积增大、疏水性增强以及吸收-散射共振能量转移作用可能是散射增强的主要原因。此反应体系可用于RRS、SOS和FDS法测定PMB。三种方法均具有较高的灵敏度,其中RRS法灵敏度最高,其检出限(3σ)为5.5 ng·mL-1。且方法具有较好的选择性,用于药物、人血清和尿液中多粘菌素B含量的测定,取得了满意的结果。
Resonance Rayleigh scattering (RRS, or resonance light scattering, RLS) and resonance non-linear scattering (RNLS) are new techniques developed in recent years. They have received much attention due to their simplicity and high sensitivity. They have been extensively used to study and determination of biological macromolecules, pharmaceuticals, organic compounds and nanoparticles. However, for biological macromolecules such as proteins and nucleic acids, RRS method has been extensively used to research interactions between them and some small molecules such as dyes and medicines, and seldom used to study interactions between themselves. RRS is more sensitive to weak intermolecular forces (for instance, electrostatic force, hydrophobic force, hydrogen bonding and aromatic stacking interaction) and changes of molecular sizes, images and conformations than other molecular spectral methods such as absorption spectrum, fluorescence spectrum etc., this creates conditions for studying interactions of proteins with nucleic acids using RRS spectrum. When combining with common molecular spectral methods such as UV-Vis absorption spectrum, fluorescence spectrum, circular dichroism spectrum etc., it will provide much richer information for interactions between biological macromolecules. In addition, some high sensitive and selective analytical methods can be developed for determination of nucleic acids, proteins and polypeptides.
     The main contents and some conclusions of the dissertation are as follows:
     1. Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Proteins with DNA and Their Analytical Applications
     (1) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Papain with DNA and Their Analytical Applications
     In weak acidic medium, interaction between papain and DNA resulted in absorption spectral change, fluorescence quenching of papain and remarkable enhancement of RRS. The interaction types and binding modes were discussed by characteristics of RRS, absorption, fluorescence and circular dichroism spectra combining thermodynamic data. There are four interaction types including electrostatic attraction, hydrophobic force, hydrogen bonding and aromatic stacking interaction. Papain interacted with the major groove of ctDNA. Aromatic stacking interaction is the main reason of change of absorption spectrum and fluorescence quenching of papain. Surface enhanced scattering effect, resonance energy transfer effect, increase of molecular volume and conformational change make contribution to RRS enhancement. The enhanced RRS intensity (△I) is directly proportional to the concentration of ctDNA or papain. The detection limit (3σ) is 4.5-15.3 ng-mL-1 for DNA and 5.6 ng-mL-1 for papain. This creates conditions for determination of papain and DNA.
     (2) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Insulin with ctDNA and Their Analytical Applications
     In pH 7.4 Tris-HCl buffer solution, insulin interacted with ctDNA to form a complex, resulting in the change of absorption and circular dichroism spectra, the fluorescence quenching, enhancement of RRS, SOS and FDS as well as new scattering spectra. The optimum reaction conditions, influencing factors and relative analytical chemistry properties were investigated. The interaction mechanism was discussed combining scattering enhancement with absorption, fluorescence and circular dichroism spectra, as well as atomic force microscopy. There are four interaction types including electrostatic attraction, hydrophobic force, hydrogen bonding and aromatic stacking interaction. It was speculated that insulin entered the major groove of ctDNA, four aromatic residues including Try 16, Try 26, phe 24 and phe 25 were affected. The increase of molecular volume and hydrophobicity, resonance energy transfer and DNA conformation change are the main reasons of scattering enhancement. In addition, a RRS method based on this interaction was proposed to determination of insulin or DNA. When ctDNA is used as a probe to determine PMB, the detection limit (3σ) is 6.0 ng-mL-1. When insulin is used as a probe to determine ctDNA, the detection limit (3σ) is 7.2 ng-mL-1. The RRS method is very simple and sensitive. Therefore, it is significant of this interaction for developing a high sensitive method for determination of insulin or DNA.
     (3) Resonance Rayleigh Scattering and Fluorescence Rayleigh Scattering Spectra of Interaction of Hemoglobin with sDNA and Their Analytical Applications
     In weak acidic medium, interaction between hemoglobin and sDNA resulted in fluorescence quenching and remarkable enhancement of RRS of hemoglobin. And a new RRS spectrum appeared. The optimum reaction conditions, influencing factors and relative property of analytical chemistry were investigated. The quenching constant increased with increasing temperature, and the fluorescence life time decreased after adding sDNA, showing that the fluorescence quenching belongs to dynamic quenching. Surface enhanced scattering effect, resonance energy transfer effect, increase of molecular volume and conformational change make contribution to RRS enhancement. The enhanced RRS intensity (△I) or the quenched fluorescence intensity (△F) is directly proportional to the concentration of sDNA. The detection limits (3σ) of RRS and fluorescence quenching method are 5.5 ng mL-1 and 202.3 ng mL-1, respectively. RRS method was used to determine DNA in synthetic samples with satisfactory.
     2. Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Polypeptides with DNA and Their Analytical Applications
     (1) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Polymyxin B with DNA and Their Analytical Applications
     A novel assay of DNA or polymyxin B (PMB) with a sensitivity at the nanogram level is proposed based on the measurement of enhanced resonance Rayleigh scattering (RRS) and resonance nonlinear scattering (RNLS) including second order scattering (SOS) and frequency doubling scattering (FDS) resulting from interaction of PMB with DNA. The minor groove binding mechanism was suggested from RRS, absorption and circular dichroism spectra. The optimum reaction conditions, influencing factors and related analytical chemistry properties were tested. The interaction types and reasons of RRS enhancement were discussed. Linear relationships can be established between enhanced scattering intensity and DNA or PMB concentration. When ctDNA is used as a probe to determine PMB, the detection limit (3σ) is 9.8 ng mL-1. When PMB is used as a probe to determine DNA, the detection limit (3a) is in the range of 3.8-9.0 ng mL-1. Samples were analyzed satisfactorily.
     (2) Resonance Rayleigh Scattering and Resonance Non-linear Scattering Spectra of Interaction of Vancomycin with DNA and Their Analytical Applications
     Assays were developed for DNA based on enhanced resonance Rayleigh scattering (RRS) and resonance nonlinear scattering (including second order scattering and frequency doubling scattering) that result from the interaction of vancomycin with DNA. Vancomycin possesses the unusual property of promoting the aggregation of DNA which was concluded from the results obtained with RRS, absorption and circular dichroism spectroscopy and from atomic force microscope. The types of interaction and reasons of RRS enhancement are discussed. Linear relationships do exist over a wide range between the intensity of enhanced scattering and the concentrations of DNA. The detection limit (3σ) is in the range from 6.8 to 11.1 ng mL
     3. Resonance Rayleigh Scattering and Resonance Non-linear Scattering Methods for Determination of Polymyxin B Using Isopoly-tungstic Acid as a Probe
     In pH 1.3-1.6 HCl-NaAc buffer medium, RRS and RNLS of polymyxin B sulfate or isopoly-tungstic acid are very weak. However, when they react with each other, RRS and RNLS will be enhanced significantly. The optimum reaction conditions, influencing factors and relative property of analytical chemistry were investigated. The interaction mechanism is discussed combing RRS enhancement with atomic force microscopy, change of absorption and circular dichroism spectra. Increase of molecular volume, surface enhanced scattering and resonance energy transfer effect are the main reasons of scattering enhancement. RRS、SOS and FDS method for determination of PMB have been established. The three methods all have high sensitivity. The RRS has the highest sensitivity and the detection limit (3σ) for PMB is 5.5 ng-mL-1. The method has better selectivity. It was used to determination of PMB in practical samples with satisfactory results.
引文
[1]王镜岩,朱圣庚,徐长法主编.生物化学.北京:高等教育出版社,2006,158-160.
    [2]Lodish H., Berk A., Matsudaira P., Kaiser C. A., Krieger M., Scott M. P., Zipurksy S. L., Darnell J. Molecular Cell Biology (5th ed.). New York:WH Freeman and Company,2004王荣梅,苏荣胜,曹华斌,郭剑英.多肽药物的研究开发及前景展望.兽药与饲料添加剂2008,13(2):12-14.陈贯虹,迟建国,邱维忠,王加宁,孙元军.多肽药物的研究进展.山东科学2008,21(3):42-48.
    [5]Xiang L., Wang A. H. J. Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacology & Therapeutics 1999,83:181-215.
    [6]Ollis D. L., White S. W. Structural basis of protein-nucleic acid interactions. Chem. Rev.1987,87(5):981-995.
    [7]Aggarwal A. K., Doudna J. A. Protein-nucleic acid interactions. Curr. Opinion Struct. Biol.2003,13(1):3-5.
    [8]Katalin N, Shoshana J. W., Joel J. Structural features of protein-nucleic acid recognition Sites. Biochemisty.1999,38:1999-2017.
    [9]R.M.特怀曼著,陈淳,徐沁等译,徐晋麟校.高级分子生物学要义.北京:科学出版社,2000,217.
    [10]Privalov L. P., Dragan I. A., Colyn C. R. Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components. Nucleic Acids Res.2010:1-9.
    [11]Luscombe N. M., Austin S. E., Berman H. M., Thornton J. M. An overview of the structures of protein-DNA complexes. Genome Biology 2000,1(1):1-10.
    [12]Von-Hippel P. H., McGhee. J. D. DNA-protein interactions. Annu. Rev. Biochem. 1972,41:231-300.
    [13]Shimamoto, N. One-dimensional diffusion of proteins along DNA. Its biological and chemical significance revealed by single-molecule measurements. J. Biol. Chem.1999,274(22):15293-15296.
    [14]Gutfreund Y. M., Schueler O., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA complexes:in search of common principles. J. Mol. Biol.1995,253:370-382.
