功能蛋白与药物相互作用的亲和色谱法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子药物与蛋白质的相互作用研究对于许多生物过程具有非常重要的意义。蛋白质对药物的结合作用可影响进入循环系统药物的最终活性以及药物在体内的分布、排泄速率以及毒理性。此种结合作用一般包括一种药物与蛋白质的结合作用以及多种药物之间在同一种蛋白质上的直接或间接的竞争作用。高效亲和色谱法在药物与蛋白质相互作用研究中取得了长足进展,但在高活性蛋白质固定相的制备、药物与靶点蛋白相互作用研究和药物组分之间与蛋白质的竞争性研究方面存在一些有待完善和解决的问题,针对这些问题,作者选取受体蛋白中的β2-肾上腺素受体(β2-Adrenergic receptor,β2-AR),建立了一种β2-AR的定向固定化方法,并将该固定相应用于β2-AR与药物的相互作用研究中;选择人血清白蛋白(Human serum albumin, HSA)为模型蛋白,研究了中药活性组分之间与蛋白质的竞争性作用。全文包括以下五个部分:
     1.绪论
     介绍了药物与蛋白质相互作用的研究意义、内容及方法,评述了亲和色谱法的原理、固定相的制备方法、理论基础以及其在药物与蛋白质相互作用中的应用。
     2.定向固定化β2-肾上腺素受体制备及表征
     为制备高活性β2-AR色谱固定相,根据β2-AR的分子结构特点,建立了一种β2-AR定向固定化方法。以β2-AR键合量、特异性药物结合能力、药物结合量为活性表征参数,通过与随意固定化β2-AR色谱柱比较,证明了定向固定化方法的β2-AR键合量较高,且能够提高β2-AR的活性。定向固定化β2-AR方法的建立,为高活性蛋白质固定相制备方法研究提供了新方法。
     3.定向固定化β2-肾上腺素受体与药物的相互作用
     采用前沿色谱法和竞争置换法研究了定向固定化β2-AR与盐酸普萘洛尔、硫酸沙丁胺醇和盐酸氯丙那林的相互作用。在pH7.4,37℃时,前沿色谱法测定了三种药物在定向固定化β2-AR色谱柱上的吸附等温线,通过单、双朗格缪尔模型拟合,证明三种药物与β2-AR均存在一类结合位点,且盐酸普萘洛尔、硫酸沙丁胺醇和盐酸氯丙那林与β2-AR的结合常数分别为1.96×104L/mol、5.78×103L/mol和6.07×103L/mol。采用竞争置换法分别研究了硫酸沙丁胺醇、盐酸氯丙那林为竞争剂时与盐酸普萘洛尔在β2-AR分子上的竞争作用,说明药物之间与β2-AR存在直接竞争作用。竞争置换法测得硫酸沙丁胺醇、盐酸氯丙那林与β2-AR的结合常数分别为9.17×103L/mol和2.94×103L/mol,与前沿色谱法测定结果接近。本研究表明,定向固定化β2-AR可用于药物与β2-AR的相互作用研究中。
     4.丹参注射液活性组分与人血清白蛋白的竞争性作用研究
     本章采用亲和色谱法结合微透析-高效液相色谱法、分子对接法对丹参注射液中三种活性组分丹参素、原儿茶醛及咖啡酸与HSA的相互作用进行了深入的研究。
     在研究丹参注射液单组分与HSA结合作用时,采用前沿色谱法分别测定了原儿茶醛、咖啡酸在HSA上的吸附等温线,说明二者与HSA仅存在一类结合位点。在pH7.4,37℃的生理条件下,通过自我竞争法测得原儿茶醛、咖啡酸与HSA的结合常数分别为9.56×103L/mol和1.60×104L/mol。微透析-高效液相色谱法分别研究了单组分药物与HSA的结合作用,表明自由溶液中单组分与HSA之间存在一类结合位点,验证了亲和色谱法的测定结果,且该方法测得溶液中丹参素、原儿茶醛及咖啡酸与HSA的结合常数分别为1.27×105L/mo、4.03×104L/mol和2.75×104L/mol。
     在研究丹参注射液多组分之间与HSA的竞争性作用时,竞争置换法研究了三种组分之间与HSA竞争性作用,说明三种组分之间与HSA存在直接竞争作用,且丹参素、原儿茶醛及咖啡酸与HSA的结合常数分别为3.56×103L/mol、2.44×104L/mol和1.85×104L/mol。微透析-高效液相色谱法研究了组分之间与HSA竞争性作用,说明组分之间存在直接竞争,与竞争置换法结果相符。
     为进一步了解三种组分在HSA上结合域,采用亲和色谱法,通过与HSA四种标记物的竞争作用研究表明,丹参素、原儿茶醛及咖啡酸在HSA上的结合位点均为吲哚-苯二氮卓位点。热力学研究表明原儿茶醛、咖啡酸与HSA结合作用的驱动力分别为疏水作用和静电作用。
     5.一种药物-蛋白质结合常数的测定新方法
     将溶质进样量与保留值关系式用于药物与蛋白质结合常数的测定研究中,建立了一种研究药物与蛋白质结合常数的直接进样测定方法。采用该方法测定了盐酸普萘洛尔、硫酸沙丁胺醇和盐酸氯丙那林不同进样量在β2-AR色谱柱上的保留值,并测得盐酸普萘洛尔、硫酸沙丁胺醇和盐酸氯丙那林与β2-AR的结合常数分别为2.01×104L/mol、2.52×103L/mol和8.19×103L/mol。通过与亲和色谱法测定结果比较,表明直接进样测定方法是一种可应用于药物与蛋白质相互作用研究的简单、可靠的方法。
The interaction of small molecules with proteins is important in many biological processes. Protein binding in blood is significant in determining the eventual activity and fate of drugs once they have entered the circulation. These interactions help control the distribution, rate of excretion, and toxicity of drugs in the body. They include the binding interaction between one drug and protein as well as direct or indirect competition between two drugs for the same binding protein. High-performance affinity chromatography is a powerful technique, which has received a great progress in studying the interactions between drugs and proteins. However, there are still many problems in this method to be solved. For instance, fewer methods in preparation of high activity protein stationary phase, insufficient study on the interaction between drugs and target proteins and less study on the drug-drug competition with one protein. To solve these problems, a method of oriented immobilization of β2-adrenergic receptor (β2-AR, one of the receptor proteins) was developed and applied in the study of the interaction between drugs and β2-AR. In addition, human serum albumin (HSA) was chosen as a model protein to investigate the competitive interactions between the bioactive components of Chinese herbal medicine and protein. This dissertation is divided into five chapters:
     1. Introduction
     The significance, content and methods for studying interaction between drugs and proteins were introduced. In addition, the principle of high-performance affinity chromatography (HPAC), methods of preparation high-performance affinity chromatography stationary phase, theories of high-performance affinity chromatography and their application in the interactions of drug-protein were reviewed.
     2. Preparation and characterization of oriented immobilization of β2-adrenergic receptor
     In order to prepare highly active β2-AR stationary phase, a novel oriented immobilized method of β2-AR was developed according to the character of β2-AR molecular structure. In terms of the total β2-AR content, specific binding and binding capacity, it was proved that β2-AR column prepared by the oriented method had a better results than the β2-AR column immobilized to the silica through a random immobilization method. It provided a novel process to the preparation of highly active protein stationary phase.
