基于CdTe的II型水溶性近红外量子点的合成及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(quantum dots, QDs),亦被称为半导体纳米晶体,是一类具有优良光电性能的无机纳米材料,已在化学分析、荧光标记及光电器件等研究领域中展现出巨大的应用潜力。相对于可见光,近红外辐射(650-900nm)在生物组织中穿透性好、光化学损伤小,并且生物组织在该区域的散射、吸收和自发荧光背景都比较低,因此探索和开发新型近红外量子点体系及其相关传感技术已经引起了研究者极大的兴趣。但事实上,由于现阶段近红外量子点合成技术特别是水相直接制备高发光、高稳定性近红外量子点策略大多还处于经验探索阶段、近红外分析技术不够成熟及近红外光检测器的灵敏度低等因素,导致基于量子点近红外荧光、近红外电致化学发光(near-infrared electrogenerated chemiluminescence, NECL)的生物传感体系在生物分析、食品检测等领域中没有被广泛应用。
     基于此,本论文以推动近红外分析技术发展为目标,探索水相近红外量子点合成新策略,在制备高发光、高稳定、低毒的水溶性近红外量子点基础上,以研究量子点NECL为重点,发展具有高灵敏、高选择性的新型近红外生物传感器。论文分五个部分,共六章,具体内容如下:
     1.以巯基丙酸包裹的CdTe量子点为核的模板,氯化镉为镉源,巯基丙酸为壳层修饰剂,采用硼氢化钠还原亚硒酸钠在线产生Se2-的方法,在150℃水热条件下层层包裹制备了高质量、水溶性、Ⅱ型CdTe/CdSe核壳近红外量子点。与先前CdTe核量子点相比,制备得到的CdTe/CdSe核壳量子点发射波长发生了明显红移,通过调节CdSe壳的厚度,量子点的荧光发射可在620-740nm范围内任意调节,最高荧光量子产率达44.2%。利用高分辨透射电镜、紫外-可见吸收光谱、荧光光谱、X射线粉末衍射、X射线光电子能谱对所制备的量子点进行表征并测定其抗光漂白性能,发现该CdTe/CdSe核壳量子点具有较窄的尺寸分布、清晰的晶体结构及其极高的光稳定性,在生物应用中具有巨大的潜力。
     2.以CdTe/CdS近红外量子点为核,以氯化锌为锌源,N-乙酰基-L-半胱氨酸(NAC)为硫源和稳定剂,四乙氧基硅烷为硅前体,借助微波辐射,采用Stober方法直接在水相中合成高发光、高稳定、低毒的NAC稳定的CdTe/CdS@ZnS-SiO2近红外量子点。这个方法不仅缩短了反应时间,增加了荧光强度及其稳定性,而且还减少了材料的细胞毒性。研究发现,Hg2+能通过电子转移过程有效地淬灭CdTe/CdS@ZnS-SiO2量子点的荧光。基于此,我们发展了一个简单的、快速的、特异性检测Hg2+的新方法。在最佳条件下,量子点的荧光强度与Hg2+在浓度为5.0×10-9-1.0x10-6mol/L之间成线性关系,检测限为1.0×10-9mol/L。该方法已经成功地用于奶粉样品中Hg2+的痕量检测。
     3.我们系统研究了自行设计的CdTe/CdS/ZnS近红外量子点在裸金电极上的直接阴极NECL行为。实验发现CdTe/CdS/ZnS量子点在电位为-1.25V时(从-0.98V开始)具有强而稳定的NECL信号。这个NECL信号是通过电子注入的CdTe/CdS/ZnS量子点和还原态的过硫酸根离子(S2O82-)之间高效的电子转移反应实现的。相比于CdTe/CdS量子点,ZnS壳层的包裹使其NECL强度提高了9倍。进一步研究发现CdTe/CdS/ZnS量子点的ECL光谱与荧光光谱的最大发射峰位置相吻合,这表明ZnS壳层很好地钝化了量子点的表面缺陷。此外,我们还探讨了pH值、缓冲溶液、电极材料及其K2S2O8浓度对NECL强度的影响,并且阐述了可能的NECL机理。
     4.借助信号放大的技术,构建了一个超灵敏、高选择性检测疾病标志物的NECL免疫传感器,在这个检测平台中,以CdTe/CdS小核厚壳近红外量子点为信号分子。通过羊抗人抗体(Ab2)与CdTe/CdS量子点标记的二氧化硅微球(SiO2)共价偶联制备了NECL纳米探针(SiO2-QD-Ab2)。通过超声诱导的自组装过程合成金纳米子/石墨烯(Au-GN)纳米杂合材料并且作为一个生物相容性的微环境用于初始抗体(Ab1)的固定。借助一个“三明治”免疫反应过程,功能化的SiO2-QD-Ab2纳米标签被捕获到电极表面。相对于没有放大的方法,结合Au-GN纳米杂合材料高效电子转移速率和SiO2-QD-Ab2多信号分子的双重放大优势,小核厚壳型的CdTe/CdS近红外量子点的NECL信号强度提高了16.8倍,并且成功实现了人免疫球蛋白G(HIgG)的超灵敏检测,检测限为87fg/mL。此外,构建的NECL免疫传感器已经成功用于血清中HIgG的定量分析。
     5.以巯基丙酸修饰的小核厚壳型的CdTe/CdS近红外量子点为NECL能量供体,以金纳米棒(AuNRs)为NECL能量受体,发展了一个高灵敏、高选择检测凝血酶的近红外电致化学发光能量转移(NERET)适配体传感器。通过一个在溶液中自然老化的过程,探针DNA修饰的AuNRs (pDNA-AuNRs)被制备,它纵轴吸收峰的位置能够和CdTe/CdS量子点薄膜发出的ECL光谱重合。系统研究了CdTe/CdS量子点与AuNRs两者之间的光谱重叠程度、距离及其杂交时间等因素对NERET猝灭效率的影响。凝血酶的检测通过一个竞争反应实现,凝血酶会取代事先在电极表面发生杂交反应的pDNA-AuNRs,使得量子点的NECL信号得到恢复,从而达到检测凝血酶浓度的目的。在最佳条件下,构建的NERET传感器能够在1.0×10-16-1.0×10-14mol/L浓度范围内对凝血酶进行特异性测定,检测限为2x10-17mol/L。