    [15]Luscombe N. M., Laskowski R. A., Thornton J. M. Amino acid-base interactions:a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res.2001,29:2860-2874.
    [16]Schwabe J. W. R. The role of water in protein-DNA interactions. Curr. Op. Struct. Biol.1997,7(1):126-134.
    [17]Woda, J., Schneider, B., Patel, K., Mistry, K., Berman, H. M. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J.1998, 75:2170-2177.
    [18]Reddy C. K., Das A., Jayaram B. Do water molecules mediate protein-DNA recognition? J. Mol. Biol.2001,314:619-632.
    [19]Wintjens R., Lievin J., Rooman M., Buisine E. Contribution of catione-π interactions to the stability of protein-DNA complexes. J. Mol. Biol.2000, 302:395-410.
    [20]Rooman M., Lievin J., Buisine E., Wintjens R. Catione-π/H-bond stairmotifs at proteine DNA interfaces. J. Mol. Biol.2002,31:67-76.
    [21]Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol.1999,19:5237-5246.
    [22]Kornberg, R. D., Lorch, Y. Twenty-five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosomes. Cell,1999,98:285-294.
    [23]Narayanan S. S., Pal S. K. Nonspecific Protein-DNA interactions:Complexation of Chymotrypsin with a Genomic DNA. Langmuir.2007,23:6712-6718.
    [24]Von Hippel P. H. Protein-DNA recognition:new perspectives and underlying themes. Science,1994,263(5148):769-770.
    [25]Jen-Jacobson L. Protein-DNA recognition complexes:Conservation of structure and binding energy in the transition state. Biopolymers,1997,44(2):153-180.
    [26]Richard D. J., Bolderson E., Cubeddu L., Wadsworth R. I. M., Savage K., Sharma G. G., Nicolette M. L., Tsvetanov S., Mcllwraith M. J., Pandita R. K., Takeda S., Hay R. T., Gautier J., West S. C., Paull T. T., Pandita T. K., White M. F., Khanna K. K. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 2008,453:677-681.
    [27]Filipkowski P., Thatte A. D., Kur J. Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis. Arch. Microbiol. 2006,186(2):129-137.
    [28]Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad Sci USA,1976,73:804-808.
    [29]Luscombe N. M., Laskowski R. A., Thornton J. M. Amino acid-base interactions:a three-dimensional analysis of protein-DAN interactions at atomic level. Nucleic Acids Res.2001,29:2860-2874.
    [30]Coulocheri S. A., Pigis D. G., Papavassiliou K. A., Papavassiliou A. G. Hydrogen bonds in protein-DNA complex:where geometry meets plasticity. Biochimie.2007, 89(11):1291-1303.
    [31]Aggarwal A. K., Doudna J. A.. Protein-nucleic acid interactions. Curr. Op. Struct. Biol.2003,13:3-5.
    [32]陶慰孙,李惟,姜涌明主编.蛋白质分子基础(第二版).北京:高等教育出版社,1995,370.
    [33]李英贤,贺福初.DNA与蛋白质相互作用研究方法.生命的化学,2003,23(4):306-308.
    [34]蔡容华,李强,张建军,邢佩佩,施碧.DNA-蛋白质相互作用研究的方法及其新进展.生物技术,2009,19(1):93-97.
    [35]袁观宇主编.生物物理学.北京:科学出版社,2006,240.
    [36]Bonvin A. M. J. J., Boelens R., Kaptein R. NMR analysis of protein interactions. Curr. Op. Struct. Biol.2005,9:501-508.
    [37]Takeuchi K., WagnerG NMR studies of protein interactions. Curr. Op. Struct. Biol. 2006,16:109-117.
    [38]Von-Hippel P. H. Completing the view of transcriptional regulation. Science 2004, 305(5682):350-352.
    [39]Kalodimos C. G., Biris N., Bonvin A. M. J. J., Levandoski M. M., Guennuegues M., Boelens R., Kaptein R. Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes. Science,2004,05:386-389.
    [40]Iwahara J., Schwieters C. D., Clore G. M. Characterization of non-specific protein-DNA interactions by 1H paramagnetic relaxation enhancement. J. Am. Chem. Soc.,2004,126:12800-12808.
    [41]Williams, D. C., Cai, M., Clore, G. M. Molecular basis for synergistic activation by Octl and Sox2 revealed from the solution structure of the 42 kDa Octl·Sox2·Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem.2004, 279:1449-1457.
    [42]Iwahara J., Schwieters C. D., Clore G. M. Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc.2004, 126:5879-5896.
    [43]Legler P. M., Cai M., Peterkofsky A., Clore G. M. Three-dimensional solution structure of the cytoplasmic B domain of the mannitol transporter Ⅱ Mannitol of the Escherichia coli phosphotransferase system. J. Biol. Chem.2004, 279:39115-39121.
    [44]Williams D. C., Cai M., Suh J. Y., Peterkofsky A., Clore G. M. Solution NMR structure of the 48 kDa IIA Mannose-HPr complex of the Escherichia coli mannose phosphotransferase system. J. Biol. Chem.2005,280:20775-20784.
    [45]Iwahara J., Clore G. M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 2006,440:1227-1230.
    [46]Iwahara J., Clore G. M. NMR structural and kinetic characterization of a homeodomain diffusing and hopping on non-specific DNA. Proc. Natl. Acad. Sci. USA.2006,103:15062-15067.
    [47]Schwieters C. D., Clore G. M. A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large angle X-ray scattering data. Biochemistry 2007, 46:1152-1166.
    [48]Suh J. Y., Iwahara J., Clore G. M. Intramolecular domain-domain assocation/dissociation and phosphoryl transfer in the mannitol transporter of Escherichia coli are not coupled. Proc. Natl. Acad. Sci. USA.,2007,104: 3153-3158.
    [49]Clore G. M., Tang C., Iwahara J. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr. Op. Struct. Biol.2007,17: 603-616.
    [50]Clore, G. M. Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. Mol. BioSystems.2008,4:1058-1069.
    [51]Doucleff M., Clore G. M. Global jumping and domain-specific intersegment transfer between DNA cognate sites of the multi-domain transcription factor Oct-1. Proc. Natl. Acad. Sci. USA.2008,105:13871-13876.
    [52]Mitton-Fry R. M., Anderson E. M., Theobald D. L., Glustrom L.W., Wuttke D. S. Structural Basis for Telomeric Single-stranded DNA Recognition by Yeast Cdc 13. J. Mol. Biol.2004,338:241-255.
    [53]Shrivastava T., Tahirov T. H. Three-dimensional structures of DNA-bound transcriptional regulators. Methods Mo. Biol.2010,674:43-55.
    [54]Vivian J. P., Porter, C. J., Wilce J. A., Wilce M. C. J. An Asymmetric Structure of the Bacillus subtilis Replication Terminator Protein in Complex with DNA. J. Mol. Biol.2007,370(3):481-491.
    [55]Phillips N. B., Jancso R. A., Ittah V., Singh R., Chan G., Haas E., Weiss M. A. SRY and human sex determination:the basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. J. Mol. Biol.2006,358(1):172-192.
    [56]Kobayashi M., Eiso A. B., Bonvin A. M. J. J., Siegal G. Structure of the DNA-bound BRCA1 C-terminal region from human replication factor C p140 and model of the protein-DNA complex. J. Biol. Chem.2010,285(13):10087-10097.
    [57]Ko T. P., Chu H. M., Chen C. Y., Chou C.C., Wang A. H. J. Structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers. Acta Crystallogr., Sect D:Biol. Crystallogr.2004, D60:1381-1387.
    [58]Chen C. Y., Ko T. P., Lin T. W., Chou C. C., Chen C. J., Wang A. H. J. Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d. Nucleic Acids Res.2005,33:430-438.
    [59]Wu S. W., Ko T. P., Chou C. C.,Wang A. H. Design and characterization of a multimeric DNA binding protein using Sac7d and GCN4 as templates. Proteins: Structure, Function, and Bioinformatics,2005,60:617-628.
    [60]Robinson H., Gao Y. G., McCrary B. S., Edmondson S. P., Shriver J. W., Wang A. H. J. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 1998,392(6672):202-205.
    [61]Su S., Gao Y G, Robinson H., Liaw Y. C., Edmondson S. P., Shriver J. W., Wang A. H. Crystal Structures of the Chromosomal Proteins Sso7d/Sac7d Bound to DNA Containing T-G Mismatched Base-pairs. J. Mol. Biol.2000,303(3):395-403.
    [62]Srinivasan R., Cynthia S. R., Timothy M. L., Gabriel W. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9Aresolution. Proc. Natl. Acad. Sci. USA 1997, 94:6652-6657.
    [63]Raghunathan S., Kozlov A. G., Lohman T. M., Waksman G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol.2000, 7(8):648-652.
    [64]Norie F., Hitoshi K., Osamu N., Takaho T., Mikako S., Tsutomu K., Shigeyuki Y. Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res.2003,31(8):2077-2086.
    [65]Zhang Z., Gong Y., Guo L., Jiang T., Huang L. Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA. Mol. Microbiol. 2010,76(3):749-759.
    [66]吕茂民,章金刚.生物质谱技术及其应用.生物技术通报2001,4:38-41.
    [67]Akashi S., Osawa R., Nishimura Y. Evaluation of protein-DNA binding affinity by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2005, 16(1):116-125.
    [68]Kamadurai H. B., Subramaniam S., Jones R. B., Green-Church K. B., Foster M. P. Protein folding coupled to DNA binding in the catalytic domain of bacteriophage integrase detected by mass spectrometry. Protein Sci.2003,12(3):620-626.
    [69]Bartolini W. P., Johnston M. V. Characterizing DNA photo-oxidation reactions by high-resolution mass measurements with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom.2000, 35(3):408-416.