     3. The interaction of drugs with oriented immobilized β2-adrenergic receptor
     The interactions of propranolol, salbutamol sulphate and clorprenaline with oriented immobilized β2-AR were investigated respectively by the frontal analysis and the zonal elution. The binding isotherms of these three drugs on the β2-AR column were determined by frontal analysis at pH7.4and37C. It was showed that the three drugs had only one kind of binding site on the β2-AR molecular, and the association constants of propranolol, salbutamol sulphate and clorprenaline were1.96×104L/mol,5.78×103L/mol and6.07x103L/mol, respectively. Meanwhile, the competition interactions of these three drugs with β2-AR were determined by zonal elution. It was indicated that these three drugs competed the same binding site on β2-AR molecular and the association constants of salbutamol sulphate and clorprenaline with β2-AR were9.17×103L/mol and2.94×103L/mol, respectively. The association constants of three drug determined by zonal elution were similar with the results of frontal analysis. This research demonstrated that oriented immobilized β2-AR can be applied well in the interaction of drugs with β2-AR.
     4. The competitive interaction of three bioactive components in Danshen injection with human serum albumin
     The interactions of three bioactive components (danshensu, caffeic acid and protocatechuic aldehyde) in Danshen injection with HSA had been studied by the HPAC, microdialysis-HPLC and molecular docking method.
     When the single component of Danshen injection with HSA was studied, the binding isotherms of protocatechuic aldehyde and caffeic acid were determined by frontal analysis. The results showed that both of the two components had only one kind of binding site on HSA. The association constants of protocatechuic aldehyde and caffeic acid with HSA were determined at pH7.4,37C by self-competition zonal elution, and the association constants were9.56×103L/mol and1.60×104L/mol, respectively. The binding interaction of single component with HSA was also investigated by microdialysis-HPLC. It was showed that the single component also had one kind of binding site on HSA in solution, corresponded with the results determined by HPAC. The association constants for danshensu, protocatechuic aldehyde and caffeic acid with HSA determined by microdialysis-HPLC were1.27×105L/mol,4.03×104L/mol and2.75×104L/mol, respectively.
     When the multicomponents of Danshen injection with HSA were studied, the results of zonal elution showed that the three components had a direct competition on HSA. The association constants for danshensu, protocatechuic aldehyde and caffeic acid determined by zonal elution were3.56×103L/mol,2.44×104L/mol and1.85×104L/mol, respectively. Microdialysis-HPLC was applied to study the competition of three components with HSA, and the results were consistent with zonal elution studies.
     Further study was performed to investigate the binding site of the three components on HSA molecular. Zonal elution studies with the probes of HSA as injected solutes showed that three components were binding to indole-benzodiazepine site on HSA molecular. Thermodynamic results indicated that the interactions between protocatechuic aldehyde and caffeic acid with HSA were mainly drived respectively by hydrophobic interaction and electrostatic force.
     5. A new method to determine association constants of protein-drug interaction
     An equation describing the relationship between the injected amount of solutes and their retention values in liquid chromatography was introduced into drug-protein study. A new method to determine the association constant of drug-protein interaction was developed. This method was applied in studying the interaction of propranolol, salbutamol sulphate and clorprenaline with β2-AR. The association constants for propranolol, salbutamol sulphate and clorprenaline were2.01×104L/mol,2.52×103L/mol and8.19×103L/mol, respectively. Compared with the results of HPAC, it was indicated that this method is a simple and reliable method in drug-protein study.
