银杏内酯抗脑缺血作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏内酯(Total Ginkgolides,TG)是银杏叶提取物(EGb)中的一类帖烯内酯成分,它主要包括单体内酯A、B、C、M、J和白果内酯。关于EGb的心脑血管药理作用已有许多研究报道,关于单体内酯B及白果内酯等的抗血小板活化因子(PAF)作用及神经保护作用也有一些报道。TG与EGb相比是相对纯的中药药用有效部位,与单体内酯A、B、白果内酯等相比,前者含量远高于各单体成分,易得且价廉,并且推测它可能会有各单体协同作用的优势,此外,抗脑缺血药及神经保护剂的开发研究是目前亟待解决的课题,鉴于此,本文以银杏内酯为研究对象,从整体到分子水平研究了其抗脑缺血作用及作用机理。
     首先,研究了TG对小鼠密闭缺氧、急性脑缺血和大鼠局灶性脑缺血的保护作用。采用小鼠密闭缺氧实验,观察了TG对小鼠在密闭缺氧条件下的存活时间,并用测氧仪测定了容器内的氧含量变化情况;将标准体重的雄性小鼠双侧颈总动脉及迷走神经共同结扎,造成脑缺血合并血压下降,观察了TG对小鼠死亡率及死亡时间的影响;将标准体重的雄性小鼠急性断头造成全脑缺血,观察了断头后瞬时小鼠的喘气时间变化情况;电凝雄性大鼠一侧大脑中动脉造成局灶性脑缺血(MCAO),观察了TG对大鼠行为障碍、脑梗塞面积、脑组织病理变化及脑水含量的影响。结果表明,各剂量TG对密闭容器内小鼠全身缺氧的耗氧量及死亡时间无明显保护作用;TG32mg·kg~(-1)可显著降低结扎双侧颈总动脉及迷走神经后小鼠在120min内的死亡率,显著延长小鼠的存活时间;TG16和32mg·kg~(-1)可显著延长急性断头后小鼠的喘气时间;TG8和16mg·kg~(-1)可显著改善大鼠MCAO后6h的行为功能障碍,TG4,8和16mg·kg~(-1)可显著改善大鼠MCAO后24h的行为功能障碍;TG4,8和16mg·kg~(-1)可显著减少MCAO后大鼠的脑梗塞面积;MCAO后大鼠脑组织的病理学检查结果表明,TG各剂量组可不同程度地减轻大鼠缺血侧脑组织的神经元受损形态;TG8和16mg·kg~(-1)可明显降低大鼠MCAO后的脑组织水含量。
     然后,研究了TG对体外培养的大鼠胎鼠皮质神经细胞不同损伤模型的影响。用1mM谷氨酸(终浓度,以下所有浓度均指在培养液中的终浓度)和0.2mM H_2O_2分别与皮质神经细胞温育8h,造成培养的皮质神经细胞损伤;另向培养液中加入20nM KCN使细胞化学性缺氧并同时完全撤除培养液中的葡萄糖,造成细胞缺糖缺氧性损
    
    博士学位论文:银杏内酯抗脑缺血作用及其机制的研究 摘要
    伤,测定细胞培养液中的乳酸脱氢酶队DH)活性,并用MTT法测定细胞的可见性,
    观察TG对H种细胞损伤模型的保护作用。结果表明,在谷氨酸损伤模型上,TG各
    剂量在谷氨酸损伤处理的同时加入培养液中,可明显增加细胞活力,TG10”‘和 10”’
    g·L’可明显降低LDH的释放JG在谷氨酸损伤之前预先与细胞温育12h,TG10’,10”‘
    和 10-’g·L-’可明显增加细胞活力,TG 10’g·L”’可明显降低 LDH的释放。在 HZOZ
    损伤模型上,TG与 HZOZ同时给细胞温育 12 h,所有剂量均未见其对细胞损伤的保护
    作用,而大剂量TG门-’和10‘’g·L-’)预给细胞孵育12h后再用H。O;损伤处理,可见
    其明显地增加细胞活力并降低 LDH释放。TG各剂量预处理细胞 12 h后,再进行缺
    糖缺氧性损伤,未见TG有保护作用。
     随后,研究了TG对栓线法致局灶性脑缺血大鼠脑组织内自由基防御系统的影响。
    实验采用可逆的大脑中动脉阻断模型,造成大鼠局灶性脑缺血 2 h再灌注 24 h,观察
    TG对大鼠脑缺血后 6 h和 24 h的行为障碍和缺血侧及对照侧大脑皮质、海马及纹状
    体组织核团的重量变化。测定了缺血再灌注后大鼠外周血清中乳酸脱氢酶儿DH和肌
    酸激酶厂以的活性:测定了大鼠缺血再灌注后缺血侧及对照侧大脑皮质的过氧化氢酶
    KAT卜谷脱甘肽过氧化物酶(GSPX)的活性及还原型谷脱甘肽(GSH的含量:测定
    了大鼠缺血再灌注后皮质、海马及纹状体的超氧化物歧化酶瞩OD)的活性和脂质过氧
    化物丙二醛(MDA)的含量。结果表明,在缺血 6 h,TG 8 mg上g-’可显著改善大鼠的行
    为功能障碍;在缺血 24 h,TG 8和 16 mg·kg‘可显著改善大鼠的行为功能障碍;TG
    16 mg·kg-‘可显著减少缺血侧海马脑区的水肿,而各组对照侧海马和纹状体无明显水
    肿发生。TG mg·kg”‘可明显降低外周血清中的 LDH活性,对 CK活性也有降低的
    作用趋势;TG 16 mg屿-‘可显著增加缺血侧皮质的 CAT活性,TG 4,8和 16 mg·kg”‘
    三个剂量均可明显降低缺血侧皮质的GSHPX活性:各组对照侧皮质的CAT和
    GSHPx活性均无显著差异。TG 8和 16 mg·kg”’可明显增加缺血侧纹状体内的SOD
    活性,对缺血侧皮质和海马脑区的SOD活性无显著影响;各组对照侧皮质、海马及
    纹状体内的SOD活性无显著差异。TG各剂量有增加缺血侧皮质内GSH含量的作用
    趋势,TG 8和 16 mg·kg“’可明显降低缺血侧皮质内的 MDA含量,同时 TG mg·kg-’
    可明显降低缺血侧纹状体内的MDA含量,但对缺血侧海马脑区的MDA含量无明显
    影晌。对照侧皮质的GSH和对照侧皮质、海马及纹状体内的Nil3A含量各组均无显
    著差异。
     最后
Ginkgolides (TG) is terpenoid constituents of Ginkgo biloba extract (EGb), which includes ginkgolides A, B, C, M, J and bilobalide. Many reports have been read about the effects of EGb on blood vessels of heart and brain. And also there were some papers about that Gin B and bolobalide have antagonistic effects on platelet activity factor (PAF). Comparing to EGb, TG is a relative pure effective fraction of Chinese traditional medicine and comparing to the mono-ginkgolides, TG is much more easily prepared. Moreover, it is known that medicines for treating ischemia and medicines having neuroprotection are more necessary in clinic. Therefore, we made attempt to study the putative cerebreprotective activity and the possible mechanism of TG in vivo and in vitro.
    To investigate the protective effects of TG on anoxia and acute cerebral ischemia in mice and focal cerebral ischemia in rats, anoxia was produced by close hypoxia and the surviving time and oxygen content were detected. Acute cerebral ischemia was produced by the occlusion of bilateral common carotid arteries with vague nerves of mice and the effects of TG on mortality and surviving time in mice were also detected. Ischemia of whole brain was produced by cutting out mice heads and the effect of TG on gasping time was observd. Focal cerebral ischemia was produced by permanent occlusion of the proximal of the left middle cerebral artery (MCAO). The effects of TG on neurologic deficits and content of water in the damaged brain of rats, and also the pathological examination were observed. Results showed that no significant effects of TG on the surviving time and oxygen content in mice subjected to close hypoxia. TG 32 mg-kg-1 significantly prolonged the surviving time of mice subjected to acute ischemia by occl
    usion of bilateral carotid arteries and decreased the death rate. TG 16 and 32 mg-kg-1 could significantly prolong the gasping time in mice subjected to being cut out heads. TG 8 and 16 mg-kg-1 markedly decreased the infarct size and ameliorated neurologic deficits score of rats subjected to MCAO. Moreover, TG could decrease the water content in the damaged brain in rats subjected to MCAO.
    We tried to find out whether TG could rescue cultured cortical neurons from
    