    [70]Rieger R. A., McTigue M. M., Kycia J. H, Gerchman S. E., Grollman A. P., Iden C. R. Characterization of a cross-linked DNA-endonuclease Ⅷ repair complex by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2000, 11(6):505-515.
    [71]Liu C., Tolic L. P., Hofstadler S. A., Harms A. C., Smith R.D., Kang C. Sinha N. Probing RegA/RNA interactions using electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry. Anal. Biochem.1998,262(1):67-71.
    [72]Lu J. Z., Zenobi R. In-situ monitoring of protein labeling reactions by matrix-assisted laser desorption/ionization mass spectrometry. Fresenius J. Anal. Chem.2000,366(1):3-9.
    [73]Vera P., Hildegard G., Rudolf G., Elena K., Janusz M. B., Alfred Pingoud. Identification of base-specific contacts in protein-DNA complexes by photocrosslinking and mass spectrometry:a case study using the restriction endonuclease SsoII. Mol. BioSyst.,2005,1:135-141.
    [74]Geyer H., Geyer R., Pingoud V. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res.2004,32(16):e132/1-e132/8.
    [75]Atmanene C., Chaix D., Bessin Y., Declerck N., Van D. A., Sanglier C. S. Combination of noncovalent mass spectrometry and traveling wave ion mobility spectrometry reveals sugar-induced conformational changes of central glycolytic genes repressor/DNA complex. Anal. Chem.2010,82(9):3597-3605.
    [76]Harada Y. S., Funatsu T. K., Yanagida T, Nonoyama Y., Ishihama A., Yanaqida T. Single molecule imaging of RNApolymerase-DNA interactions in real time. Biophysical Journal 1999,76:709-714.
    [77]LeCaptain D. J, Michel M. A., Van Orden A. Characterization of DNA-protein complexes by capillary electrophoresis-single molecule fluorescence correlation spectroscopy. Analyst,2001,126(8):1279-1284.
    [78]Shi X., Chen F., Fang X., Xu Y., Zhang S., Chen Y. G., Fang X Study of interaction between Smad7 and DNA by single-molecule force spectroscopy. Biochem. Biophys. Res. Commun.2008,377(4):1284-1287.
    [79]Tachiiri Y., Ishikawa M., Hirano K. Investigation of the hydrolysis of single DNA molecules using fluorescence video microscopy. Anal. Chem.2000, 72(7):1649-1656.
    [80]Goldman E. R., Balighian E. D., Mattoussi H., Kuno M. K., Mauro J. M., Tran P. T., Anderson G. P.Avidin:A Natural Bridge for Quantum Dot-Antibody Conjugates. J. Am. Chem. Soc.2002,124(31):6378-6382.
    [81]Yavin E., Boal A. K., Stemp E. D. A., Boon E. M., Livingston A. L., O'Shea V. L. David S. S., Barton J. K. Protein-DNA charge transport:Redox activationof a DNA repair protein by guanine radical. Proceedings of the National Academy of Sciences of the United States of America 2005,102(10):3546-3551.
    [82]Roy R, Kozlov A. G., Lohman T. M., Ha T. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 2009, 461(7267):1092-1097.
    [83]Engel A., Gaub H. E., Muller D. J. Atomic force microscopy:a forceful way with single molecules. Curr Biol.1999,9(4):133-136.
    [84]Hugel T., Seitz M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Comm.2001,22(13):989-1016.
    [85]王云起,廖问陶,蔡继业.原子力显微镜在DNA和蛋白质相互作用方面的研究进展.生物医学工程杂志,2007,24(5):1172-1176.
    [86]Jiao Y. K., Cherny D. I., Helim G., Jovin T. M., Schaffer T. E. Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J. Mol. Biol. 2001,314(2):233-243.
    [87]Balagurumoorthy P., Lindsay S. M., Harrington R. E. Atomic force microscopy reveals kinks in the p53 response element DNA. Biophys Chem.2002,101-102: 611-623.
    [88]Weissmueller G., Yurtsever A., Costa L. T., Pacheco, Ana B. F., Bisch P. M., Heckl W. M., Stark R.t W. Torsional resonance mode atomic force microscopy of a protein-DNA complex. NANO 2008,3(6):443-448.
    [89]Luda S., Shlyakhtenko, Gilmore J., Portillo A., Tamulaitis G, Siksnys V., Yuri L. Lyubchenko. Direct visualization of the EcoRII-DNA triple synaptic complex by atomic force microscopy. Biochemistry 2007,46:11128-11136.
    [90]Gilmore J. L., Suzuki Y., Tamulaitis G., Siksnys V., Takeyasu K., Lyubchenko Y. L. Single-Molecule Dynamics of the DNA-oRII Protein Complexes Revealed with High-Speed Atomic Force Microscopy, Biochemistry 2009,48 (44):10492-10498.
    [91]Vincent D., Fabien P., Marie J., Maria B., Jean-Marc V. Nonspecific DNA-protein interaction:why proteins can diffuse along DNA. Phys. Rev. Lett.2009,102(22): 228101/1-228101/4.
    [92]Jayaram B., Mcconnell K., Dixit S. B., Das A., Beveridge D. L. Free-energy component analysis of 40 protein-DNA complexes:a consensus view on the thermodynamics of binding at the molecular level. J. Comput. Chem.2002,23(1): 1-14.
    [93]Morgenstern B. A simple and space-efficient fragment-chaining algorithm for alignment of DNA and protein sequences. Appl. Math. Lett.2002,15(1):11-16.
    [94]时永香、连鹏、步宇翔.一种利用计算机模拟计算蛋白质与DNA之间作用力的方法发明专利申请公开授命书(专利号200710112834公开号:101122933),2008,p.11.
    [95]Tomovic A., Oakeley E. J. Computational structural analysis:multiple proteins bound to DNA. PLoS One,2008,3(9):e3243.
    [96]Zhou W., Yan H. A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling. Bioinformatics,2010,26(20): 2541-2548.
    [97]Zhou P., Tian F., Ren Y., Shang Z. Systematic Classification and analysis of themes in protein-DNA recognition. J. Chem. Inf. Mode.2010,50(8):1476-1488.
    [98]Hao D., Ohme T. M., Yamasaki K. A modified sensor chip for surace plasmon resonance enables a rapid determination of sequence specificity DNA-binding proteins. FEBS Lett.2003,536(1-3):151-156.
    [99]辛明,Jiang E. Y傅立叶变换表面等离子共振检测技术(FT-PR)简述.现代仪器, 2006,5:10-13.
    [100]乔惠丽,陈媛媛,文祯中,毕利军,阚云超.SSB蛋白与ssDNA相互作用的动力学和可视化研究.生物物理学报2007,23(2):145-150.
    [101]Jacobson L. J., Engler L. E., Ames J. T., Kurpiewski M. R., Grigorescu A. Thermodynamic parameters of specific and nonspecific protein-DNA binding. Supramol. Chem.2000,12(2):143-147.
    [102]Esposito D., Del Vecchio P., Barone G. A thermodynamic study of herring protamine-DNA complex by differential scanning calorimetry. Chem. Phy.2001, 3(23):5320-5325.
    [103]Chen X., Ruan C. M., Kong J., Deng J. Spectroelectrochemical investigation of direct electron transfer between resting horseradish peroxidase and its oxidation states promoted by DNA. Fresenius J. Anal. Chem.2000,367(2):172-177.
    [104]Lisdat F., Ge B., Scheller F. W. Oligonucleotide-modified electrodes for fast electron transfer to cytochrome c. Electrochem. Comm.1999,1:65-68.
    [105]Bagel O., Degrand C., Limoges B., Joannes M., Azek F., Brossier P. Enzyme affinity assays involving a single-use electrochemical sensor. Applications to the enzyme immunoassay of human chorionic gonadotropin hormone and nucleic acid hybridization of human cytomegalovirus DNA. Electroanalysis,2000,12(18): 1447-1452.
    [106]刘雪平,常伟华.荧光光谱在核酸分析中的应用.河南化工2005,22:41-42.
    [107]许金钩,王尊本.荧光分析法(第三版).北京:科学出版社,2006.
    [108]段彩虹,陈欣,孙舒婷等.二溴羟基卟啉与核酸相互作用的光谱行为研究.光谱学与光谱分析,2007,27(5):969-972.
    [109]司文会.吖啶黄反应光度法测定脱氧核糖核酸含量的研究.光谱学与光谱分析,2008,28(2):412-414.
    [110]司文会.分光光度法测定脱氧核糖核酸——基于其与亚甲蓝的反应.理化检验-化学分册,2007,43(11):968-969.
    [111]赵丹华,李淑,訾言勤.中性红分光光度法测定脱氧核糖核酸.分析试验室,2007,26(1):62-64.
    [112]董学芝,邓翠贞,信建豪,焦贺贤.酸性黄分光光度法测定人尿中总蛋白质的研究.药物分析杂志,2008,28(6):928-931.
    [113]吴文卫,雷金宝,张光明,王青霞,朱建英.双缩脲-分光光度法测定乳与乳制品中蛋白质含量.中国卫生检验杂志,2008,18(7):1335-1336.
    [114]向灿辉,李显川.靛酚蓝分光光度法对鱼肉与鱼鳞中蛋白质含量的比较测定.食品工程,2009,2:51-53.
    [115]朱霞萍,汪敬武,傅敏恭.流动注射化学发光测定人体血清中的DNA.分析试验室,2004,23(5):50-53.
    [116]Han H., He Z., Zeng Y. A direct chemiluminescence method for the determination of nucleic acids using Ru(phen)32+-Ce(IV) system. Fresenius J. Anal. Chem.1999,364(8):782-785.
    [117]王振永,焦奎,孙伟等.灿烂甲酚蓝电化学探针测定脱氧核糖核酸.青岛科技大学学报,2005,26(1):6-9.
    [118]王瑞侠,王丽荣,葛俊彦等.联苯胺与DNA相互作用的电化学研究及应用.武汉大学学报,2007,53(4):421-425.