Quantum dots (QDs), also called semiconductor nanocrystals, are a kind of inorganic nanomaterials with excellent photoelectric properties. In the past few years, QDs have attracted broad attention in the fields of chemical analysis, fluorescence labeling and photoelectric device. Compared to visible light, near-infrared (NIR) emission (650-900nm) offers several unique advantages, including minimal interferential absorption, low biological autofluorescence, and high tissue penetration. Therefore, the exploration and development of new NIR QDs and ralted biosensing methodologies has caused great interest to researchers. But in fact, QD-based NIR fluorescence and NIR electrogenerated chemiluminescence (NECL) biosensors have not been widely used in the fields of biological analysis and food monitoring, due to the relatively primitive synthetic techniques of NIR QDs especially the poor strategies for direct preparation of highly luminescent and stable aqueous NIR QDs, the less mature NIR analytical technique and the low sensitive of detectors towards NIR emission.
     Based on this, the main propose of this dissertation is to promote the development of NIR analytical technique. To develop new strategies for the synthesis of aqueous NIR QDs, series of highly luminescent, good stability and low toxic are prepared. The key points are to study the NECL behaviours of NIR QDs and develop highly sensitive and selective NIR biosensors. This dissertation is divided into five parts, a total of six chapters. The specific content is as follow:
     1. A simple hydrothermal method is developed for the synthesis of high-quality, water-soluble, and NIR type-II core/shell CdTe/CdSe QDs by employing thiol-capped CdTe QDs as core templates and CdCl2and Na2SeO3as shell precursors. Compared with the original CdTe core QDs, the core/shell CdTe/CdSe QDs exhibit an obvious red-shifted emission, whose color can be tuned between visible and NIR regions (620-740nm) by controlling the thickness of the CdSe shell. The photoluminescence quantum yield (PL QY) of CdTe/CdSe QDs with an optimized thickness of the CdSe shell can reach up to44.2%without any post-preparative treatment. Through a thorough study of the core/shell structure by high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) absorption spectra, fluorescence spectra, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the as-prepared CdTe/CdSe QDs demonstrate good monodispersity, hardened lattice structure and excellent photostability, offering a great potential for biological application.