    
    neurotoxicity damages. In cortical neuronal cultures from fetal rats, damage was induced by exposure to 1 mM L-glutamate (GIu) for 6-12 h in serum-free medium, by exposure to 0.2 mM hydrogen peroxide (H2O2) for 6-12 h, and by exposure to free-glucose and hypoxia medium for 4 h. Neuronal viability was confirmed by the assay of the absorbance of 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) solution on a spectrophotometer using a test wavelength of 570 nm and a reference wavelength of 630 nm. Cell membrane damage was assessed by measuring the release of lactate dehydrogenase (LDH) using the colorimetry. TG (10-5 to 10-1 g-L-1) added to the growth medium 12h before and simultaneously protected cortical neurons from glutamate-induced damage. The cytoprotective effects of TG on the damage induced by H2O2 were observed only when it was added 12 h prior to the onset of the injury. No effect of TG was found on the insult induced by free-glucose and hypoxia.
    The influence of TG on the lipid peroxide product, malondialdehyde (MDA), glutathione (GSH) and catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) activities in rat brain as well as lactate dehydrogenase (LDH) and creatine kinase (CK)activities in rat blood serum after occlusion of middle cerebral artery (MCAO) following reperfusion was investigated. Experimental model of the reversible middle cerebral artery occlusion without craniectomy of rat focal cerebral ischemia-reperfusion was used. Compared to sham-operated animals, rats subjected ischemia followed reperfusion exhibited severe neurologic deficits, ischemia followed reperfusion increased blood serum LDH and CK activities as well as brain GSH-Px activity and decreased SOD activity as well as GSH and MDA content. Administration of TG (4, 8, 16 mg-kg
引文
[1] Bonita R. Epidemiology of stroke. Lancet 1992, 339:342~344
    [2] Petito CK, Feldman E, Pulsinelli WA and Plum F. Delayed hippocampal damage in humans following cardio-respiratory arrest. Neurology 1987, 37:1281~1286
    [3] Drieu K. Preparation and definition of Ginkgo biloba extract. Presse. Med. 1986, 15:1455~1457
    [4] Filep J and F(?)ldes-Filep E. Ginkgolides: chemistry, biology, pharmacology and clinical perspectives. P. Braquet (ed), J. R. Prous Science Publ., S. A. 1988, pp151~159
    [5] Letzel H and Schoop W. Ginkgo biloba Extrakt 761 und Pentoxifyllin bei Claudicatio intermittens. Sekund(?)ranalyse zur klinischen Wirksamkeit. VASA, 1992, 21:403~410
    [6] Schneider B. Ginkgo-biloba-Extract bei peripheren arteriellen Verschluβkrheiten. Meta-Analyse von kontrollierten klinishcen Studien. Arzneim. Forsch. Drug Res. 1992, 42:428~436
    [7] Haase A, Halama P und H(?)rr R. Wirksamkeit kurzdauernder Infusionsbehandlungen mit Ginkgo biloba-Spezialextrakt EGb 761 bei Demenz vom vaskul(?)ren und Alzheimer-Typ. Z. Gerontol Geriat. 1996, 29:302~309
    [8] Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM and Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia.JAMA 1997, 278:1327~1332
    [9] Porsolt RD. Martin P, Lenegre A, Fromage S and Drieu K. Effects of an extract of Ginkgo biloba on learned helplessness and other models of stress in rodents. Pharmacol. Biochem. Behav. 1990,36:963~971
    [10] Tosaki A, Droy-Lefaix MT, Pali T and Das DK. Effects of SOD, catalase, and a novel antiarrhythmic drug, EGb 761, on reperfusion-induced arrhythmias in isolated rat hearts. Free Radic. Biol. Med. 1993, 14:361~370
    [11] Shen JG and Zhou DY. Efficiency of Ginkgo biloba Extract in antioxidant protection against myocardial ischemia and reperfusion injury. Biochem. Mol. Biol. Int. 1995, 35:125~131
    [12] Sylvia P, Eziana M, Kety D and Marcel C. Cardioprotective and antioxidant effects of the terpenoid constituents of Ginkgo biloba Extract. J. Mol. Cell Cardiol. 1997, 29:733~742
    [13] Chen JX, Zeng H, Chen X, Su CY and Lai CC. Ginkgo biloba Extracts induced oxidative
    