引文
[1]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999:1-25.
    [2]Otagiri M., Study on Binding of Drug to Serum Protein [J]. Yakugaku Zasshi,2009,129 (4):413-425.
    [3]Vuignier K., Schappler J., Veuthey J., et al. Drug-Protein Binding:a Critical Review of Analytical Tools [J]. Analytical and Bioanalytical Chemistry,2010,398 (1):53-66.
    [4]Scatchard G., Jr. Hughes W. L., Gurd F. R. N., et al. The Interaction of Proteins with Small Molecules and Ions [J].1954:193-219.
    [5]周大炜,李乐道,李发美.药物-蛋白结合作用的分析方法研究[J].2004,22:116-120
    [6]Sebille B., Zini R., Madjar C. V., et al. Separation Procedures Used to Reveal and Follow Drug-Protein Binding [J]. Journal of Chromatography, Biomedical Applications,1990, 531:51-77.
    [7]Klotz I. M., Physicochemical Aspects of Drug-Protein Interactions. General Perspective [J]. Annals of the New York Academy of Sciences,1973,226:18-35.
    [8]Eriksson M. A. L., Gabrielsson J., Nilsson L. B., Studies of Drug Binding to Plasma Proteins using a Variant of Equilibrium Dialysis [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38 (3):381-389.
    [9]Zhou A., He D., Nie L., et al. Determination of the Binding parameters of drug to protein by equilibrium dialysis/piezoelectric quartz crystal sensor [J]. Analytical Biochemistry, 2000,282(1):10-15.
    [10]Wang C., Wang Q., Yuan Z., et al. Drug-Protein-Binding Determination of Stilbene Glucoside using Cloud-Point Extraction and Comparison with Ultrafiltration and Equilibrium Dialysis [J]. Drug Development and Industrial Pharmacy,2010,36 (3): 307-314.
    [11]Lazaro E., Lowe P. J., Briand X., et al. New Approach to Measure Protein Binding Based on a Parallel Artificial Membrane Assay and Human Serum Albumin [J]. Journal of Medicinal Chemistry,2008,51 (7):2009-2017.
    [12]Jiang C., Armstrong D. W. Use of CE for the Determination of Binding Constants [J]. Electrophoresis,2010,31 (1):17-27.
    [13]Ostergaard J., Heegaard N. H. H., Capillary Electrophoresis Frontal Analysis:Principles and Applications for the Study of Drug-Plasma Protein Binding [J]. Electrophoresis, 2003,24 (17):2903-2913.
    [14]Tanaka Y., Terabe S., Estimation of Binding Constants by Capillary Electrophoresis [J]. Journal of Chromatography B:Analytical Technologies in the Bio medical and Life Sciences,2002,768(1):81-92.
    [15]Rundlett K. L., Armstrong D. W., Methods for the Determination of Binding Constants by Capillary Electrophoresis [J]. Electrophoresis,2001,22 (7):1419-1427.
    [16]Seifar R. M., Cool R. H., Quax W. J., et al. Characterization of the Interaction between Human Complement Protein C4 and a Single-chain Variable Fragment Antibody by Capillary Electrophoresis and Surface Plasmon Resonance [J]. Electrophoresis,2004,25: 1561-1568.
    [17]Zou J., Taylor P., Dornan J., et al. First Crystal Structure of a Medicinally Relevant Gold Protein Complex: Unexpected Binding of [Au(PEt3)]+to Histidine [J]. Angewandte Chemie,2000,39 (16):2931-2934.
    [18]Xie M., Long M., Liu Y., et al. Characterization of the Interaction between Human Serum Albumin and Morin [J]. Biochimica et Biophysica Acta,2006,1760 (8): 1184-1191.
    [19]Punith R., Hegde A. H., Jaldappagari S., Binding of an Anti-inflammatory Drug Lornoxicam with Blood Proteins:Insights from Spectroscopic Investigations [J]. Journal of Fluorescence,2011,21 (2):487-495.
    [20]Zsila F., Visy J., Mady G., et al. Selective Plasma Protein Binding of Antimalarial Drugs to α1-Acid Glycoprotein [J]. Bioorganic & Medicinal Chemistry,2008,16 (7): 3759-3772.
    [21]Monti S., Manoli F., Sortino S., et al. Binding of a Chiral Drug to a Protein:an Investigation of the 2-(3-Benzoylphenyl)propionic Acid/Bovine Serum Albumin System by Circular Dichroism and Fluorescence [J]. Physical Chemistry Chemical Physics,2005, 7 (23):4002-4008.
    [22]Sarver R. W., Gao H., Tian F., Determining Molecular Binding Sites on Human Serum Albumin by Displacement of Oleic Acid [J]. Analytical biochemistry,2005,347 (2): 297-302.
    [23]Mathur S., Badertscher M., Scott M., et al. Critical Evaluation of Mass Spectrometric Measurement of Dissociation Constants:Accuracy and Cross-Validation against Surface Plasmon Resonance and Circular Dichroism for the Calmodulin-Melittin System [J]. Physical Chemistry Chemical Physics,2007,9 (47):6187-6198.