     2. Highly luminescent, good stability and low toxic N-acetyl-L-cysteine (NAC) capped CdTe/CdS@ZnS-SiO2NIR QDs were successfully via a promising microwave strategy, which employed thiol-capped CdTe/CdS QDs as core templates and ZnCl2, NAC and TEOS as shell precursors. This proposed method can greatly shorted reaction time and increase fluorescence intensity and stability, as well as reduce the cytotoxicity. It was found that Hg2+could effectively selective quench the QD emission based on electron transfer process. On the basis of this fact, a simple, rapid and specific method for Hg2+determination was porposed. Under optimal conditions, the fluorescence intensity decreased linearly with the concentration of Hg2+ranging from5.0x10-9to1.0x10"6mol/L. The limit of detection for Hg2+was1.0x10-9mol/L. The developed method was successfully applied to the detection of trace Hg2+in milk power.
     3. Cathodic electrochemiluminescence (ECL) from self-designed NIR CdTe/CdS/ZnS QDs on bare Au electrode in aqueous solution was studied. Strong and stable NECL signals at-1.25V with an onset potential of-0.98V produced by the high effectively electron-transfer reaction between electron-injected CdTe/CdS/ZnS QDs and reduced S2O82-are observed. Passivation of the QD surfaces with ZnS shell increased NECL intensity by9times when compared to CdTe/CdS QDs. The good correspondence of the ECL emission peak with the photoluminescence results suggested the surface states of the QDs had been largely passivated by ZnS shell. Furthermore, the effects of pH, buffer solutions, electrode materials and concentrations of K2S2O8on NECL intensity were investigated, and a possible NECL mechanism was also proposed.
     4. We reported a NECL immunosensor with amplification techniques for ultrasensitive and selective determination of biomarker. In this sensing platform, CdTe/CdS coresmall/shellthick NIR QDs were first selected as NECL emitters. The NECL nanoprobe (SiO2-QD-Ab2) was designed by covalent assembly of goat anti-human IgG antibody (Ab2) on CdTe/CdS QDs tagged silica nanospheres. Gold nanoparticle-graphene nanosheet (Au-GN) hybrids were prepared by a sonication-induced self-assembly and served as an effective matrix for initial antibodies (Abl) attachment. After a sandwich immunoreaction, the functionalized silica nanosphere labels were captured onto the glass carbon electrode surface. Integrating the dual amplification from the promoting electron transfer rate of Au-GN hybrids and the increasing QD loading of SiO2-QD-Ab2labels, the NECL response from CdTe/CdS QDs enhanced16.8-fold compared to the unamplified protocol and successfully fulfilled the ultrasensitive detection of human IgG (HIgG) with a detection limit of87fg/mL. Moreover, as a practical application, the proposed immunosensor was used to monitor HIgG level in human serum with satisfactory results obtained.
     5. We reported a near-infrared electrochemiluminescence resonance energy transfer (NERET) aptasensor for ultrasensitive and selective determination of thrombin, where CdTe/CdS coresmall/shellthick NIR QDs and Au nanorods (AuNRs) were used as a NECL donor and a NECL acceptor, respectively. Probing DNA modified AuNRs (pDNA-AuNRs) was prepared by a salt aging process, whose longitudinal absorption peaks that are easily tuned to match well with the ECL emission spectrum of the CdTe/CdS QDs film. The effect of degree of overlapping spectra, distance, and hybridization time was studied for the quenching efficiency of NERET between the CdTe/CdS QDs film and AuNRs. The protein detection involves a competition binding event, based on thrombin replacing pDNA-AuNRs which is hybridized with capturing aptamer immobilized on a chitosan/CdTe/CdS QDs film modified glass carbon electrode. At the optimized conditions, the NERET system could be used to ultrasensitivly and specifically detect thrombin of the concentration ranging from1.0x10-16to1.0x10-14mol/L. The detection limit was2x10-17mol/L.