    resistance in cardiomyocytes. FASEB J. 1998, 12:A1010
    [14] Rong Y, Geng Z and Lau BHS. Ginkgo biloba attenuates oxidative stress in macrophages and endothelial cells. Free Radic. Biol. Med. 1996, 20:121~127
    [15] Chen JX, Chen WZ, Huang HL, Chen LX, Xie ZZ and Zhu BY. Protective effects of Ginkgo bilobva Extracts against lysophosphatidylcholine reduced vascular endothelial cell damage. Acta. Pharmacol. Sinica. 1998, 19:359~363
    [16] Maitra I, Marcocci L, Droy-Lefaix MT and Packer L. Peroxyl radical scavenging activity of Ginkgo biloba Extract EGb 761. Biochem Pharmacol. 1995, 49:1649~1655
    [17] Dumont E, Petit E, Tarrade T and Nouvelet A. UV-C Irradiation-induced peroxidative degradation of microsomal fatty acids and proteins: Protection by an extract of Ginkgo biloba.Free Radic. Biol. Med. 1992, 13:197~203
    [18] K(?)se K and Dogan P. Lipoperoxidation induced by hydrogen peroxide in human erythrocyte membranes. 1. Protective effect of Ginkgo biloba Extract. Int. Med. Res. 1995a, 23:1~8
    [19] K(?)se K and Dogan P. Lipoperoxidation induced by hydrogen peroxide in human erythrocyte membranes, 2. Comparison of the antioxidant effect of Ginkgo biloba Extract with those of water-soluble and liid-soluble antioxidants. Int. Med. Res. 1995a, 23:9~18
    [20] Sram RJ, Binkova B, Stejskalova J and Topinka J. Effect of EGb 761 on lipid peroxidation, DNA repair and antioxienzyme activity. In Ferradini C, Droy-Lefaix MT, Christen Y (eds): Advances in Ginkgo biloba Extract Research, Vol. 2. Ginkgo biloba Extract as a Free-Radical Scavenger. Paris: Elsevier, 1993, pp27~38
    [21] Holgado Madruga M, De Castro S and Macias-Nunez JF. Effects of Ginkgo biloba Extract on brain aging and oxygen free-radical metabolism in the rat. In Christen Y, Courtois Y, Droy-Lefaix MT(eds): Advances in Ginkgo biloba Extract Research, Vol. 4. Effects of Ginkgo biloba Extract on Aging and Age-Related Disorders. Paris: Elsevier, 1995, pp71~76
    [22] Shen J and Zhou DY. Efficiency of Ginkgo biloba Extract in antioxidant protection against myocardial ischemia and reperfusion injury. Biochem, Mol. Biol. Int. 1995, 35:125~134
    [23] Pietri S, Maurelli E, Drieu K and Culcasi M. Cardioprotective and antioxidant effects of the terpenoid constituents of Ginkgo biloba Extract. J. Mol. Cell Cardiol. 1997, 29:733~742
    [24] Green AR and Cross AJ. Techniques for examining neuroprotective drugs in vivo. Int. Rev. Neurobiol. 1997b, 40:47~68
    
    
    [25] 张玉珍,顾德官,茅守玉,陈维洲。银杏叶提取物对大鼠局部脑缺血及颈动脉血栓形成的保护作用。药学学报,1998,33:901~905
    [26] Smalkl DL and Buchan AM. NMDA antagonists: their role in neuroprotection. Int. Rev.Neurobiol. 1997, 40:137~171
    [27] Gill R and Lodge D. Pharmacology of AMPA antagonists and their role in neuroprotection. Int. Rev. Neurobiol. 1997,40:197~232
    [28] Zola-Morgan S, Squire LR and Amaral DG. Human amnesia and the medial temporal region:enduring memory impairment following a bilateral lesion limited to field CA_1 of the hippocampus,J. Neurosci, 1986, 6:2950~2967
    [29] Petto CK, Feldmann E, Pulsinelli WA and Plum F. Delayed hippocampal damage in human following cardiorespiratory arrest. Neurology 1987, 37:1281~1286
    [30] 冯亦璞,孙亚丁,陈宝泰,叶刚,曾贵云。小鼠脑缺血后的能量代谢改变和药物的作用。药学学报,1989,24:89~94
    [31] White BC, Gross LI and Krause GS. Brain injury by global ischemia and reperfusion: a theoretical perspective on membrane damage and repair. Neurology 1993, 43:1656~1665
    [32] Mcauley MA. Rodent models of focal ischemia. Cerebrovasc. Brain Metab. Rev.1995, 7:153~186
    [33] Traystman RJ, Kirsch JR and Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 1991, 71:1185~1195
    [34] Nelson CW, Wei EP, Povlishock JT, Kontos HA and Moskowitz MA. Oxygen radicals in cerebral ischemia. Am. J. Physiol. 1992, 263 (Heart Circ. Physiol. 32): H1356~H1362
    [35] Koroshetz WJ and Moskowitz MA. Emerging treatments for stroke in humans.Trends in Pharmacol. Sci. 1996, 17:205~234
    [36] Xue D, Slivka A and Buchan AM. Tirilazad reduces cortical infarction after transcient but not permanent focal cerebral ischemia in rats. Stroke 1992, 23:894~899
    [37] Longa EZ, Weinstein PR, Carlson S and Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20:84~91
    [38] Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1:623~634
    [39] Meldrum B.Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin. Sci. 1985, 68:113~122
    