    [119]朱京妃,夏明.毛细管电泳技术在多肽和蛋白质检测中的应用.农产品加工.创新版,2009,6:54-56.
    [120]孟庆威,郭磊,申睿,谢剑炜.一种基于二喹啉甲酸-Cu+显色反应体系的毛细管电泳检测蛋白质的新方法.色谱2010,28(7):682-687.
    [121]徐健君,翟海云,陈缵光,蔡沛祥,莫金垣.毛细管电泳电化学检测在生物分子分析中的进展.理化检验,化学分册2006,42(12):1057-1062.
    [122]罗婵,黄丽华,母昭德.反相高效液相色谱法分析肝癌血清蛋白质组.重庆医科大学学报2010,35(6):894-896.
    [123]Wang J., Yuan B., Guerrero C., Bahde R., Gupta S., Wang Y. Quantification of Oxidative DNA Lesions in Tissues of Long-Evans Cinnamon Rats by Capillary High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-Dilution Method. Anal. Chem.2011,83(6):2201-2209.
    [124]Chen H. C., Lin G. J., Lin W. P. Simultaneous Quantification of Three Lipid Peroxidation-Derived Etheno Adducts in Human DNA by Stable Isotope Dilution Nanoflow Liquid Chromatography Nanospray Ionization Tandem Mass Spectrometry. Anal. Chem.2010,82(11):4486-4493.
    [125]章燕豪主编.物理化学.上海:上海交通大学出版社,1988:537.
    [126]Miller G. A. Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media. J. Phys. Chem.1978,82(5):616.
    [127]Stanton S. G. Resonance enhanced dynamic Rayleigh scattering. J. Chem. Phys. 1981,75(12):5615-5626.
    [128]Anglister J., Steinberg I. Z. Depolarized Rayleigh light scattering in absorption bands measured in lycopene solution. Chem. Phys. Lett.1979,65(1):50-54.
    [129]Pasternack R. F., Bustamante C., Collings P. J., Giannetto A., Gibb E. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J. Am. Chem. Soc.1993,115:5393-5399.
    [130]Arena G., Scolaro M., Pasternack R. F.Synthesis, Characterization, and Interaction with DNA of the Novel Metallointercalator Cationic Complex (2,2':6',2"-terpyridine)methylplatinum(II). Inorg. Chem.1995,34(11):2994-3002.
    [131]Parkash J., Robblee J. H., Agnew J., Gibbs E., Collings P., Pasternack R. F.,de Paula J. C. Depolarized resonance light scattering by porphyrin and chlorophyll a aggregates. Biophys. J.1998,74(4):2089-99.
    [132]Pasternack R. F., Gibbs E. J., Bruzewicz D., Stewart D., Engstrom K. S. Kinetics of disassembly of a DNA-bound porphyrin supramolecular array. J. Am. Chem. Soc.2002,124(14):3533-3539.
    [133]De Paula J. C., Robblee J. H., Pasternack R. F. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy. Biophys. J.1995,68(1): 335-341.
    [134]Pasternack R. F., Collings P. J. Resonance light-scattering-a new technique for studying chromophore aggregation. Science 1995,269 (5226):935-939.
    [135]Liu S. P., Liu Z. F. Studies on the resonant luminescence spectra of rhodamine dyes and their ion-association complexes. Spectrochim. Acta Part A 1995,51: 1497-1500.
    [136]Huang C. Z., Li K. A., Tong S. Y. Determination of nucleic acids by a resonance light scattering technique with α,β,γ,δ-tetrakis[4-(trimethylammoniumyl)-phenyl] porphine. Anal. Chem.1996, 68(13):2259-2263.
    [137]Huang C.Z., Li K.A., Tong S.Y. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the cobalt(II)/4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene complex. Anal. Chem. 1997,69(3):514-520.
    [138]国家自然科学基金委员会组编,汪尔康主编.分析化学新进展.北京:科学出版社,2002:280.
    [139]Huang C.Z., Li Y.F.Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal. Chim. Acta 2003,500:105-107.
    [140]黄本立,章竹君主编.分析化学的成就与挑战.重庆:西南师范大学出版社,2002,180.
    [141]Ling J., Huang C. Z., Li Y. F., Long Y. F., Liao Q. G. Recent Developments of the resonance light scattering technique:technical evolution, new probes and applications. Appl. Sectrosc. Rev.2007,42:177-201.
    [142]Lu W., Fernandez B. B. S., Yu Y, et.al. Resonance light scattering and derived techniques in analytical chemistry:past, present, and future. Microchim. Acta, 2007,158:29-58.
    [143]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅰ,硒(Ⅳ)-碘化物-罗丹明B体系.化学学报1995,53(12):1178-1184.
    [144]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅱ,汞(Ⅳ)-硫氰酸盐-碱性三苯甲烷染料体系.化学学报1995,53(3):473-479.
    [145]Huang C. Z., Li Y. F., Zhang D. J. Determination of nucleic acids at nanogram levels with safranine T by a resonance light scattering technique. Anal. Chim. Acta 1998,375:89-97.
    [146]刘绍璞,龙秀芳.某些分子光谱分析测定核酸的进展.理化检验2002,8(2):101-107.
    [147]Chen Z., Zhang T., Han Y, Zhu L. Resonance light scattering spectroscopy study of interaction between norfloxacin and calf thymus DNA and its analytical application. Spectrochim. Acta Part A 2006,65:919-924.
    [148]Fang F., Zheng H., Li L., Wu Y, Chen J., Zhuo S., Zhu C. Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique. Spectrochim. Acta Part A 2006,64:689-702.
    [149]Jia Z., Yang J., Wu X., Sun C., Liu S., Wang F., Zhao Z. The sensitive determination of nucleic acids using resonance light scattering quenching method. Spectrochim. Acta Part A 2006,64:555-559.
    [150]Huang J., Chen F., He Z. A resonance light scattering method for determination of DNA using Ru(bpy)2PIP(V)2+. Mikrochim. Acta 2006,157:181-187.
    [151]Du J. Zheng H., Huang C., Wen C., Hao J., Hu Y., Zhou D., Liu L. Positive charged polymer as a probe for DNA determination by resonance light scattering. Anal. Sci.2009,25(5):727-730.
    [152]Chen H., Zou Q. C., Yu H., Peng M., Song G. W., Zhang J. Z., Chai S. G., Zhang Y H., Yan C. E. Study on interaction between cationic polystyrene nanoparticles and DNA, and the detection of DNA by resonance light scattering technology. Microchim. Acta 2010,168:331.
    [153]Li Y., Huang C., Huang X., Li M. Determination of proteins based on their resonance light scattering enhancement effect on alcian blue 8GX. Anal. Sci.2000, 16(12):1249-1254.
    [154]Huang C. Z., Li Y. F., Mao J. G., Tan D. G. Determination of protein concentration by enhancement of the preresonance light-scattering of α,β,γ,δ-(5-sulfothienyl)porphine. Analyst 1998,123:1401-1406.
    [155]Guo Z. X., Shen H. X. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone. Anal. Chim. Acta 2000,408(1-2):177-182.
    [156]杨睿,刘绍璞.某些分子光谱测定蛋白质的进展.分析化学2001,29(2):233-241.
    [157]Long X. F., Liu S. P., Kong L., Liu Z. F., Bi S. P. A study on the interaction of proteins with some hetoropoly compounds and their analytical application by Resonance Rayleigh scattering method. Talanta 2004,63:279-286.
    [158]刘绍璞,范莉,胡小莉等.某些氨羧络合型染料与蛋白质的共振瑞利散射研究.化学学报2004,62(1):1635-1646.
    [159]刘绍璞,杨睿,罗红群,石燕.某些杂多酸根与蛋白质相互作用的共振瑞利散射光谱研究.分析化学2005,33(8):1125-1128.
    [160]Liu S. P., Yang Z., Liu Z.F., Kong L. Resonance Rayleigh -scattering method for the determination of protein with gold nanoparticle probe. Anal. Biochem.2006, 353:108-116.
    [161]Luo H. Q., Liu S. P. Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications. Anal. Chim. Acta 2001,449(1-2):261-270.
    [162]Liu S.P., Luo H.Q., Li N.B., et.al. Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal. Chem.2001,73(16):3907-3914.
    [163]Liu S.P., Luo H.Q., Xu H., Li N.B. Resonance Rayleigh scattering Study of interaction of heparin with some cationic surfactants and their analytical application. Spectrochim. Acta, Part A 2005,61,861-867.
    [164]刘绍璞,张筑元,胡小莉,刘忠芳,王芬.某些碱性吩嗪染料与肝素相互作用的共振瑞利散射散射光谱研究.分析化学2005,33(7):989-992.
    [165]Li T. S., Liu S. P., Liu Z. F., Hu X. L. A sensitive and simple method for the determination of chondroitin sulfate A with crystal violet by resonance Rayleigh scattering technique. Arch. Pharm. Chem. Life. Sci.2005,338(9):427-432.
    [166]刘健,刘忠芳,胡小莉,孔玲,刘绍璞.用蛋白质作探针共振瑞利散射和共振非线性散射法测定硫酸软骨素A.应用化学2010,27(7):842-848.
    [167]刘健,刘忠芳,胡小莉,刘绍璞.牛血清白蛋白共振瑞利散射和共振非线性散射法测定硫酸软骨素.西南大学学报(自然科学版)2010,32(3):30-33.
    [168]Chen P. L., Liu, S. P., Liu Z. F., Hu X. L. Determination of promethazine hydrochloride with pd (Ⅱ) and Na2WO4 by resonance Rayleigh scattering and resonance nonlinear scattering spectra. Spectr. Lett.2010,43:491-499.