引文
1. Akamatsu K, Tsuruoka T, Nawafune H. Band gap engineering of CdTe nanocrystals through chemical surface modification. JAm Chem Soc,2005,127:1634-1635.
    2. Aldana J, Lavelle N, Wang Y, Peng X. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc,2005,127: 2496-2504.
    3. Allen PM, Bawendi MG Ternary I-III-VI quantum dots luminescent in the red to near-infrared. JAm Chem Soc,2008,130:9240-9241.
    4. Allen PM, Liu W, Chauhan VP, Lee J, Ting AY, Fukumura D, Jain RK, Bawendi MG InAs (ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Am Chem Soc,2009,132:470-471.
    5. Aswathy RG, Yoshida Y, Maekawa T, Kumar DS. Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem,2010,397:1417-1435.
    6. Bae Y, Myung N, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett,2004,4:1153-1161.
    7. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett,2007,7:3065-3070.
    8. Bailey RE, Nie S. Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size. J Am Chem Soc,2003,125: 7100-7106.
    9. Balet L, Ivanov S, Piryatinski A, Achermann M, Klimov V. Inverted core/shell nanocrystals continuously tunable between type-I and type-Ⅱ localization regimes. Nano Lett,2004,4:1485-1488.
    10. Bao H, Gong Y, Li Z, Gao M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:Toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater,2004,16:3853-3859.
    11. Bao H, Wang E, Dong S. One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small,2006,2:476-480.
    12. Bertoncello P, Forster RJ. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods:recent advances and future perspectives. Biosens Bioelectron,2009,24:3191-3200.
    13. Blackman B, Battaglia D, Peng X. Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater,2008,20:4847-4853.
    14. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett,2006a,6:669-676.
    15. Cai ZX, Yang H, Zhang Y, Yan XP. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg (Ⅱ) in aqueous solution. Anal Chim Acta,2006b,559:234-239.
    16. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281:2016-2018.
    17. Chen CY, Cheng CT, Yu JK, Pu SC, Cheng YM, Chou PT, Chou YH, Chiu HT. Spectroscopy and femtosecond dynamics of type-II CdSe/ZnTe core-shell semiconductor synthesized via the CdO precursor. J phys Chem B,2004,108: 10687-10691.
    18. Chen LN, Wang J, Li WT, Han HY. Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem Commun,2012,48:4971-4973.
    19. Chen LY, Chen CL, Li RN, Li Y, Liu SQ. CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. Chem Commun,2009a, 46:2670-2672.
    20. Chen X, Estevez MC, Zhu Z, Huang YF, Chen Y, Wang L, Tan W. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem,2009b,81:7009-7014.
    21. Chen Y, Bai H, Hong W, Shi G Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine. Analyst,2009c,134:2081-2086.
    22. Cheng L, Liu X, Lei J, Ju H. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal Chem,2010,82:3359-3364.
    23. Cohen AE, Mukamel S. A mechanical force accompanies fluorescence resonance energy transfer (FRET). J Phys Chem A,2003,107:3633-3638.
    24. Costa-Fernandez JM, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. TrAC Trend Anal Chem,2006,25:207-218.
    25. Cui H, Xu Y, Zhang ZF. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem,2004a,76:4002-4010.
    26. Cui H, Zhang ZF, Zou GZ, Lin XQ. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. JElectroanal Chem,2004b,566: 305-313.
    27. Cui H, Zou GZ, Lin XQ. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem,2003,75:324-331.
    28. Cui R, Gu YP, Bao L, Zhao JY, Qi BP, Zhang ZL, Xie ZX, Pang DW. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal Chem,2012,84:8932-8935.