    
    [40] Rothman SM and Olney JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 1986, 19: 105~111
    [41] Cheng B and Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homestasis. Neuron 1991, 7:1031~1041
    [42] Cheng B and Mattson MP. Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF. Exp. Neurol. 1992, 117:114~123
    [43] Cheng B, McMahon D and Mattson MP. Modulation of calcium current, intraceIlular calcium levels and cell survival by glucose deprivation and growth factors in cultured hippocampal neurons. Brain Res. 1993, 607:275~285
    [44] Cheng B and Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 1994, 640:56~67
    [45] 姚裕家,曾珍,李炜如,熊英,康超英。尼莫地平对大鼠缺氧缺血性脑神经细胞损伤的保护作用研究。华西医大学报,2000,31:506~507
    [46] Ahlemeyer B and Krieglstein J. Testing drug effects against hypoxic damage of cultured neurons during long-term recovery. Life Sci. 1989, 45:835~842
    [47] 何丽娜,何素冰,杨军,王静,刘超。丹参酮对原代大鼠神经细胞缺血性损伤的保护作用。中国药理学通报,2001,17:214~217
    [48] Mattson MP and Cheng B. Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis. Stroke 1993, 24(suppl. I): I-136-I-140
    [49] Kaku DA, Goldberg MP and Choi DW. Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res. 1991,554:344~347
    [50] 王天佑,阎军,彭亮,梁实,徐立新。体外培养的中枢神经细胞的“缺血”性损害。中国病理生理杂志,1989,5:293~297
    [51] Ekblom J, Tottmar O and Oreland L. Cytoprotection by deprenyl and tolcapone in a cell culture model of cerebral ischemia. Pharmacol. Toxicol. 1998, 83:194~199
    [52] Ekblom J, Garpenstrand H, Tottrnar O, Prince JA and Oreland L. A cell culture model of cerebral ischemia as a convenient system to screen for neuroprotective drugs. J. Neural Transm. 1997,52(Suppl.): 99~104
    
    
    [53] Semkova I, Schilling M, Henrich-Noack P, Rami A and Kxeiglsein J. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF. Brain Res. 1996, 717:44~54
    [54] Semkova I, Wolz P, Schilling M and Krieglstein J. Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur. J.Pharmacol. 1996, 315:19~30
    [55] krieglstein J, Ausmeier F, El-Abhar H, Lippert K, Welsch M, Rupalla K and Henrich-Noack P. Neuroprotective effects of Ginkgo biloba constituents Eur. J. Pharm. Sci. 1995, 3:39~48
    [56] 董艳,唐铁山,路长林,何成,董建波,黄秀英,孙方臻,鲍(王睿)。垂体腺苷酸环化酶激活肽减轻谷氨酸对海马神经元的损伤并抑制胞内钙升高。生理学报,2000,52:402~406
    [57] Kim SR, Sung SH, Kwon SW, Park JH, Huh H and Kim YC. Dammarane derivatives protect cultured rat cortical cells from glutamate-induced neurotoxicity. J. Pharm. Pharmacol. 2000, 52:1505~1511
    [58] Shimohama S, Ogawa N, Tamura Y, Akaike A, Tsukahara T, Iwata H and Kimura J. Protective effect of nerve growth factor against glutamate-induced neurotoxicity in cultured cortical neurons.Brain Res. 1993, 632:296~302
    [59] Black MA, Tremblay R, Mealing G, Ray R, Durkin JP, Whitfield JF, Blosser J and Morley P.N-methyl-D-aspartate- or glutamate-mediated toxcity in cultured rat cortical neurons is antagonized by FPL 15896AR. J. Neurochem. 1995, 65:2170~2177
    [60] 阎超华,张均田,冯亦璞。丁基苯酞对氯化钾及N-甲基-D-门冬氨酸诱导的大鼠皮质神经细胞损伤的保护作用。药学学报,1997,32:340~346
    [61] Akaike A, Tamura Y, Sato Y, Ozaki K, Matsuoka R, Miura S and Yoshinaga T. Cholecystokinin-induced protection of cultured cortical neurons against glutamate neurotoxicity.Brain Res. 1991, 557:303~307
    [62] Oyama Y, Chikahisa L, Ueha T, Kanemaru K and Noda K. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res. 1996, 712:349~352
    [63] Guidetti C, Paracchini S, Lucchini S, Cambieri M and Marzatico F. Prevention of neuronal cell damage induced by oxidative stress m-vitro: effect of different Ginkgo biloba extracts.J. Pharm.Pharmacol. 2001,53:387~392
    
    
    [64] Rapin JR, Zaibi M and Drieu K. In vitro and in vivo effects of an extract of Ginkgo biloba,ginkgolide B, and bilobalide on apoptosis in primary cultures of rat hippocampal neurons. Drug Dev. Res. 1998, 45:23~29
    [65] Abe K and Saito H. Characterization of t-butyl hydroperoxide toxicity in cultured rat cortical neurones and astrocytes. Pharmacol. Toxicol. 1998, 83:40~46
    [66] Kume T, Nishikawa H, Tomioka H, Katsuki H, Akaike A, Kaneko S, Maeda T, Kihara T and Shimohama S. p75-Mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Res. 2000, 852:279~289
    [67] Kume T, Kouchiyama H, Kaneko S, Maeda T, Kaneko S, Akaike A, Shimohama S, Kihara T,Kimura J, Wada K and Koizumi S. BDNF prevents NO mediated glutamate cytotoxicity in cultured cortical neurons Brain Res. 1997, 756:200~204
    [68] Siesj(?) BK, Bendek G, Koide T, Westerberg E and Wieloch T. Influence of acidosis on lipid peroxidation in brain tissuses in vitro, J. Cereb. Blood Flow Metab. 1985, 5:253~258
    [69] Bredt DS and Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA. 1989, 86:9030~9033
    [70] Garthwaite J, Garthwaite G, Palmer RMJ and Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 1989, 172:413~416
    [71] Beckman JS, Beckman TW, Chen J, Marshall PA and Freeman BA Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990, 87:1620~1624
    [72] Veitch K, Hombroeckx A, Caucheteux D, Pouleur H and Hue L. Global ischemia induces a biphasic response of the mitochondrial respiratory chain. Bwchem. J. 1992, 281:709~715
    [73] Allen KL, Almeida A, Bates TE and Clark JB. Changes of respiratory chain activity in mitochondrial and synaprosomal fractions isolated from the gerbil brain graded ischemia.J.Neurochem. 1995, 64:2222~2229
    [74] Jennings RB. Early phase of myocardial ischemic injury and function. Am. J. Cardiol. 1969, 24:753~765
    [75] Hearse DJ. Reperfusion of the ischemic myocardium.J. Mol. Cell Cardiol. 1977, 9:605~616
    [76] Siesj(?) BK. Cerebral circulation and metabolism.J. Neurosurg. 1984, 60:883~908
    [77] Sun GY, Tang W, Huang SFL and Foudin L. Is phosphatidylinositol involved in the release of
    