    [24]Day Y. S. N., Myszka D. G. Characterizing a Drug's Primary Binding Site on Albumin [J]. Journal of Pharmaceutical Sciences,2003,92 (2):333-343.
    [25]Barbosa S., Taboada P., Mosquera V., Analysis of the Interactions between Human Serum Albumin/Amphiphilic Penicillin in Different Aqueous Media: an Isothermal Titration Calorimetry and Dynamic Light Scattering Study [J]. Chemical Physics,2005, 310 (1-3):51-58.
    [26]Garidel P., Hoffmann C., Blume A., A Thermodynamic Analysis of the Binding Interaction between Polysorbate 20 and 80 with Human Serum Albumins and Immunoglobulins:A Contribution to Understand Colloidal Pprotein Stabilisation [J]. Biophysical Chemistry,2009,143 (1-2):70-78.
    [27]Walters R. R., Affinity chromatography [J]. Analytical Chemistry,1985,57 (11): 1099A-1100A.
    [28]Ohlson S., Hansson L., Larsson P.0., et al. High Performance Liquid Affinity Chromatography (HPLAC) and its Application to the Separation of Enzymes and Antigens [J]. FEBS Letters,1978,93 (1):5-9.
    [29]Domenici E., Bertucci C., Salvadori P., et al. Synthesis and Chromatographic Properties of an HPLC Chiral Stationary Phase Based upon Human Serum Albumin [J]. Chromatographia,1990,29 (3-4):170-176.
    [30]Harada K., Yuan Q., Nakayama M., et al. Effects of Organic Modifiers on the Chiral Recognition by Different Types of Silica-Immobilized Bovine Serum Albumin [J]. Journal of Chromatography A,1996,740 (2):207-213.
    [31]Loun B., Hage D. S., Characterization of Thyroxine-Albumin Binding using High-Performance Affinity Chromatography. I. Interactions at the Warfarin and Indole Sites of Albumin [J]. Journal of Chromatography:Biomedical Applications,1992, 579 (2):225-235.
    [32]Tittelbach V., Gilpin R. K., Species Dependency of the Liquid Chromatographic Properties of Silica-Immobilized Serum Albumins [J]. Analytical Chemistry,1995,67 (1):44-47.
    [33]Tittelbach V., Jaroniec M., Gilpin R. K. Synthesis and Characterization of Silica-immobilized Serum Albumin Stationary Phases for HPLC [J]. Journal of Liquid Chromatography & Related Technologies,1996,19 (17&18):2943-2965.
    [34]Millot M. C., Sebille B., Mangin C., Enantiomeric Properties of Human Albumin Immobilized on Porous Silica Supports Coated with Polymethacryloyl Chloride [J]. Journal of Chromatography A,1997,776 (1):37-44.
    [35]Kim H. S., Kye Y. S., Hage D. S., Development and Evaluation of N-hydroxysuccinimide-activated Silica for Immobilizing Human Serum Albumin in Liquid Chromatography Columns [J]. Journal of Chromatography A,2004,1049 (1-2): 51-61.
    [36]Kim H. S., Mallik R., Hage D. S., Chromatographic Analysis of Carbamazepine Binding to Human Serum Albumin [J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2006,837 (1-2):138-146.
    [37]Taleb N. L., Millot M., Sebille B. Enantioselectivity Properties of Human Serum Albumin Immobilized on Anion-exchangers Based on Polyvinylimidazole-coated Silica. Effect of protein loading on separation properties [J]. Journal of Chromatography A, 1997,776(1):45-53.
    [38]Noctor T. A., Wainer I. W., Hage D. S., Allosteric and Competitive Displacement of Drugs from Human Serum Albumin by Octanoic Acid, as Revealed by High-performance Liquid Affinity Chromatography, on a Human Serum Albumin-based Stationary Phase [J]. Journal of chromatography,1992,577 (2):305-315.
    [39]Fitos I., Visy J., Simonyi M., et al. Chiral High-Performance Liquid Chromatographic Separations of Vinca Alkaloid Analogs on α1-Acid Glycoprotein and Human Serum Albumin Columns [J]. Journal of Chromatography,1992,609 (1-2):163-171.
    [40]Simek Z., Vespalec R. Interpretation of Enantioselective Activity of Albumin Used as the Chiral Selector in Liquid Chromatography and Electrophoresis [J]. Journal of Chromatography A,1994,685 (1):7-14.
    [41]Simek Z., Vespalec R., Chromatographic Properties of Chemically Bonded Bovine Serum Albumin Working as a Chiral Selector in Alkaline Mobile Phases [J]. Journal of Chromatography,1993,629(2):153-160.
    [42]Mallik R., Wa C., Hage D. S., Development of Sulfhydryl-Reactive Silica for Protein Immobilization in High-Performance Affinity Chromatography [J]. Analytical Chemistry, 2007,79(4):1411-1424.
    [43]Mallik R., Jiang T., Hage D. S., High-Performance Affinity Monolith Chromatography: Development and Evaluation of Human Serum Albumin Columns [J]. Analytical Chemistry,2004,76 (23):7013-7022.
    [44]Mallik R., Hage D. S., Development of an Affinity Silica Monolith Containing Human Serum Albumin for Chiral Separations [J]. Journal of Pharmaceutical and Biomedical Analysis,2008,46 (5):820-830.