    29. Cui R, Huang H, Yin Z, Gao D, Zhu JJ. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron,2008,23:1666-1673.
    30. Cui R, Zhu JJ. Fabrication of a novel electrochemical immunosensor based on the gold nanoparticles/colloidal carbon nanosphere hybrid material. Electrochim Acta, 2010,55:7814-7817.
    31. Dabbousi B, Rodriguez-Viejo J, Mikulec FV, Heine J, Mattoussi H, Ober R, Jensen K, Bawendi M. (CdSe) ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites. J phys Chem B,1997,101: 9463-9475.
    32. Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst,2013,138:43-61.
    33. Deng Z, Schulz O, Lin S, Ding B, Liu X, Wei X, Ros R, Yan H, Liu Y. Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. J Am Chem Soc,2010,132: 5592-5593.
    34. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett,2004,4:11-18.
    35. Ding SN, Xu JJ, Chen HY. Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun, 2006,42:3631-3633.
    36. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science,2002,296:1293-1297.
    37. Divsar F, Ju H. Electrochemiluminescence detection of near single DNA molecules by using quantum dots-dendrimer nanocomposites for signal amplification. Chem Commun,2011,47:9879-9881.
    38. Donega CdM. Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev,2011,40:1512-1546.
    39. Dong H, Yan F, Ji H, Wong DKY, Ju H. Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads:step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater,2010,20:1173-1179.
    40. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc,2010,132: 1470-1471.
    41. Duan CF, Yu YQ, Cui H. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst,2008,133:1250-1255.
    42. Duan J, Jiang X, Ni S, Yang M, Zhan J. Facile synthesis of N-acetyl-1-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Talanta, 2011,85:1738-1743.
    43. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002, 298:1759-1762.
    44. Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano,2008,2: 873-878.
    45. Evans CM, Guo L, Peterson JJ, Maccagnano-Zacher S, Krauss TD. Ultrabright PbSe magic-sized clusters. Nano Lett,2008,8:2896-2899.
    46. Fang Y, Guo S, Zhu C, Zhai Y, Wang E. Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles:a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir,2010, 26:11272-11282.
    47. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem,2009,2:359-385.
    48. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol, 2003,7:626-634.
    49. Freeman R, Finder T, Willner I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew Chem Int Edit,2009,48:7818-7821.
    50. Frens G Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature,1973,241:20-22.
    51. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmiiller A, Weller H. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes. Jphys Chem B,2002,106:7177-7185.
    52. Geim AK, Novoselov KS. The rise of graphene. Nat Mater,2007,6:183-191.
    53. Goldman ER, Medintz IL, Mattoussi H. Luminescent quantum dots in immunoassays. Anal Bioanal Chem,2006,384:560-563.
    54. Gou L, Murphy CJ. Fine-tuning the shape of gold nanorods. Chem Mater,2005,17: 3668-3672.
    55. Green M, Wakefield G, Dobson PJ. A simple metalorganic route to organically passivated mercury telluride nanocrystals. JMater Chem,2003,13:1076-1078.
    56. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc,2011, 134:79-82.
    57. Gui R, An X, Su H, Shen W, Chen Z, Wang X. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON fluorescence sensor for highly selective and sensitive detection of Cd2+.Talanta,2012,30:257-62
    58. Guzelian A, Banin U, Kadavanich A, Peng X, Alivisatos A. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl Phys Lett, 1996a,69:1432-1434.
    59. Guzelian A, Katari JB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos A, Wolters R, Arnold C, Heath J. Synthesis of size-selected, surface-passivated InP nanocrystals. JPhys Chem,1996b,100:7212-7219.
    60. Han H, Sheng Z, Liang J. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Anal Chim Acta, 2007a,596:73-78.
    61. Han HY, You ZH, Liang JG, Sheng ZH. Electrogenerated chemiluminescence of CdSe quantum dots dispersed in aqueous solution. Front Biosci,2007b,12: 2352-2357.