    fatty acids in cerebral ischemia? In: Inositol and Phosphomostides: Metabolism and Biological Regulation, edited by J. E Bleasdale, J. Eichberg, and G. Hauser. Clifton, NJ: Humana, 1984, pp511~527
    [78] Wieloch T and Siesj(?) BK. Ischemic brain injury: the importance of calcium, lipolytic activities,and fatty acids. Pathol. Biol. 1982, 30:269~277
    [79] Edgar AD, Stroznajder J and Horrocks LA. Activation of ethanolamine phospholipase A_2 in brain during ischemia J. Neurochem. 1982, 39:1111-1116
    [80] Chan PH and Fishman RA Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science Wash. DC. 1987, 201: 358~360
    [81] Chan PH and Fishman RA Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J. Neurochem. 1980, 35:1004~1007
    [82] Chan PH, Kerlan R and Fishman RA. Reduction of γ-aminobutyric acid and glutamate uptake and (Na~++K~+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J.Neurocbem. 1983, 40:309~316
    [83] Yu ACH, Chan PH and Fishman RA. Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 1986, 47:1181~1189
    [84] Yoshida S, Inoh S, Asano T, Sano M, Kubota H, Shimazaki H and Ueta N. Effect of transient ischemia on fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as a possible cause of postischemic injury. J. Neurosurg. 1980, 53:323~331
    [85] Armstead WM, Mirro R, Busija DW and Leffler CW. Postischemic generation of superoxide anion by newborn pig brain. Am. J. Physiol. 1988, 255 (Heart Circ. Physiol. 24): H401~H403
    [86] Kempski O, Shohami E, von Lubitz D, Hallenbeck JM and Feuerstein G. Postischemic production of eicosanoids in gerbil brain. Stroke 1987, 18:111~119
    [87] Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S and Sandberg M. Extracellular adenosin, inosine, hypoxanthine and xathine in relation to tissue nucleotides and purinees in rat striatum during transient ischmia. J. Neurochem. 1987, 49:227~231
    [88] Armstead WM, Mirro R, Leffler CW and Busija DW. Cerebral superoxide anion generation during seizures in newborn pigs. J. Cereb. Blood Flow Metab. 1989, 9:175~179
    [89] Betz AL. Identification of hypoxanthme transport and xanthine oxidase activity in brain
    
    capillaries.J. Neurochem. 1985, 44:574~579
    [90] Schmidt HH, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, Niroomand F and B(?)hme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur. J. Pharmacol.1988, 154:213~216
    [91] Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB,Obrenovitch TP and Contreras TJ. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 1986, 17:246~253
    [92] Kochanek PM, Dutka AJ and Hallenbeck JM. Indomethacin, prostacyclin and heparin improve postischemic cerebral blood flow without affecting early postischemic granulocyte accumlation Stroke 1987, 18:634~637
    [93] Thelen M, Dewald B and Baggiolini M. Neutrophil signal transduction and activaton of the respiratory burst. Physiol. Rev.1993, 73:797~821
    [94] Barr PJ and Tomei LD. Apoptosis and its role in human disease. Biotechnology 1994, 12:487~493
    [95] Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F and Hiroe M.Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ. Res. 1994, 75:426~433
    [96] Rosenbaum DM, Kalberg J and Kessler JA. Superoxide dismutase ameliorates neuronal death from hypoxia in culture. Stroke 1994, 25:857~863
    [97] Schumer M, Colombel M C, Sawczuk IS, Gobe G, Connor J, O'Toole KM, Olsson CA, Wise GJ and Buttyan R. Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am. J. Pathol. 1992, 140:831~838
    [98] Gottlieb RA, Burleson KO, Kloner RA, Babior BM and Engler RL. Reperfusion injury reduces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 1994, 84:1621~1628
    [99] Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, Salih M, Aubry H, Tamai K, Guan X, Ioannou P, Crawford TO, de Jong PJ, Surh L, Ikeda J, Korneluk RG and MacKenzie A.The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995, 80:167~178
    [100] Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M,Ikeda J, MacKenzie A and Korneluk R. Suppression of apoptosis in mammalian cells by NAIP
    
    and a related family of IAP genes. Nature 1996, 379:349~353
    [101] Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ and Cotman CW. Apoptosis is induced by beta amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA.1993, 90:7951~7955
    [102] LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC and Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat. Genet. 1995, 9:21~30
    [103] Tsujimoto Y, Finger LR, Yunis J, Nowell PC and Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984, 226:1097~1099
    [104] Cleary ML, Smith SD and Sklar J. Cloning and structural analysis if cDNAs for bc1-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986, 47:19~28
    [105] Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267:1456~1462
    [106] Staunton MJ and Gaffney EF. Apoptosis: basic concepts and pontential significance in human cancer. Arch. Pathol. Lab. Med. 1998, 122:310~319
    [107] Hockenbery D, Nunez G, Milliman C, Schreiber RD and Korsmeyer SJ. bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990, 348:334~336
    [108] Fanidi A, Harrington EA and Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 1992, 359:554~556
    [109] Garcia I, Martinon I, Tsujimoto Y and Martinou JC. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 1992,258:302~304
    [110] Allsopp TE, Wyatt S, Paterson HF and Davies AM. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993, 73:295~307
    [111] Kane DJ, Sarafian TA, Anton R, Hahn H, Butler-Grall E, Sleverstone J, Ord T and Bredesen DE.bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen species. Science 1993,262:1274~1277
    [112] Chen J, Graham SH, Chan PH, Lan J, Zhou RL and Simon RP. bcl-2 is expressed m neurons that survive focal ischemia in the rat. NeuroReport 1995, 6:394~398
    