    [45]Vera-Avila L. E., Garcia-Salgado E., Garcia D. L. M. P., et al. Binding Characteristics of Bovine Serum Albumin Encapsulated in Sol-Gel Glasses:An Alternative for Protein Interaction Studies [J]. Analytical Biochemistry,2008,373 (2):272-280.
    [46]Xuan H. Characterization of Drug Interactions with Alpha(1)-Acid Glycoprotein using High Performance Affinity Chromatography [D].2006.
    [47]Chen J., Ohnmacht C., Hage D. S., Studies of Phenytoin Binding to Human Serum Albumin by High-Performance Affinity Chromatography [J]. Journal of Chromatography B,2004,809 (1):137-145.
    [48]Mallik R., Yoo M. J., Chen S., et al. Studies of Verapamil Binding to Human Serum Albumin by High-Performance Affinity Chromatography [J]. Journal of Chromatography B,2008,876 (1):69-75.
    [49]Yoo M. J., Smith Q. R., Hage D. S., Studies of Imipramine Binding to Human Serum Albumin by High-Performance Affinity Chromatography [J]. Journal of Chromatography B,2009,877 (11-12):1149-1154.
    [50]Xuan H., Joseph K. S., Wa C, et al. Biointeraction Analysis of Carbamazepine Binding to α1-Acid Glycoprotein by High-Performance Affinity Chromatography [J]. Journal of Separation Science,2010,33 (15):2294-2301.
    [51]Abby J. Jackson, Hai Xuan, David S. Hage., Entrapment of Proteins in Glycogen-Capped and Hydrazide-Activated Supports [J]. Analytical Biochemistry,2010,404 (1):106-108.
    [52]-Joseph K. S., Hage D. S., Characterization of the Binding of Sulfonylurea Drugs to HSA by High-Performance Affinity Chromatography [J]. Journal of Chromatography B,2010, 878(19):1590-1598.
    [53]Xiong X., Nan Y., Zhang Q. Binding Interaction between Nicotine and Human Serum Albumin by High Performance Affinity Chromatography [J]. Chromatographia,2011,74 (1):127-131.
    [54]Chattopadhyay A., Tian T., Kortum L., et al. Development of Tryptophan-Modified Human Serum Albumin Columns for Site-Specific Studies of Drug-Protein Interactions by High-Performance Affinity Chromatography [J]. Journal of Chromatography B: Biomedical Sciences and Applications,1998,715(1):183-190.
    [55]Joseph K. S., Hage D. S., The Effects of Glycation on the Binding of Human Serum Albumin to Warfarin and L-Tryptophan [J]. Journal of Pharmaceutical and Biomedical Analysis,2010,53 (3):811-818.
    [56]Basiaga S. B. G., Hage D. S., Chromatographic Studies of Changes in Binding of Sulfonylurea Drugs to Human Serum Albumin due to Glycation and fatty acids [J]. Journal of Chromatography B,2010,878 (30):3193-3197.
    [57]Joseph K. S., Anguizola J., Jackson A. J., et al. Chromatographic Analysis of Acetohexamide Binding to Glycated Human Serum Albumin [J]. Journal of Chromatography B,2010,878 (28):2775-2781.
    [58]Matsuda R., Anguizola J., Joseph K., et al. High-Performance Affinity Chromatography and the Analysis of Drug Interactions with Modified Proteins:Binding of Gliclazide with Glycated Human Serum Albumin [J]. Analytical and Bioanalytical Chemistry,2011,401 (9):2811.
    [59]Hage D. S., Austin J., High-Performance Affinity Chromatography and Immobilized Serum Albumin as Probes for Drug-and Hormone-protein Binding [J]. Journal of Chromatography B:Biomedical Sciences and Applications,2000,739 (1):39-54.
    [60]Hage D. S., Tweed S. A., Recent Advances in Chromatographic and Electrophoretic Methods for the Study of Drug-Protein Interactions [J]. Journal of Chromatography B: Biomedical Sciences and Applications,1997,699 (1+2):499-525.
    [61]Kasai K., Ishii S., Affinity Chromatography of Trypsin and Related Enzymes.1. Preparation and Characteristics of an Affinity Adsorbent Containing Tryptic Peptides from Protamine as Ligands [J]. Journal of Biochemistry,1975,78 (4):653-662.
    [62]Nakano N. I., Oshio T., Fujimoto Y., et al. Study of Drug-Protein Binding by Affinity Chromatography:Interaction of Bovine Serum Albumin and Salicylic Acid [J]. Journal of Pharmaceutical Sciences,1978,67 (7):1005-1008.
    [63]Lagercrantz C., Larsson T., Karlsson H., Binding of Some Fatty Acids and Drugs to Immobilized Bovine Serum Albumin Studied by Column Affinity Chromatography [J]. Analytical Biochemistry,1979,99 (2):352-364.
    [64]Liu Q., Ouyang Liang., Liang H., Li N., Geng Xin., A Novel Thermodynamic State Recursion Method for Description of Nonideal Nonlinear Chromatographic Process of Frontal Analysis[J]. Journal of Separation Science.2012,12,1-13.
    [65]Calleri E., Temporini C., Massolini G., Frontal Affinity Chromatography in Characterizing Immobilized Receptors [J]. Journal of Pharmaceutical and Biomedical Analysis,2011,54 (5):911-925.