    [169]Hu X. L., An L. X., Liu S. P., Liu Z. F., Li C. X. Resonance light scattering method for determination of amikacin with potassium ferrioxalate as a probe. Chem. Res. Chinese. Univ.2010,26(3):366-370.
    [170]王芬,刘忠芳,刘绍璞.某些蒽环类抗癌药物与刚果红相互作用的吸收、荧光和共振瑞利散射光谱研究.化学学报,2005,63(21):1991-1998.
    [171]Wei X., Liu Z., Liu S. Resonance Rayleigh Scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue. Anal. Biochem.2005,346(2):330-332.
    [172]刘绍璞,胡小莉,刘忠芳.刚果红-阿米卡星体系的共振Rayleigh散射和共振非线性散射光谱及其分析应用.中国科学(B辑)2006,36(4):317-325.
    [173]Wang J. Liu Z., Liu J., Liu S., Shen W. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochim. Acta Part A 2008, 69:956-963.
    [174]Duan H., Liu Z., Liu S. A highly Sensitive Resonance Rayleigh Scattering Method for the Determination of Penicillin Antibiotics with Potassium Ferricyanide. Chin. J. Chem.2008,26 (2):295-301.
    [175]Yi A., Liu Z., Liu S., Kong L. Resonance Rayleigh Scattering Spectrum of Palladium(Ⅱ)-Clindamycin-Halofluorescein System and Their Analytical Applications. Chin. J. Chem.2008,26:1879-1886.
    [176]王剑,刘忠芳,刘绍璞,申伟.氟喹诺酮类抗生素与钴(Ⅱ)和刚果红三元配合物的共振瑞利散射光谱研究及其分析应用.化学学报2008,66(11):1337-1343.
    [177]Liu J., Liu Z., Hu X., Kong L., Liu S. A highly sensitive resonance Rayleigh scattering method for the determination of bleomycin A2 with some halofluorecein dyes. J. Pharm. Biomed. Anal.2007,42:1452-1459.
    [178]Liu S. P., Liu Q., Liu Z. F., Li M. Resonance Rayleigh scattering of chromium(VI)-iodide-basic triphenylmethane dye systems and their analytical application. Anal. Chim. Acta 1999,379:53-61.
    [179]Liu S. P., Liu Z. F., Li M., Li N. B., Luo H. Q. Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide basic triphenylmet hane dye systems. Fresenius J. Anal. Chem.2000,407:255-260.
    [180]贺冬秀,李贵荣.共振光散射法测定环境水样中痕量铬(Ⅵ).分析测试学报2004,23(2):89-91.
    [181]吕昌银,韩志辉,李庆,等.流式细胞术散射光谱法测定痕量银的研究.分析测试学报2005,24(6):70-73,77.
    [182]翟好英,蒋治良.金(Ⅲ)-卤化物-吖啶红的光谱特性及应用.广西师范大学学报:自然科学版2005,23(3):61-65.
    [183]衷明华.银(Ⅰ)-碘化物-十六烷基三甲基溴化铵体系共振光散射光谱法测定废水中微量银.冶金分析2006,26(3):50-52.
    [184]南海军,刘忠芳,刘绍璞.汞(Ⅱ)-碘化物-结晶紫体系共振瑞利散射光谱及其分析应用研究.西南师范大学学报:自然科学版2005,30(6):1074-1077.
    [185]李少旦,蒙进怀,黎明强.共振光散射法测定环境水样中痕量锡.光谱实验室2006,23(5):981-983.
    [186]Cui F. L., Wang L., Cui Y. R. Determination of bismuth in pharmaceutical products using methyltriphenyl phosphonium bromide as a molecular probe by resonance light scattering technique. J. Pharm. Biomed. Anal.2007,43: 1033-1038.
    [187]曾文,李松青.镉(Ⅱ)-邻啡罗啉-溴酚蓝体系的共振光散射光谱研究及分析应用.分析科学学报2007,23(2):205-208.
    [188]李娜,钱保华,陈敏华.共振光散射法测定环境水样中微量铬(Ⅵ).冶金分析2007,27(3):45-47.
    [189]单祝庚.痕量镍测定的新方法.湘南学院学报2010,31(2):46-49.
    [190]刘梯楼,孙双姣,蒋治良.共振散射光谱分析测定饮料中痕量铜.食品工业科技2010(3):370-372.
    [191]Liu S. P., Lu M. Y., Luo H. Q., Kong L. A study on resonance Rayleigh scattering spectroscopy of [I2Br]--ethyl violet system. J. Southwest China Norm. Univ.2001,26(5):547-550.
    [192]Qi L., Han Z. Q., Chen Y. Incorporation of flow injection analysis or capillary elect rophoresis with resonance Rayleigh scattering detection for inorganic ion analysis. J. Chromatogr. A 2006,1110:235-239.
    [193]蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究.化学学报2000,58(8):1059-1062.
    [194]蒋治良,梁爱惠,邹明静,等.IO3-I3--吖啶红体系共振散射光谱研究及应用.广西师范大学学报:自然科学版2006,24(1):68-71.
    [195]李树伟,苏小东,王小红,等.共振光散射光谱法测定痕量氯离子.化学研究与应用2004,16(4):535-536.
    [196]杨清玲.共振瑞利散射和共振非线性散射光谱在环境分析中的新应用研究.2008,博士研究论文.
    [197]杨卓,刘绍璞,刘忠芳,胡小莉.某些酸性三苯甲烷染料与阳离子表面活性剂相互作用的共振瑞利散射及其分析应用.高等学校化学学报2004,25(6):1040-1042.
    [198]陈飒,刘绍璞,罗红群.乙基紫-阳离子表面活性剂体系的共振瑞利散射光谱及其分析应用.分析化学2004,32(1):19-24.
    [199]Liu S.P., Shi Y., Liu Z., Luo H, Kong L. Resonance Rayleigh Scattering Method for the Determination of Cationic Surfactants with Chronium(VI)-Iodide System. Anal.Sci.2006,22(5):769-773.
    [200]杨清玲,鲁群岷,刘忠芳,刘绍璞,陈刚才.钻(Ⅱ)-5-Br-PADAP体系共振瑞利散射法测定环境水样中十二烷基苯磺酸钠.化学学报2008,66(21):2371-2378.
    [201]杨清玲,刘忠芳,鲁群岷,刘绍璞.盐酸氯丙嗪作探针共振瑞利散射法测定环境水样中某些阴离子表面活性剂.高等学校化学学报2006,27(12):2281-2284.
    [202]Yang Q., Lu Q., Liu Z., Liu S., Chen Ga., Duan H., Song D. Resonance Rayleigh scattering spectra of ion-association nanoparticles of [Co(4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene)2]2+-sodium dodecyl benzene sulfonate system and its analytical application. Anal. Chim. Acta 2009, 632:115-121.
    [203]孔玲,刘忠芳,胡小莉,刘绍璞.曙红Y-Triton X-100疏水性氢键纳米微粒的吸收、荧光及共振瑞利散射光谱及其分析应用.中国科学(B辑,化学)2010,40(12):1851-1861.
    [204]Liu S. P., Jiang Z. L., Kong L., Liu Q. Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles. Sci. Chin. (Ser B), 2002,45:616-624.
    [205]He Y Q., Liu S. P., Kong L., Liu Z. F. A study on the size and concentration of gold nanoparticles by spectra of absorption, Resonance Rayleigh Scattering and resonance non-linear scattering. Spectrochim. Acta Part A 2005,61:2861-2866.
    [206]何佑秋,刘绍璞,刘芹,刘忠芳,胡小莉.金纳米与藏红T相互作用的吸收,荧光和共振Rayleigh散射光谱特征.中国科学(B辑)2005,35(2):159-168.
    [207]Liu S. P., Yang Z., Liu Z. F., Liu J. T., Shi Y. Resonance Rayleigh Scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal. Chim. Acta 2006,572:283-289.
    [208]王齐,刘忠芳,孔玲,刘绍璞.铜纳米微粒与维生素B1相互作用的吸收光谱和共振瑞利散射光谱研究.分析化学2007,35(3):365-369.
    [209]Liu S., He Y., Liu Z., Kong L., Lu Q. Resonance Rayleigh scattering spectral method for the determination of raloxifence using gold nanoparticle as a probe. Anal. Chim. Acta 2007,598:304-311.
    [210]鲁群岷,刘忠芳,刘绍璞.金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物.化学学报2007,65(9):821-828.
    [211]李太山,刘绍璞,刘忠芳,胡小莉,张立萍.缔化镉纳米晶溶液的荧光和共振瑞利散射特性及其与氨基糖苷类抗生素的相互作用.中国科学(B辑,化学)2008,38(9):798-807.
    [212]Ling J., Huang C. Z., Li Y. F., Zhang L., Chen L.Q., Zhen S. J. Light-scattering signals from nanoparticles in biochemical assay, pharmaceutical analysis and biological imaging. Trends Anal. Chem.2009,28(4):447-453.
    [213]Yang J., Cao T., Liu Z., Kong L., Liu S. Effects of Interaction of Rifamycin SV with Serum Albumins on the Resonance Rayleigh Scattering Spectra and Their Analytical Application. Chin. J. Chem,2008,26(5):893-897.
    [214]陈粤华,刘忠芳,胡小莉,刘绍璞.铬(Ⅳ)与蛋白质相互作用的共振瑞利散射光谱及其分析应用.分析化学2005,33(6):802-804.
    [215]Wang J., Liu Z., Liu J., Liu S., Shen W. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochim. Acta Part A 2008, 69:956-963.
    [216]刘绍璞,胡小莉,刘忠芳,李明,王芬.用共振Rayleigh散射光谱研究盐酸氯丙嗪和盐酸异丙嗪与核酸相互作用.中国科学(B辑)2005,35(4):312-319.
    [217]唐晓玲,刘忠芳,刘绍璞,胡小莉.苯海拉明与赤藓红相互作用的吸收、荧光和共振瑞利散射光谱及其分析应用.中国科学(B辑,化学)2007,37(1):68-75.