    
    [113] Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL and Korsmeyer SJ. bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993, 75:241~251
    [114] Tao W, Kurschner C and Morgan JI. Modulation of cell death in yeast by the bcl-2 family of proteins. J. Biol. Chem. 1997, 272:15547~15552
    [115] Oltvai ZN, Milliman CL and Korsmeyer SJ. bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74:609~619
    [116] Hengartner MO and Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994, 76:665~576
    [117] Panahian N, Yoshiura M and Maines MD. Overexpression of home oxygenase-1 neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 1999,72:1187~1203
    [118] Chopp M, Li Y, Zhang ZG and Freytag SO. p53 expression in brain after middle cerebral atery occlusion in the rat. Biochem. Bioptys. Res. Commun. 1992, 182:1201~1207
    [119] Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B. A model for p53-induced apoptosis.Nature 1997, 389:300~305
    [120] Hunter A, Green AR and Cross AJ. Animal models of acute ischemic stroke: can they predict clinically successful neuroprotective drugs? Trends Pharmacol. Sci. 1995, 16:123~128
    [121] Hosford D and Braquet P. Antagonists of platelet-activating factor: chemistry, pharmacology and clinical applications. Prog. Med. Chem. 1990, 27:325~329
    [122] 么冬爱,刘汉兴,张晓琴,章军建。雌激素与脑缺血。国外医学脑血管疾病分册,2000,8(1):6~8
    [123] 刘景根,皋聪,李瑞,刘国卿。蝙蝠葛苏林碱对小鼠脑缺血的保护作用。中国药理学通报,1998;14(1):18~21
    [124] Amri H, Ogwuegbu SO, Boujrad N, Drieu K and Papadopoulos V. In vivo regulation of peripheral-type benzodiazepine receptor and glucocorticoid synthesis by Ginkgo biloba extract EGb761 and isolated Ginkgolides. Endocrinology 1996, 137:5707~5718
    [125] 叶春玲,李宝华。可乐定对小鼠和猫实验性脑缺血的保护作用。中国药理学和毒理学杂志,1993,7:42~44
    [126] 陈奇主编。中药药理研究方法学。第一版,人民卫生出版社,1994,P205
    [127] 徐叔云主编。药理实验方法学。第二版,人民卫生出版社,1991,P948
    
    
    [128] 刘小光,冯亦璞。丁基苯酞对局部脑缺血大鼠行为和病理改变的保护作用。药学学报,1995,30:896~903
    [129] 刘岚,冯亦璞,胡盾,李河水,张均田。AMG-1对小鼠和大鼠缺血脑能量代谢及神经细胞损伤的影响。药学学报,1991,26:881~885
    [130] Bederson JB, Pitts LH, Tsuji M, Nishmura MC, Davis RL and Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986, 17:472~476
    [131] 徐叔云,卞如濂,陈修主编。药理实验方法学。第二版,人民卫生出版社,1991,P950
    [132] 姚炜,库宝善,张疆寅,李雪林,姚海燕。L-盐酸赖氨酸对局部脑缺血大鼠的治疗作用。药学学报,1999,34:401~404
    [133] Janssens D, Remacle J, Drieu K and Michiels C. Protection of mitochondrial respiration activity by bilobalide. Biochem. Pharmacol.1999, 58:109~119
    [134] Beckman JS, Ye YZ and Chen J. Advances in neurology. Vol 71. In: Siesjo BK, Wieloch T, ed.Philadelphia: Lippinocott-Raven Publishers, 1996, 339
    [135] Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 1990, 11: 379~387
    [136] Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M and Appel SH. Cell death induced by β-amyloid 1-40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res. 1995, 686:49~60
    [137] Sawada H, Shimohama S,Tamura Y, Kawamura T, Akaike A and Kimura J.Methylphenylpyridium ion(MPP~+)enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultured rat mesencephalon. J. Neurosci. Res. 1996, 43:55~62
    [138] 张予阳,于庆海,游松,盛丽,孙萍。银杏内酯对小鼠和大鼠脑缺血的保护作用。中国药理学通报,2001,17:667~669
    [139] Whittemore ER, Loo DT and Cotman CW. Hydrogen peroxide induces apoptosis in culture neurons. NeuroReport 1994, 5:1485~1488
    [140] Szabo C.The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock 1996, 6:79~88
    [141] Ahlemeyer B, Mowes A and Krieglstein J. Inhibition of serum deprivation-and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents.
    
    Eur. J.Pharmacol. 1999, 367:423~430
    [142] Chen C, Wei TT, Gao ZH, Zhao BL, Hou JW and Xu HB. Different effects of the constituents of EGb 761 on apoptosis in rat cerebellar granule cells induced by hydroxyl radicals. Biochem. Mol.Biol. Int. 1999, 47:397~405
    [143] Sloley BD, Urichuk LJ, Morley P, Durkin J, Shan JJ, Pang PKT and Coutts RT. Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves.J. Pharm. Pharmacol. 2000, 52:451~459
    [144] Zhu L, Wu J, Liao H, Gao J, Zhao XN and Zhang ZX. Antagonistic effects of extract from leaves of Ginkgo biloba on glutamate neurotoxicity. Acta. Pharmacol. Sin. 1997, 18:344~347
    [145] Akaike A, Kaneko S, Tamura Y, Nakata N, Shiomi H, Ushikubi F and Narumiya S. Prostaglandin E_2 protects cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 1994, 663:237~243
    [146] Tamura Y, Sato Y, Akaike A and Shiomi H. Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-mehtyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 1994, 592:317~325
    [147] Koh JI and Choi DW. Vulnerability of cultured cortical neurons to damage by excitotoxins:differential susceptibility of neurons containing NADPH-diaphorase. J. Neurosci. 1988, 8: 2153~2163
    [148] Bickler PE and Hansen BM. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia:role of ion channels and membrane damage Brain Res. 1994, 665:269~276
    [149] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods 1983, 65:55~63
    [150] Abe K and Saito H. Menadione toxicity in cultured rat cortical astrocytes. Jap. J. Pharmacol.1996, 72:299~306
    [151] Koh JY and Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Methods 1987, 20:83~90
    [152] 辽宁正通生物制品公司试剂说明书---乳酸脱氢酶测定液体试剂盒。
    [153] Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part Ⅰ Pathphysiology. J.Neurosurg. 1992 a, 77:169~184
    