    [66]Dunn B. M., Chaiken I. M., Quantitative Affinity Chromatography. Determination of Binding Constants by Elution with Competitive Inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America,1974,71 (6): 2382-2385.
    [67]Allenmark S., Andersson S., Bojarski J., Direct Liquid Chromatographic Separation of Enantiomers on Immobilized Protein Stationary Phases. VI. Optical Resolution of a Series of Racemic Barbiturates:Studies of Substituent and Mobile Phase Effects [J]. Journal of Chromatography,1988,436 (3):479-483.
    [68]Allenmark S., Bomgren B., Boren H., Direct Liquid Chromatographic Separation of Enantiomers on Immobilized Protein Stationary Phases. IV. Molecular Interaction Forces and Retention Behavior in Chromatography on Bovine Serum Albumin as a Stationary Phase [J]. Journal of Chromatography,1984,316:617-624.
    [69]Allenmark S., Bomgren B., Boren H., Direct Liquid Chromatographic Separation of Enantiomers on Immobilized Protein Stationary Phases. III. Optical Resolution of a Series of N-aroyl D,L-amino Acids by High-Performance Liquid Chromatography on Bovine Serum Albumin Covalently Bound to Silica [J]. Journal of Chromatography, 1983,264(1):63-68.
    [70]Kaliszan R., Noctor T. A. G., Wainer I. W., Stereochemical Aspects of Benzodiazepine Binding to Human Serum Albumin. II. Quantitative Relationships between Structure and Enantioselective Retention in High Performance Liquid Affinity Chromatography [J]. Molecular Pharmacology,1992,42 (3):512-517.
    [71]Dalgaard L., Hansen J. J., Pedersen J. L., Resolution and Binding Site Determination of DL-thyronine by High-Performance Liquid Chromatography Using Immobilized Albumin as Chiral Stationary Phase. Determination of the Optical Purity of Thyroxine in Tablets [J]. Journal of Pharmaceutical and Biomedical Analysis,1989,7 (3):361-368.
    [72]Loun B., Hage D. S., Chiral Separation Mechanisms in Protein-Based HPLC Columns.1. Thermodynamic Studies of (R)-and (S)-Warfarin Binding to Immobilized Human Serum Albumin [J]. Analytical Chemistry,1994,66 (21):3814-3822.
    [73]Nakano N. I., Shimamori Y., Yamaguchi S., Binding Capacities of Human Serum Albumin Monomer and Dimer by Continuous Frontal Affinity Chromatography [J]. Journal of Chromatography,1982,237 (2):225-232.
    [74]Nakano N. I., Shimamori Y., Yamaguchi S., Mutual Displacement Interactions in the Binding of Two Drugs to Human Serum Albumin by Frontal Affinity Chromatography [J]. Journal of Chromatography,1980,188 (2):347-356.
    [75]Noctor T. A. G., Diaz-Perez M. J., Wainer I. W., Use of a Human Serum Albumin-Based Stationary Phase for High-Performance Liquid Chromatography as a Tool for the Rapid Determination of Drug-Plasma Protein Binding [J]. Journal of Pharmaceutical Sciences, 1993,82 (6):675-676.
    [76]Yang J., Hage D. S., Characterization of the Binding and Chiral Separation of D-and L-Tryptophan on a High-Performance Immobilized Human Serum Albumin Column [J]. Journal of Chromatography,1993,645 (2):241-250.
    [77]Peyrin E., Guillaume Y. C., Guinchard C., Interactions between Dansyl Amino Acids and Human Serum Albumin Using High-Performance Liquid Chromatography: Mobile-Phase pH and Temperature Considerations [J]. Analytical Chemistry,1997,69 (24):4979-4984.
    [78]Peyrin E., Guillaume Y. C., Morin N., et al. Retention Behavior of D, L-Dansyl-amino Acids on a Human Serum Albumin Chiral Stationary Phase:Effect of a Mobile Phase Modifier [J]. Journal of Chromatography A,1998,808 (1+2):113-120.
    [79]Gilpin R. K., Ehtesham S. E., Gregory R. B., Liquid Chromatographic Studies of the Effect of Temperature on the Chiral Recognition of Tryptophan by Silica-Immobilized Bovine Albumin [J]. Analytical Chemistry,1991,63 (24):2825-2828.
    [80]Gilpin R. K., Ehtesham S. B., Gilpin C. S., et al. Liquid Chromatographic Studies of Memory Effects of Silica-Immobilized Bovine Serum Albumin:I. Influence of Methanol on Solute Retention [J]. Journal of Liquid Chromatography & Related Technologies, 1996,19 (17&18):3023-3035.
    [81]Peyrin E., Guillaume Y. C., Morin N., et al. Sucrose Dependence of Solute Retention on Human Serum Albumin Stationary Phase:Hydrophobic Effect and Surface Tension Considerations [J]. Analytical Chemistry,1998,70 (14):2812-2818.
    [82]Su W., Gregory R. B., Gilpin R. K. Liquid Chromatographic Studies of Silica-Immobilized HEW Lysozyme [J]. Journal of Chromatographic Science,1993,31 (7):280-285.
    [83]Sengupta A., Hage D. S., Characterization of Minor Site Probes for Human Serum Albumin by High-Performance Affinity Chromatography [J]. Analytical Chemistry, 1999,71 (17):3821-3827.