    [218]刘绍璞,王芬,刘忠芳,胡小莉.盐酸表柔比星与核酸相互作用的共振瑞利散射光谱及其分析应用.化学学报2007,65(10):962-970.
    [219]刘江涛,刘忠芳,刘绍璞.盐酸平阳霉素玉核酸相互作用的共振瑞利Rayleigh散射光谱及其分析应用.中国科学(B辑,化学)2007,37(2):178-185.
    [220]田伦富,刘忠芳,孔玲,胡小莉,刘绍璞.[Hg(SCN)4]2-与蛋白质相互作用的共振瑞利散射光谱及其分析应用.科学通报2011,56(6):396-406.
    [221]Guo H. P., Huang C. Z., Ling J. Resonance light scattering imaging determination of heparin. Chin. Chem. Lett.2006,17:53-56.
    [222]Liu Z. D., Huang C. Z., Guo H. P., Huang Y. M. Resonance light scattering imaging detection of single suprahelical species of DNA induced by αβ,γ,δ-Tetrakis[4-(trimethylaminonium)pheny]porphine. Chin. J. Chem.2006,24: 89-94.
    [223]Feng P., Shu W. Q., Huang C. Z., Li Y. F. Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline-europium-trioctyl phosphine oxide at the water/tetrachloromethane interface. Anal. Chem.2001,73:4307-4312.
    [224]Pang X. B., Huang C. Z., A selective and sensitive assay of berberine using total internal reflected resonance light scattering technique with fluorescein at the water/1,2dichloroethane interface, J. Pharm. Biomed. Anal.2004,35,185-191.
    [225]Dong L., Chen X., Hu Z. Total internal reflected resonance light scattering determination of protein in human blood serum at water/tetrachloromethane interface with Arsenazo-TB Cetyltrimethylammonium bromide. Talanta 2006,71: 555-560.
    [226]Huang C. Z., Feng P., Li Y. F., Tan K. J., Wang H. Y. Adsorption of penicillin-berberine ion associates at a water/tetrachloromethane interface and determination of penicillin based on total internal-reflected resonance light scattering measurements. Anal. Chim. Acta 2005,538:337-343.
    [227]Tan K. J., Li Y F., Huang C. Z. Flow injection resonance light scattering detection of proteins of nanogram. Luminescence 2005,20:176-180.
    [228]陈佩丽,刘绍璞,刘忠芳,胡小莉.流动注射-共振瑞利散射法测定盐酸氯丙嗪和盐酸异丙嗪.分析化学2010,38(7):1007-1010.
    [229]Hu X. L., Xu D. P., Liu S. P., Liu Z. F., Li C. X., Chen P. L. Determination of Meclofenoxate Hydrochloride by Resonance Rayleigh Scattering Method Coupled with Flow Injection Technique. Anal. Lett.2010,43(13):2125-2133
    [230]Huang C. Z., Wang Y. H., Guo H. P, Li Y. F. A backscattering light detection assembly for sensitive determination of analyte concentrated at the liquid/liquid interface using the interaction of quercetin with proteins as the model system. Analyst 2005,130:200-205.
    [231]Wang Y. H., Guo H. P., Tan K. J., Huang C. Z. Backscattering light detection of nucleic acids with tetraphenylporphyrin-Al(III)-nucleic acids at liquid/liquid interface. Anal. Chim. Acta 2004,521:109-115.
    [232]Zhao H. W., Huang C. Z., Li Y. F. A novel optical immunosensing system based on measuring surface enhanced light scattering signals of solid supports. Anal. Chim. Acta 2006,564:166-172.
    [233]Ling J., Li Y. F., Huang C. Z. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles. Anal. Chem. 2009,81:1707-1714.
    [234]Rich R. L., Myszka D. G. Survey of the 1999 surface plasmon resonance biosensor literature. J. Mol. Recognit.2000,13:388-407.
    [235]Rich R. L., Myszka D. G. Survey of the year 2000 commercial optical biosensor literature. J. Mol. Recognit.2001,14:273-294.
    [236]Rich R. L., Myszka D. G. Survey of the year 2001 commercial optical biosensor literature J. Mol. Recognit.2002,15:352-376.
    [237]Chou S. F., Hsu W. I., Hwang J. M., Chen C. Y. Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosen. Bioelectron.2004,19(9):999-1005.
    [238]Hartmann P. R, Gordon C. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance. Methods Enzymol.2005,399: 164-177.
    [239]Day Y. S. N., Myszka D. G. Characterizing a drug's primary binding site on albumin. J. Pharm. Sci.2003,92:333-343.
    [240]曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用.光谱学与光谱分析,2004,24(10):1197-1201.
    [1]Drenth, J., Jansonius J. N., Koekoek R., Swen H. M., Wolthens B.G. Structure of Pap. Nature 1968,218:929-932.
    [2]Husain S. S., Lowe G. Completion of the amino acid sequence of Pap. Biochem. J. 1969,114:279-288.
    [3]Whitford D著,魏群主译Proteins Structure and Function(copyright 2005 by JohnWilley &Sons)科学出版社,北京,中国,2008:15-16.
    [4]李冠一,林栖凤,朱锦天,黄惜.核酸生物化学.北京,科学出版社.2007,4-15.
    [5]Stawiski E. W., Gregoret L. M., Mandel-Gutfreund Y. Annotating nucleic acid-binding function based on protein structure. J. Mol. Boil.2003, 326:1065-1079.
    [6]Norberg J. Association of protein-DNA recongnition complex:electrostatic and nonelectrostatic effects. Archives of biochemistry and Biophysics 2003,410:48-68.
    [7]Lundback T., Hanson H., Knapp S., Ladenstein R., Hard T. Thermodynamic chearacterization of non-sequence-specific DNA-binding by the Sso7d protein form Sulfolobus solfataricus. J. Mol. Biol.1998,276:775-786.
    [8]Bergqvist S., Williams M. A., O'Brien, R., Ladbury J. E. Heat capacity effects of water molecules and ions at a protein-DNA interface. J. Mol. Biol.2004,336:829-842.
    [9]Lundback T., Chang J. F., Phillips K., Luisi B., Ladbury J. E. Characterization of sequence specific DNA binding by the transcription factor Oct-1. Biochemistry, 2000,39,570-7579.
    [10]PetersW. B., Edmondson S. P., Shriver J. W. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. J. Mol.Biol.2004, 343:339-360.
    [11]Peters W. B., Edmondson S. P., Shriver J. W. Effect of mutation of the Sac7d intercalating residues on the temperature dependence of DNA distortion and binding thermodynamics. Biochemistry 2005,44:4794-4804.
    [12]Merabet E., Ackers G. K. Calorimetric analysis of lambda cI repressor binding to DNA operator sites. Biochemistry 1995,34:8554-8563.
    [13]Oda M., Furukawa K., Ogata K., Sarai A., Nakamura H. Thermodynamics of specific and non-specific DNA binding by the c-Myb DNAbinding domain. J. Mol. Biol.1998,276:571-590.
    [14]Adbury J. E., Wright J. G., Sturtevant J. M., Sigler P. B. A thermodynamic study of the trp repressor-operator interaction. J. Mol. Biol.1994,238:669-681.
    [15]Sieber M., Allemann R. K. Thermodynamics of DNA binding of MM17, a single chain dimer of transcription factor MASH-1. Nucl. Acids Res.2000,28:2122-2127.
    [16]Lundback T., Chang J. F., Phillips K., Luisi B., Ladbury J. E. Characterization of sequencespecificDNAbinding by the transcription factor Oct-1. Biochemistry 2000, 39:7570-7579.
    [17]Coulocheri S. A., Pigis D. G, Papavassiliou K. A., Papavassiliou A. G Hydrogen bonds in protein-DNA complexes:where geometry meets plasticity. Biochimie 2007,89:1291-1303.
    [18]Yao, G, Li, K. A., Tong, S. Y. Determination of protein by its enhancement effect on the Rayleigh light scattering of carboxyarsenazo. Talanta 1999,50:585-594.
    [19]中国大百科全书编辑委员会.中国大百科全书,生物学(Ⅱ).北京:中国大百科全书编辑委员会.1991,p.1374.
    [20]曹凯鸣,李碧羽,彭泽国.核酸化学导论.上海:复旦大学出版社.1991,p.29.
    [21]Tanford C. Physical Chemistry of Macromolecules. John Wiley & Sons. Inc., New York and London.1961, pp.275-316.
    [22]刘绍璞,胡小莉,罗红群,范例.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学(B辑)2002,32(1):18-26.
    [1]沈同,王镜岩主编.生物化学.北京:高等教育出版社,1990,127-128.
    [2]中国大百科全书编辑委员会编.中国大百科全书,生物学Ⅲ.北京:中国大百科全书出版社,1992,2049-2051.
    [3]L'opez-Font'an J. L., Mosquera V., Rega C., Sarmiento F. Thermodynamic study of the imipramine-insulin interaction. J. Chem. Thermodynamics 1999,31: 1297-1306.
    [4]Lin H., Chen R., Liu X., Sheng F. L., Zhang H. X. Study on interaction of mangiferin to insulin and glucagon in ternary system. Spectrochimica Acta Part A 2010,75:1584-1591.
    [5]Kumar R., Akilandeswari P. E., Mohamed Kamil M. G, Kannappan V., Jayakumar S., Dilute solution viscometric, ultrasonic and refractometric studies of molecular interactions of human mixtard insulin with an antibiotic. J. Mol. Liq.2010, 154:69-75.
    [6]Zhang Y., Deng Y. J., Lu M., Craig D. Q. M., Li Z. Q. A spectroscopic investigation into the interaction between bile salts and insulin in alkaline aqueous solution. J. Colloid Interface Sci.2009,337:322-331.