    
    [154] Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part Ⅱ Mechanisms and drug treatment.J. Neurosurg. 1992 b, 77:337~354
    [155] McCulloch J. Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br. J. Clin. Pharmacol. 1992, 34:106~114
    [156] Klein J, Chatterjee SS and Loffelholz K. Phospholipid breakdown and choline release under hypoxic conditions: inhibition by bilobalide, a constituent of Ginkgo biloba. Brain Res. 1997, 755:347~350
    [157] Janssens D, Michiels C, Delaive E, Eliaers F, Drieu K and Remacle J. Protection of hypoxia-induced ATP decrease in endothelial cells by Ginkgo biloba ex-tract and bilobalide. Biochem. Pharmacol. 1995, 50:991~999
    [158] Hartley DM and Choi DW. Delayed rescue of N-methyl-D-aspartate receptor-mediated neuronal injury in cortical culture.J. Pharmacol. Exp. Ther. 1989, 250:752~758
    [159] Du ZY and Li XY. Inhibitory effects of ginkgolides on nitric oxide production in neonatal rat microglia in vitro. Acta. Pharmacol. Sin. 1998, 19:467~470
    [160] Oyama Y, Hayashi A, Ueha T, Chikahisa L and Furukawa K. Fluorescent estimation on the effect of Ca~(2+) antagonists on the oxidative metabolism in dissociated mammalian brain neurons. Brain Res. 1993, 610:172~175
    [161] Zhao HW and XY Li. Ginkgolide A, B, and huperzine A inhibit nitric oxide production from rat C6 and human BT 325 glioma cells. Acta. Pharmacol. Sin. 1999, 20:941~943
    [162] Du ZY and XY Li. Effects of ginkgolides on interleukin-1, tumor necrosis factor-α and nitric oxide production by rat microglia stimulated with lipopolysaccharides in vitro. Arzneim. Forsch.1998,48(Ⅱ): 1126~1130
    [163] Olanow CW. A radical hypothesis for neurodegeneration. Trends. Neurosci. 1993, 16:439~444
    [164] Phillis JW. A radical view of cerebral ischaemic injury. Prog. Neurobiol. 1994, 42:441~448
    [165] Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K and Kawasaki T. A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of tocopherol administraton. Stroke 1983, 14:977~982
    [166] Goldberg WJ, Watson BD, Busto R, Kurchner H, Santiso M and Ginsberg MD. Concurrent measurement of (Na~+, K~+)-ATPase activity and lipid peroxides in rat brain following reversible global ischemia. Neurochem. Res. 1984, 9:1737~1747
    
    
    [167] Watson BD, Busto R, Goldberg WJ, Santiso M, Yoshida S and Ginsberg MD. Lipid peroxidation in vivo induced by reversible ischemia in rat brain. J. Neurochem. 1984, 42:268~274
    [168] Nayini NR, White BC, Aust SD, Huang RR, Indrieri RJ, Evans T, Bialek H, Jacobs WA and Komara J. Post resuscitation iron delocalization and malondialdehyde production in the brain following prolonged cardiac arrest.J. Free Radic. Biol. Med. 1985, 1: 111~116
    [169] Rehncrona S, Westerberg E, Akesson B and Siesjo BK. Brain cortical fatty acid and phospholipids during and following complete and severe incomplete ischemia. J. Neurochem.1982, 38:84~93
    [170] MacMillan V. Cerebral Na~+, K~+-ATPase activity during exposure to and recovery, from acute ischemia. J. Cereb. Blood Flow Metab. 1982, 2:457~465
    [171] Jouvin-Marche E, Poitevin B and Benveniste J. Platelet-activating factor (PAF-acether) an activator of neutrophil function. Agents Actions 1982, 12:716~720
    [172] Seif-El-Nasr M, Nuglish J and Krieglstein J. Prevention of ischemia-induced cerebral hypothermia by controlling the enviromental temperature. J. Pharmacol. Methods 1992, 27:23~26
    [173] 辽宁正通生物制品公司试剂说明书---肌酸激酶测定试剂盒。
    [174] 南京建成生物工程研究所试剂说明书---CAT测定试剂盒(可见光法)。
    [175] 南京建成生物工程研究所试剂说明书---GSH-Px酶活力测试盒。
    [176] 徐叔云,卞如濂,陈修主编,药理实验方法学。第二版,人民卫生出版社,1991,P508
    [177] 季建平,吴再彬,刘歧山,张运生,叶铭,李明举。超氧化物歧化酶超微量快速测定法。南京铁道医学院学报,1991,10:27~30
    [178] 南京建成生物工程研究所试剂说明书---GSH测定试剂盒。
    [179] 陈重阳,唐祖年,梁荣感。青蒿琥酯对正常及肝脏毒物中毒小鼠肝脏谷胱甘肽含量的影响。中国药理学通报,1993,9:52~53
    [180] 陈奇主编。中药药理研究方法学。第一版,人民卫生出版社,1993,P942
    [181] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72:248~254
    [182] Landowne D and Ritchie JM. Control of glycogenolysis in mammalian nervous tissue by calcium. J. Physiol. 1970, 212:503~517
    [183] Bromont C, Marie C and Barlet J. Increased lipid peroxidation in vulnerable brain regions after
    