    [84]Hage D. S., Sengupta A., Characterization of the Binding of Digitoxin and Acetyldigitoxin to Human Serum Albumin by High-Performance Affinity Chromatography [J]. Journal of Chromatography B:Biomedical Sciences and Applications,1999,724 (1):91-100.
    [85]Rahim S., Anne-Francoise A., Location of Binding Sites on Immobilized Human Serum Albumin for Some Nonsteroidal Anti-Inflammatory Drugs [J]. Journal of Pharmaceutical Sciences,1995,84 (8):949-952.
    [86]Hage D. S., Noctor T. A. G., Wainer I. W., Characterization of the Protein Binding of Chiral Drugs by High-Performance Affinity Chromatography. Interactions of R-and S-ibuprofen with Human Serum Albumin [J]. Journal of Chromatography A,1995,693 (1):23-32.
    [87]Hage D. S., Sengupta A., Studies of Protein Binding to Nonpolar Solutes by Using Zonal Elution and High-Performance Affinity Chromatography:Interactions of cis-and trans-Clomiphene with Human Serum Albumin in the Presence of β-Cyclodextrin [J]. Analytical Chemistry,1998,70 (21):4602-4609.
    [1]Moaddel R., Jozwiak K., Whittington K., et al. Conformational Mobility of Immobilized α3β2, α3β4, α4β2, and α4β4 Nicotinic Acetylcholine Receptors [J]. Analytical Chemistry, 2005,77(3):895-901.
    [2]Beigi F., Chakir K., Xiao R., et al. G-Protein-Coupled Receptor Chromatographic Stationary Phases.2. Ligand-Induced Conformational Mobility in an Immobilized β2-Adrenergic Receptor [J]. Analytical Chemistry,2004,76 (24):7187-7193.
    [3]Beigi F., Wainer I. W. Syntheses of Immobilized G Protein-Coupled Receptor Chromatographic Stationary Phases:Characterization of Immobilized μ and κ opioid Receptors [J]. Analytical Chemistry,2003,75 (17):4480-4485.
    [4]Moaddel R., Calleri E., Massolini G., et al. The Synthesis and Initial Characterization of an Immobilized Purinergic Receptor (P2Y1) Liquid Chromatography Stationary Phase for Online Screening [J]. Analytical Biochemistry,2007,364 (2):216-218.
    [5]Chattopadhyay A., Tian T., Kortum L., et al. Development of Tryptophan-Modified Human Serum Albumin Columns for Site-Specific Studies of Drug-Protein Interactions by High-Performance Affinity Chromatography [J]. Journal of Chromatography B: Biomedical Sciences and Applications,1998,715 (1):183-190.
    [6]Loun B., Hage D. S. Chiral Separation Mechanisms in Protein-Based HPLC Columns.1. Thermodynamic Studies of (R)-and (S)-Warfarin Binding to Immobilized Human Serum Albumin [J]. Analytical Chemistry,1994,66 (21):3814-3822.
    [7]Xuan H., Hage D. S. Immobilization of α1-Acid Glycoprotein for Chromatographic Studies of Drug-Protein Binding [J]. Analytical Biochemistry,2005,346 (2):300-310.
    [8]Mallik R., Wa C., Hage D. S. Development of Sulfhydryl-Reactive Silica for Protein Immobilization in High-Performance Affinity Chromatography [J]. Analytical Chemistry, 2007,79 (4):1411-1424.
    [9]Cherezov V., Rosenbaum D. M., Hanson M. A., et al. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein-Coupled Receptor [J]. Science,2007, 318 (5854):1258-1265.
    [10]Rasmussen S. G. F., Choi H., Rosenbaum D. M., et al. Crystal Structure of the Human β2 Adrenergic G-Protein-Coupled Receptor [J]. Nature,2007,450 (7168):383-387.
    [11]郑晓晖,赵新锋,杨荣,等.β2-肾上腺素受体亲和色谱及其在苦杏仁活性成分筛选中的应用[J].科学通报,2007(18):2111-2115.
    [12]Gilpin R. K., Ehtesham S. E., Gregory R. B. Liquid Chromatographic Studies of the Effect of Temperature on the Chiral Recognition of Tryptophan by Silica-Immobilized Bovine Albumin [J]. Analytical Chemistry,1991,63 (24):2825-2828.
    [13]Koyama T., Terauchi K. Synthesis and Application of Boronic Acid-immobilized Porous Polymer Particles:a Novel Packing for High-Performance Liquid Affinity Chromatography [J]. Journal of Chromatography, B:Biomedical Applications,1996, 679(1+2):31-40.
    [14]Jiang T., Mallik R., Hage D. S. Affinity Monoliths for Ultrafast Immunoextraction [J]. Analytical Chemistry,2005,77 (8):2362-2372.
    [15]Bjoerklund M., Hearn M. T. W. Characterization of Silica-Based Heparin-Affinity Adsorbents through Column Chromatography of Plasma Fractions Containing Thrombin [J]. Journal of Chromatography A,1996,743 (1):145-162.
    [16]Suzuki N., Quesenberry M. S., Wang J. K., et al. Efficient Immobilization of Proteins by Modification of Plate Surface with Polystyrene Derivatives [J]. Analytical Biochemistry, 1997,247 (2):412-416.