    62. Hansen AQ Boisen A, Nielsen JU, Wackerbarth H, Chorkendorff I, Andersen JET, Zhang J, Ulstrup J. Adsorption and interfacial electron transfer of saccharomyces cerevisiae yeast cytochrome c monolayers on Au(111) electrodes. Langmuir,2003, 19:3419-3427.
    63. Hardman R. A toxicologic review of quantum dots:toxicity depends on physicochemical and environmental factors. Environ Health Persp,2006,114: 165-172.
    64. Harrison MT, Kershaw SV, Rogach AL, Kornowski A, Eychmueller A, Weller H. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Adv Mater,2000,12:123-125.
    65. Harvey N. Luminescence during Electrolysis. JPhys Chem,1929,33:1456-1459.
    66. Haubold S, Haase M, Kornowski A, Weller H. Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem,2001,2:331-334.
    67. He Y, Lu HT, Sai LM, Su YY, Hu M, Fan CH, Huang W, Wang LH. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater,2008,20:3416-3421.
    68. He Y, Zhong Y, Peng F, Wei X, Su Y, Lu Y, Su S, Gu W, Liao L, Lee ST. One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. JAm Chem Soc,2011a,133:14192-14195.
    69. He Y, Zhong Y, Su Y, Lu Y, Jiang Z, Peng F, Xu T, Su S, Huang Q, Fan C. water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. Angew Chem Int Edit,2011b,50:5695-5698.
    70. Higginson KA, Kuno M, Bonevich J, Qadri SB, Yousuf M, Mattoussi H. Synthesis and characterization of colloidal β-HgS quantum dots. J phys Chem B,2002,106: 9982-9985.
    71. Hilderbrand SA, Weissleder R. Near-infrared fluorescence:application to in vivo molecular imaging. Curr Opin Chem Biol,2010,14:71-79.
    72. Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, Kaiser WA. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol,2004,14:1124-1129.
    73. Hinds S, Myrskog S, Levina L, Koleilat G, Yang J, Kelley SO, Sargent EH. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. JAm Chem Soc,2007,129:7218-7219.
    74. Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. JPhys Chem C,2010,114:1822-1826.
    75. Hu L, Li H, Zhu S, Fan L, Shi L, Liu X, Xu G Cathodic electrochemiluminescence in aqueous solutions at bismuth electrodes. Chem Commun,2007,43:4146-4148.
    76. Hu L, Xu G Applications and trends in electrochemiluminescence. Chem Soc Rev, 2010,39:3275-3304.
    77. Hu X, Han H, Hua L, Sheng Z. Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide. Biosens Bioelectron,2010b,25:1843-1846.
    78. Hua LJ, Zhou JJ, Han HY. Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim Acta,2010,55:1265-1271.
    79. Huang CC, Yang Z, Lee KH, Chang HT. Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem,2007,119:6948-6952.
    80. Huang H, Jie G, Cui R, Zhu JJ. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochem Commun, 2009,11:816-818.
    81. Huang H, Li J, Tan Y, Zhou J, Zhu JJ. Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst,2010a,135: 1773-1778.
    82. Huang H, Li J, Zhu JJ. Electrochemiluminescence based on quantum dots and their analytical application. Anal Methods,2011,3:33-42.
    83. Huang H, Tan Y, Shi J, Liang G, Zhu JJ. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale,2010b,2:606-612.
    84. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum dots as acceptors (CRET). Angew Chem,2006,118:5264-5267.
    85. Hwang KK, Grossman JM, Visvanathan S, Chukwuocha RU, Woods VL, Le DT, Hahn BH, Chen PP. Identification of anti-thrombin antibodies in the antiphospholipid syndrome that interfere with the inactivation of thrombin by antithrombin. J Immunol,2001,167:7192-7198.
    86. Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol,2004,14:497-504.
    87. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials,2007,28:4717-4732.