    transient forebrain ischemia m rats. Stroke 1989, 20:918~924
    [184] Seif-EL-Nasr M and Abd EL-Fattah AA. Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischemia: effect of Ginkgo biloba extract.Pharmacol. Res. 1995, 32:273~278
    [185] Rehncrona S, Folbergrova J, Smith DS and Siesjo BK. Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem. 1980, 34:477~486
    [186] Cooper AJL, Pulsinelli WA and Duffy TE. Glutathione and ascorbate during ischemia and postischaemic reperfusion in rat brain.J. Neurochem. 1980, 35:1242~1245
    [187] Bunker VW. Free radicals, antioxidants and aging. Med. Lab. Sci. 1992, 49:299~312
    [188] Scarpa M, Rigo A, Viglino P, Stevanato R, Bracco F and Battistin L. Age dependence on the level of the enzymes involved in the protection against active oxygen species in the rat brain. Proc. Soc. Exp. Biol. Med. 1987, 185:129~133
    [189] Patt A, Harken AH, Burton LK, Rodell TD, Piermatei D, Schorr WJ, Parker NB, Berger EM, Horesh JR and Terada LS. Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains.J. Clin. Invest. 1988, 81:1556~1562
    [190] Mak IT, Boehme P and Weglick WB. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells: correlation of protection with preservation of glutathione levels.Circ. Res. 1992, 70:1099~1103
    [192] Haunstetter A and Izumo S. Apoptosis basic mechanism and implications for cardiovascular disease. Circ. Res. 1998, 82:1111~1129
    [193] Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 1994, 76:777~779
    [194] Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D and Barzilai A. Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenetic mechanism in Parkinson's disease. Neurosci. Lett. 1994, 170:136~140
    [195] Forrest VJ, Kang YH, MacClian DE, Robinson DH and Ramakrishnan N. Oxidative stress induced apoptosis prevented by trolox. Free Rad. Biol. Med. 1994, 16:675~684
    [196] Reed JC. bcl-2 and the regulation of programmed cell death. J. Cell Biol. 1994, 124:1~6
    [197] Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM,
    
    Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT and Nicholson DW. A combinatorial approach defines specificities of members of the caspase family and granzyme B: functional relationships established for key mediators of apoptosis. J. Biol. Chem. 1997,272:17907~17911
    [198] Inohara N, Ding L, Chen S and Nunez G. Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins bcl-2 and Bcl-X(L). EMBO J. 1997, 16:1686~1694
    [199] Pollman MJ, Hall JL, Mann MJ, Zhang L and Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med. 1998, 4:222~227
    [200] Krishenbaum LA and de Moissac D The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation. 1997, 96:1580~1585
    [201] Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP and Wang X. Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275:1129~1132
    [202] Kluck RM, Bossy-Wetzel E, Green DR and Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 1997, 275:1132~1136
    [203] Miyashita T and Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995: 80:293~299
    [204] Ohmori T, Podack ER, Nishio K, Takahashi M, Miyahara Y, Takeda Y, Kubota N, Funayama Y,Ogasawara H, Ohira T, Ohta S and Saijo N. Apoptosis of lung cancer cells caused by some anti-cancer agents (MMC, CPT-11, ADM) is inhibited by bcl-2. Biochem. Biophys. Res. Commun.1993, 192:30~36
    [205] Ratan RR, Murphy TH and Baraban JM. Macromolecular synthesis inhibitors prevent oxidative stress induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis of glutathione. J. Neurosci. 1994, 14:4385~4392
    [206] J 萨姆布鲁克,EF弗里奇和T曼尼阿蒂斯著,金冬雁和黎孟枫等译。分子克隆实验指南。第二版,科学出版社,2002,P927
    [207] Tilly JL, Tilly KI, Kenton ML and Johnson AL. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin mediated inhibiton of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-x_(long) messenger ribonucleic acid levels. Endocrinology 1995, 136:232~241
    
    
    [208] J 萨姆布鲁克,EF弗里奇和T曼尼阿蒂斯著,金冬雁和黎孟枫等译。分子克隆实验指南。第二版,科学出版社,2002,P347
    [209] 张龙翔,张庭芳,李令媛主编。生化实验方法和技术。第二版,高等教育出版社,1997,P232
    [210] Leng Y, Gu ZP and Cao L. Apoptosis reduced by droloxifene and c-myc, bax and bcl-2 mRNA expression in cultured luteal cells of rats. Eur.J. Pharmacol. 2000, 409:123~131
    [211] 李永明,赵玉琪主编。实用分子生物学方法手册。第一版,科学出版社,1998,P274
    [212] Laubriet A, Fantini E, Assem M, Cordelet C, Teyssier JR, Athias P and Rochette L. Changes in HSP70 and p53 expression are related to the pattern of electromechanical alterations in rat cardiomyocytes during simulated ischemia Mol. Cell Biochem. 2001, 220:77~86
    [213] 赵卫民,王惠琴编著。细胞因子研究方法学。第一版,人民卫生出版社,1999,P346
    [214] Chen HW and Huang HC. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol. 1998, 124:1029~1040
    [215] Barroso MP, Gomez-Diaz C, Villalba JM, Buron MI, Lopez-Lluch G and Navas P. Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal.J. Bioenerg. Biomembr. 1997, 29:259~267
    [216] Prehn JHM, Jordan J, Ghadge GD, Preis E, Galindo MF, Roos RP, Krieglstein J and Miller R.Ca~(2+)and reactive oxygen species in staurosporme-induced neuronal apoptosis. J. Neurochem.1997, 68:1679~1685
    [217] Coyle JT and Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993,262:689~695
    [218] Greenlund LJS, Deckwerth TL and Johnson EM. Superoxide dismutase delays neuronal apoptosis:a role for reactive oxygen species in programmed neuronal death. Neuron 1995,14:303~315
    [219] Hockenberry DM, Oltvai ZN, Yin XM. Milliman CL and Korsmeyer SJ. bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993, 75:241~251
    [220] Droy-Lefaix MT. Effect of the antioxidant action of Ginkgo biloba extract (EGb761) on aging and oxidative stress. Age 1997, 20:141~149
    [221] Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A and Gardes-Albert M. Antioxidant action of Ginkgo biloba extract EGb761. Methods Enzymol. 1994, 234:462~475
    [222] Scholtyssek H, Damerau W, Wessel R and Schminke I. Antioxidative activity of ginkolides
    
    against superoxide in an aprotic environment. Chem. Biol. Interact. 1997, 106:183~190
    [223] Reutlingsperger CPM and Van-Heerde WL. Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell. Mol. Life Sci.1997, 53:527~532
    [224] Bazan NG, Squinto SP, Braquet P, Panetta T and Marcheselli VL. Platelet activating factor and polyunsaturated fatty acide in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a Fos/Jun/AP-1 transcriptional signalling system. Lipids 1991,26: 1236~1242
    [225] Ferre F. Quantitative or semi-quantitative PCR: Reality versus myth. PCR Meth. Appl. 1992, 2:1~9
    [226] Cause WC and Adamovicz J. Use of PCR to quantitate relative differences in gene expression. In:C.W. Dieffenbach, G. S. Dveksler (eds). PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press. 1995, pp 293~311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700