    [17]Bllkova Z., Mazurova J., Churacek J., et al. Oriented Immobilization of Chymotrypsin by Use of Suitable Antibodies Coupled to a Nonporous Solid Support [J]. Journal of Chromatography A,1999,852 (1):141-149.
    [18]吕宝彰,卢建,安明榜.受体学[M].合肥:安徽科学技术出版社,2000.236.
    [1]Calleri E., Temporini C., Massolini G., Frontal Affinity Chromatography in Characterizing Immobilized Receptors [J]. Journal of Pharmaceutical and Biomedical Analysis,2011,54 (5):911-925.
    [2]Basiaga S. B. G., Hage D. S., Chromatographic Studies of Changes in Binding of Sulfonylurea Drugs to Human Serum Albumin due to Glycation and Fatty acids [J]. Journal of Chromatography B,2010,878 (30):3193-3197.
    [3]Zhao X., Zheng X., Wei Y., et al. Thermodynamic Study of the Interaction between Terbutaline and Salbutamol with an Immobilized β2-Adrenoceptor by High-Performance Liquid Chromatography [J]. Journal of Chromatography B,2009,877 (10):911-918.
    [4]Liang W., Mills S., Profile of Ligand Binding to the Porcine β2-Adrenergic Receptor [J]. Journal of Animal Science,2001,79 (4):877-883.
    [5]Bhattacharya S., Hall S. E., Li H., et al. Ligand-Stabilized Conformational States of Human β2-Adrenergic Receptor:Insight into G-Protein-Coupled Receptor Activation [J]. Biophysical Journal,2008,94 (6):2027-2042.
    [6]Lemoine H., Overlack C., Koehl A., et al. Formoterol, Fenoterol, and Salbutamol as Partial Agonists for Relaxation of Maximally Contracted Guinea Pig Tracheas: Comparison of Relaxation with Receptor Binding [J]. Lung,1992,170 (3):163-180.
    [7]郑晓晖,赵新锋,杨荣,等.β2-肾上腺素受体亲和色谱及其在苦杏仁活性成分筛选中的应用[J].科学通报,2007(18):2111-2115.
    [1]Qian Z., Wen X., Li H., et al. Analysis of Interaction Property of Bioactive Components in Flos Lonicerae Japonicae with Protein by Microdialysis Coupled with HPLC-DAD-MS [J]. Biological & Pharmaceutical Bulletin,2008,31 (1):126-130.
    [2]雷根虎,刘丽亭,戴小军,等.中药小分子阿魏酸和丹皮酚与人血清白蛋白的竞争结合作用研究[J].化学学报,2010(1):55-61.
    [3]汪海林,邹汉法,张玉奎.微透析-液相色谱法研究药物与蛋白竞争结合[J].中国科学(B辑),1998(1):71-77.
    [4]Li X., Yu C., Cai Y., et al. Simultaneous Determination of Six Phenolic Constituents of Danshen in Human Serum Using Liquid Chromatography/Tandem Mass Spectrometry [J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2005,820 (1):41-47.
    [5]Zhang J., Cui M., He Y., et al. Chemical Fingerprint and Metabolic Fingerprint Analysis of Danshen Injection by HPLC-UV and HPLC-MS Methods [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,36 (5):1029-1035.
    [6]Wang Y., Yuan J., Shang W., et al. Dialysis Sampling On-Line Coupled with High-Performance Liquid Chromatography for Simultaneous Investigation of the Interactions between Multi-Components in Herbs and the Albumin [J]. Analyst,2011, 136 (4):823-828.
    [7]Lei G., Yang R., Zeng X., et al. Use of Frontal Chromatography to Measure the Binding Interaction of Berberine Chloride with Bovine Serum Albumin [J]. Chromatographia, 2007,66 (11/12):847-852.
    [8]张曦,寇自农,石羽佳,等.同步荧光光谱法研究丹参素-牛血清白蛋白体系的荧光增强效应[J].分析测试学报,2011(4):444-447.
    [9]Li S., Huang K., Zhong M., et al. Comparative Studies on the Interaction of Caffeic Acid, Chlorogenic Acid and Ferulic Acid with Bovine Serum Albumin [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,77 (3):680-686.
    [10]Xue J. T. C. C., The Interaction between Protocatechuic Aldehyde and Human Serum Albumin Using Three-Dimensional Fluorescence Techniques [J]. Spectroscopy,2011,2 (26):195-201.
    [11]Sudlow G., Birkett D. J., Wade D. N., Characterization of Two Specific Drug Binding Sites on Human Serum Albumin [J]. Molecular Pharmacology,1975,11 (6):824-832.
    [1]Rangan Mallik, Michelle J. Yoo, Sike Chen, et al. Studies of Verapamil Binding to Human Serum Albumin by High-performance Affinity Chromatography [J]. Journal of Chromatography B,2008, (87):669-675.
    [2]边六交,耿信笃.一个描述液相色谱体系中溶质进样量与保留值关系的方程[J].色谱,1996(3):179-181.
    [3]Liu Q., Ouyang Liang., Liang H., Li N., Geng Xin., A Novel Thermodynamic State Recursion Method for Description of Nonideal Nonlinear Chromatographic Process of Frontal Analysis [J]. Journal of Separation Science.2012,12,1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700