    [7]Coffman F. D., Dunn M. F. Insulin-metal ion interactions:the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers. Biochem.1988,27(16):6179-6187.
    [8]Hill C. P., Dauter Z., Dodson E. J., Dodson G. G., Dunn M. F. X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochem.1991,30(4):917-924.
    [9]Sreekanth R., Pattabhi V., Rajan S. S. Molecular basis of chromium insulin interactions. Biochem. Biophy. Res. Commun.2008,369(2):725-729.
    [10]Ho Y. P., Li H. P., Lu L. C. Probing the interactions of oxidized insulin chain A and metal ions using electrospray ionization mass spectrometry, Intern. J. Mass Spectr. 2003,227:97-109.
    [11]Brzovic P. S., Choi W. E., Borchardt D., Kaarsholm N. C., Dunn M. F. Structural Asymmetry and Half-Site Reactivity in the T to R Allosteric Transition of the Insulin Hexamer. Biochemistry 1994,33:13057-13069.
    [12]Choi W. E., Brader M. L., Aguilar V., Kaarsholm N. C., Dunn M. F. Allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions. Biochemistry 1993,32:11638-11645.
    [13]Kim Y., Shields S. E. pH dependent conformational changes in the T-and R-states of insulin in solution:circular dichroic studies in the pH range of 6 to 10. Biochim. Biophys. Res. Commun.1992,186:1115-1120.
    [14]Ciszak E., Smith G. D. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer. Biochem.1994,33(6):1512-1517.
    [15]Whitthingham J. L., Chaudhuri S., Dodson E. J., Moody P. C. E., Dodson G. G. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben and phenol. Biochemistry 1995,34:15553-15563.
    [16]Gross L., Dunn M. F. Spectroscopic evidence for an intermediate in the T6 to R6 allosteric transition of the cobalt(II) substituted insulin hexamer. Biochemistry 1992,31:1295-301.
    [17]Falconi M., Bozzi M., Paci M., Raudino A., Purrello R., Cambria A., Sette M., Cambria M. T. Spectroscopic and molecular dynamics simulation studies of the interaction of insulin with glucose. Intern. J. Biol. Macromol.2001,29:161-168.
    [18]Hancock W. S., Knighton D. R., Napier J. R., Harding D. R. K., Venable R. Determination of thermodynamic parameters for the interaction of a lipid-binding peptide and insulin with a reversed-phase column, J. Chromatogr. A,1986,367: 1-8.
    [19]Liang D.C., Chang W. R., Wan Z. L. A proposed interaction model of the insulin molecule with its receptor, Bioph. Chem.1994,50(1-2):63-71.
    [20]Villanueva J., Yanes O., Querol E., Serrano L., Aviles F. X. Identification of protein ligands in complex biological samples using intensity-fading MALDI-TOF mass spectrometry. Anal. Chem.2003,75:3385-3395.
    [21]Rieger R. A., McTigue M. M., Kycia J. H., Gerchman S. E., Grollman A. P., Iden C. R. Characterization of a cross-linked DNA-Endo VIII repair complex by electrospray ionization mass spectrometry. J. Amer. Soc. Mass Spectrom.2000,11: 505-515.
    [22]Mitton-Fry R. M., Anderson E. M., Theobald D. L., Glustrom L. W., Wuttke D. S. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol.2004,338:241-255.
    [23]Wagenknecht H. A., Rajski S. R., Pascaly M., Stemp E. D., Barton J. K. Direct observation of radical intermediates in protein-dependent DNA charge transport. J. Am. Chem. Soc.2001,123:4400-4407.
    [24]Privalov P. L., Dragan A. I., Breslarer C. C. R. K. J., Remeta D. P., Minetti C. A. S. A., What Drives Proteins into the Major or Minor Grooves of DNA. J. Mol. Biol. 2007,365:1-9.
    [25]Mark A. E., Jeffrey P. D. The self-association of zinc-free bovine insulin. Four model patterns and their significance. Biol Chem Hoppe-Seyler 1990, 371:1165-74.
    [26]Pittman I., Tager H. S. A spectroscopic investigation of the conformational dynamics of insulin in solution. Biochem.1995,34:10578-10590.
    [27]Wollmer A., Rannenfeld B., Johansen B. R., Hejnaes K. R., Balschrnidt P., Hansen F. B. Phenol-promoted structural transformation of insulin in solution. Biol Chem Hoppe-Seyler 1987,368:903-11.
    [28]Mel'nikov S. M., Sergeyev V. G., Yoshikawa K., Discrete coil-globule transition of large DNA induced by cation surfactant. J. Am. Chem. Soc.1995,117:2401-2408.
    [29]章燕豪.物理化学.上海:上海交通大学出版社,1988,537.
    [30]刘绍璞、蒋治良,孔玲,刘芹.[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑,化学)2002,32(6):554-560.
    [31]Liu S. P., Kong L. Interaction between isopoly-tungstic acid and berberine hydrochloride by resonance Rayleigh scattering spectrum. Anal. Sci.2003, 19(7):1055-1060.
    [32]王芬,刘忠芳,刘绍璞.某些蒽环类抗癌药物与刚果红相互作用的吸收、荧光和共振瑞利散射光谱研究.化学学报2005,63(21):1991-1998.
    [33]中华人民共和国药典委员会主编.中华人民共和国药典.北京:化学工业出版社,2005,附录XIV.
    [1]Bao X., Zhu Z., Li N. Q., Chen J. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin. Talanta 2001,54(4):591-596.
    [2]古练权,许家喜,段玉峰.生物化学.北京:高等教育出版社,2000,7.
    [3]周秋华,王彦卿,张红梅,张根成,费正皓,刘总堂.吡虫啉与牛血红蛋白相互作用的光谱研究.分析测试学报2007,26(3):368-372.
    [4]荣玉芝,赵波,陈昌云.荧光光谱法研究与血红蛋白的结合作用.南京晓庄学院学报2007,3:33-36.
    [5]吴晓红,周家宏,顾晓天,魏少华,冯玉英,陆天虹,王雪松,张宝文.竹红菌甲素与肌红蛋白和血红蛋白相互作用的同步荧光光谱研究.光谱学与光谱分析2006,26(12):2287-2290.
    [6]王彦卿,张红梅,张朝平.荧光光谱法研究茶碱与血红蛋白的相互作用.化学试剂2006,28(3):156~158.
    [7]David G., Riley, Christopher M. A 19F NMR study of lomefloxacin in human erythrocytes and its interaction with hemoglobin. J. Pharm. Biomed. Anal.1995, 13(10):1225-1233.
    [8]赖丽华,李发.Cu2+与血红蛋白相互作用的探讨.安徽化工2010,36(3):30-33.
    [9]张爽,汪涛,Fatima,杜林方.汞(Ⅱ)与牛血红蛋白相互作用的研究.化学研究与应用2007,19(6):611-614.
    [10]张根成,范苏.光谱法研究铬髯与血红蛋白的相互作用.无机化学学报2009,25(7):1199-1204.
    [11]常希俊,杨芳,张莉,王邃.牛血红蛋白与镝(Ⅲ)、钛(Ⅳ)的相互作用.兰州大学学报(自然科学版)2004,40(2):63-66.
    [12]沈星灿,刘新艳,梁宏,卢听.牛血红蛋白与银纳米粒子相互作用的光谱研究.化学学报2006,64(6):469-474.
    [13]王公轲,闫长领,陈得军,卢雁.用离子选择性电极研究氟离子、溴离子和碘离子与牛血红蛋白的相互作用.河南师范大学学报(自然科学版)2008,36(5):187.
    [14]Starodubtseva M. N., Cherenkevich S. N.; Semenkova G. N. Chemiluminescence analysis of interaction between hemoglobin and sodium nitrite and hydrogen peroxide. Chemiluminescence at the Turn of the Millennium 2001,76-81.
    [15]李清文,高宏,黄昊,王义明,冯军,罗国安.血红蛋白与NO分子间相互作用的电化学表征.高等学校化学学报2001,22(8):1373-1375.
    [16]Bulyarskii, S. V., Nasibov, A. S., Svetukhin, V. V., Vostretsov, D. Ya. Thermodynamic model of cooperative interaction of hemoglobin with oxygen. Kratkie Soobshcheniya po Fizike 2004,11:13-20.
    [17]Motterlini, R. Interaction of hemoglobin with nitric oxide and carbon monoxide: Physiological implications. Blood Substitutes:New Challenges 1996,74-98.
    [18]Liu, W. J., Guo, X., Guo, R. The interaction of hemoglobin with hexadecyltrimethy-lammonium bromide. International Journal of Biological Macromolecules 2005,37(5):232-238.
    [19]Liu, W. J., Guo, X., Guo, R. The interaction between hemoglobin and two surfactants with different charges. International Journal of Biological Macromolecules 2007,41(5):548-557.
    [20]马林, 魏志强,黄爱民,杨华,何维仁,林瑞森.丙三醇对水溶液中血红蛋白构象的影响-荧光猝灭和动态光散射研究.化学学报2009,67(14):1566-1572.
    [21]Sacco, D., Bonneaux, F.; Dellacherie, E. Interaction of hemoglobin with dextran sulfates and the oxygen-binding properties of the covalent conjugates. International Journal of Biological Macromolecules 1988,10(5):305-10.
    [22]Jensen F. B., Jakobsen, M. H., Weber R, E. Interaction between hemoglobin and synthetic peptides of the N-terminal cytoplasmic fragment of trout band 3 (AE1) protein. Journal of Experimental Biology 1998,201(19):2685-2690.
    [23]Nagata, K., Okano Y., Nozawa Y. Possible interaction of hemoglobin with a low Mr GTP-binding protein, ram p25. Biochemistry and Molecular Biology International 1995,35(3):507-15.
    [24]Wang H. F., Wang Y., Cheng Y., Sun H. F., Wang X. Y., Liu Y. F. Spectroscopic studies on interaction of hemoglobin and serum albumin with nicotine. Chinese Science Bulletin 2002,47(7):538-542.
    [25]Rodgers K. R., Su C., Subramaniam S., Spiro T. G. Hemoglobin R-T structuraldynamics from simultaneousmonitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals. J. Am. Chem Soc.1992,114: 3697-3709.
    [1]袁越,刘修才,顾孝诚.多粘菌素-B溶液的构象研究.生物物理学报,1997,1 3(3):380-386.
    [2]王汝龙,原正平.化工产品手册,药物,北京,化学工业出版社,1999,143-144
    [3]Boudreau E. A., Pelczer I., Borer P. N., Heffron G. J., LaPlante S. R. Changes in drug 13C NMR chemical shifts as a tool for monitoring interactions with DNA. Biophy. Chem. 2004,109:333-344.
    [4]Das S., Kumar G. S. Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid:Model for intercalative drug-DNA binding. J. Mol. Struct.2008, 872:56-63.
    [5]Yang X. L., Wang A. H. J. Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacology & Therapeutics 1999,83:181-215.
    [6]程圭芳,张冬梅,丁敏,屈海云,何品刚,方禹.柔红霉素与DNA作用的序列特异性研究.高等学校化学学报,2003,24:1395-1399.
    [7]陈克海,郑学仿,郭明,曹洪玉,唐乾,杨彦杰.长春新碱与人血清白蛋白的相互作用研究.化学学报2007,65:1887-1891.
    [8]Nabiev, I., Chourpa, I., Manfait, M. Comparative studies of antitumor DNA intercalating agents, aclacinomycin and saintopin, by means of surface-enhanced Raman scattering spectroscopy. J. Phys. Chem.1994,98:1344-1350.
    [9]Nafisi S., Sobhanmanesh A., Esm-Hosseini M., Alimoghaddamc K., Tajmir-Riahi H. A. Interaction of antitumor drug Sn(CH3)2Cl2 with DNA and RNA. J. Mol. Struct.2005, 750:22-27.
    [10]Rauf S., Goodingb J. J., Akhtar K., Ghauri M. A., Rahman M., Anwar M. A., Khalida A.M. Electrochemical approach of anticancer drugs-DNA interaction. J. Pharm. Biom. Anal.2005,37:205-217.
    [11]Tian X., Song Y. H., Dong H. M., Ye B. X. Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochem.2008,73:18-22.
    [12]刘绍璞.共振瑞利散射和共振非线性散射在分析化学中的应用.汪尔康主编.分析化学新近展.北京:科学出版社,2002,280-288.
    [13]Yang, J. D., Cao, T. W., Liu, Z. F., Kong, L., Liu, S. P. Effects of interaction of rifamycin SV with serum albumins on the resonance Rayleigh scattering spectra and their analytical application. Chin. J. Chem.2008,26(5):893-897.
    [14]刘绍璞,胡小莉,刘忠芳, 李明, 王芬.用共振Rayleigh散射光谱研究盐酸氯丙嗪和盐酸异丙嗪与核酸相互作用.中国科学B辑化学2005,35(4):312-319.
    [15]Mel'nikov S. M., Sergeyev V. G., Yoshikawa K. Discrete coil-globule transition of large DNA induced by cationic surfactant. J. Am. Chem. Soc.1995,117:2401-2408.
    [16]Mel'nikov S. M., Sergeyev V. G., Yoshikawa K., Transition of double-stranded DNA chains between random coil and compact globule states induced by cooperative binding of cationic surfactant. J. Am. Chem. Soc.1995,117:9951-9956.
    [17]中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).1995年版,北京:化学化工出版社,1995,附录XIA.
    [18]Pendela M., Adams E., Hoogmartens J. Development of a liquid chromatographic method for ear drops containing neomycin sulphate, polymyxin B sulphate and dexamethasone sodium phosphate. J.Pharm. Biomed. Anal.2004,36(4):751-757.
    [19]Orwa J. A., Van Gerven A., Roets E., Hoogmartens J. Liquid chromatography of polymyxin B sulphate. J Chromatogr A 2000,870:237-243.
    [20]Orwa J. A., Govaerts C., Busson R., Roets E., Van Schepdael A., Hoogmartens J. Isolation and structural characterization of polymyxin B components. J. Chromatog. A, 2001,912(2):369-373.
    [21]Adams E., Schepers R., Gathu L. W., Kibaya R., Roets E., Hoogmartens J. Liquid chromatographic analysis of a formulation containing polymyxin, gramicidin and neomycin. J. Pharm.Biomed. Anal.1997,15(4):505-511.
    [22]Srisom P., Liawruangrath B., Liawruangrath S., Slater J. M., Wangkarn S. Simultaneous determination of neomycin sulfate and polymyxin B sulfate by capillary electrophoresis with indirect UV detection. J. Pharm.Biomed. Anal.1997,43(3):1013-1018.
    [23]Kang J. W., Van Schepdael A., Orwa J. A., Roets E., Hoogmartens J. Analysis of polymyxin B sulfate by capillary zone electrophoresis with cyclodextrin as additive: Method development and validation. J. Chromatog. A,2000,879(2):211-218.
    [24]吴会灵,杨原,张重杰,何锡文.小分子与核酸相互作用的研究进展.分析化学2004,32(9):1256-1261.
    [25]Sastry, M., Fiala, R., Lipman, R., Tomasz, M., Patel, D. J. Solution structure of the monoalkylated mitomycin C-DNA complex. J. Mol. Biol.1995a,247:338-359.
    [26]Sastry, M., Fiala, R., Patel, D. J.. Solution structure of mithramycin dimers bound to partially overlapping sites on DNA. J. Mol. Biol.1995b,251:674-689.
    [27]Liu S. P., Jiang Z. L., Kong L., Liu Q. Absorption and Rayleigh scattering and resonance Rayleigh scattering spectra of [HgX2]n nanoparticles. Sci. China Ser. B-Chem. 2002,45(6):616-624
    [28]Fu S. H., Liu Z. F., Liu S. P., Yi A. E. Study on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of the interaction of palladium(II)-ceftriaxone chelate with anionic surfactants and their analytical applications. Talanta,2008,75:528-535.
    [29]Tanford C. Physical chemistry of macromolecules. New York and London, John Wiley & Sons. Inc.,1961,275-316.
    [30]刘绍璞,胡小莉,罗红群,范莉.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国化学B辑.2002,32(1):18-26.
    [1]中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).1995年版,北京:化学化工出版社,1995
    [2]李太生,盛瑞媛.万古霉素治疗重症G+球菌感染的有效性和安全性.中国新药杂志2001,10(8):615-617.
    [3]http://www.chromatography-online.org/HPLC/Chiral-Stationary-Phases/Macrocyclic-Glycopepti de/rs81.html
    [1]王汝龙,原正平.化工产品手册(药物).北京:化学工业出版社,1999,143-144.
    [2]Barnard J. H., Anal. Proc. Potency of polymyxin B1 and B2 fractions by turbidimetric assay and by agar plate diffusion assay.1984,21:238-240.
    [3]Thomas A. H., Thomas J. M., Holloway I. Microbiological and chemical analysis of polymyxin B and polymyxin E (colistin) sulfates. Analyst 1980,105:1068-1075.
    [4]Kang J.W., Van-Gerven A.,Roets E., Hoogmartens J. Analysis of polymyxin B sulfate by capillary zone electrophoresis with cyclodextrin as additive Method development and validation. J. Chromatogr. A 2000,879:211-218.
    [5]Lemus Gallego J. M., Perez Arroyo J. Micellar electrokinetic capillary chromatography as an alternative method for the determination of dexamethasone, trimethoprim, and polymyxin B. Fresenius J. Anal. Chem.2001,370:973-975.
    [6]Lemus Gallego J. M., Perez Arroyo J. Determination of hydrocortisone, polymyxin B and Zn-bacitracin in pharmaceutical preparations by micellar electrokinetic chromatography. Anal. Bioanal. Chem.2003,375:617-622.
    [7]Piyaporn Srisom, Boonsom Liawruangrath, Saisunee Liawruangrath, Jonathan M. Slater, Sunanta Wangkarn, Simultaneous determination of neomycin sulfate and polymyxin B sulfate by capillary electrophoresis with indirect UV detection. J. Pharm. Biom. Anal.2007,43:1013-1018.
    [8]Elverdam I., Larsen P., Lund E. Isolation and characterization of three new polymyxins in polymyxins B and E by high-performance liquid chromatography. J. Chromatogr.1981,206:563-572.
    [9]Whall T.J., High-performance liquid chromatography of polymyxin B sulfate and colistin sulfate. J. Chromatogr.1981,208:118-123.
    [10]Elverdam I., Larsen P., Lund E. Isolation and characterization of three new polymyxins in polymyxins B and E by high-performance liquid chromatography, J. Chromatogr.1981,218:653-661.
    [11]Orwa J.A., Van-Gerven A., Roets E. Hoogmartens J., Liquid chromatography of polymyxin B sulphate, J. Chromatogr. A 2000,870:237-243.
    [12]Adams E., Schepers R., Gathu L.W., Kibaya R., Hoogmartens J. Liquid chromatographic analysis of a formulation containing polymyxin, gramicidin and neomycin, J. Pharm. Biomed. Anal.1997,15:505-511.
    [13]Pendela M., Adams E., Hoogmartens J. Development of a liquid chromatographic method for ear drops containing neomycin sulphate, polymyxin B sulphate and dexamethasone sodium phosphate. J. Pharm. Biomed. Anal.2004,36:751-757.
    [14]严业安.多钨酸盐阴离子结构浅析.大学化学2008,23(3):60-63.
    [15]中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).北京:化学化工出版社,1995,附录XIA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700