    88. Jiang H, Ju H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem, 2007a,79:6690-6696.
    89. Jiang H, Ju H. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem Commun,2007b, 43:404-406.
    90. Jiang P, Tian ZQ, Zhu CN, Zhang ZL, Pang DW. Emission-tunable near-infrared Ag2S quantum dots. Chem Mater,2011,24:3-5.
    91. Jie G, Liu B, Pan H, Zhu JJ, Chen HY. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem,2007,79: 5574-5581.
    92. Jie G, Liu P, Wang L, Zhang S. Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem Commun,2010,12:22-26.
    93. Jie G, Zhang J, Wang D, Cheng C, Chen HY, Zhu JJ. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal Chem,2008,80:4033-4039.
    94.Johansson M.Photoluminescence and electrochemiluminescence of a Ru (Ⅱ)(bpy)3-quencher dual-labeled oligonucleotide probe. Chem Commun,2003,39: 2710-2711.
    95. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Mirkin CA. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater, 2010,9:913-917.
    96. Kim S, Fisher B, Eisler H-J, Bawendi M. Type-II quantum dots:CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc,2003a, 125:11466-11467.
    97. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol,2003b,22:93-97.
    98. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett,2005,5:331-338.
    99. Knopp D, Tang D, Niessner R. Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta, 2009,647:14-30.
    100. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev,2009,110: 2620-2640.
    101. Kong RM, Zhang XB, Zhang LL, Huang Y, Lu DQ, Tan W, Shen GL, Yu RQ. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Anal Chem,2010,83:14-17.
    102. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater,1999,11: 771-778.
    103. Lee AJ, Ensign AA, Krauss TD, Bren KL. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c. JAm Chem Soc,2010,132:1752-1753.
    104. Leland JK, Powell MJ. Electrogenerated chemiluminescence:An oxidative-reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc, 1990,137:3127-3131.
    105. Li D, Kaner RB. Graphene-Based Materials. Science,2008a,320:1170-1171.
    106. Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold nanoparticle hybrids and DNA-based machines. Angew Chem, 2008b,120:3991-3995.
    107. Li J, Guo S, Wang E. Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv,2012,2:3579-3586.
    108. Li L, Li M, Sun Y, Li J, Sun L, Zou G, Zhang X, Jin W. Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application. Chem Commun,2011,47:8292-8294.
    109. Li L, Protiere M, Reiss P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem Mater,2008c,20:2621-2623.
    110. Li LS, Wang H, Liu Y, Lou S, Wang Y, Du Z. Room temperature synthesis of HgTe nanocrystals. J Colloid Interf Sci,2007,308:254-257.
    111. Li ZP, Liu CH, Fan YS, Wang YC, Duan XR. A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels. Anal Biochem,2006,359:247-252.
    112. Liang GX, Gu MM, Zhang JR, Zhu JJ. Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots. Nanotechnology,2009a,20:415103(1-9).
    113. Liang GX, Li LL, Liu HY, Zhang JR, Burda C, Zhu JJ. Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chem Commun,2010a,46:2974-2976.
    114. Liang GX, Liu HY, Zhang JR, Zhu JJ. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots. Talanta, 2010b, 80: 2172-2176.
    115. Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ. Near infrared sensing based on fluorescence resonance energy transfer between Mn: CdTe quantum dots and Au nanorods. Biosens Bioelectron, 2009b, 24: 3693-3697.
    116. Liang G, Shen L,Zou G, Zhang X. Efficient near-infrared electrochemiluminescence from CdTe nanocrystals with low triggering potential and ultrasensitive sensing ability. Chem-Eur J, 2011a, 17:10213-10215.
    117. Liang GD Shen LP, Zhang XL, Zou GZ. One-Pot synthesis of dual-stabilizer-capped CdTe nanocrystals with efficient near-infrared photoluminescence and electrochemiluminescence. Eur J Inorg Chem, 2011b, 2011: 3726-3730.
    118. Liang J, Chen Z, Guo L, Li L. Electrochemical sensing of 1-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites. Chem Commun, 2011c, 47: 5476-5478.
    119. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging, 2003,2: 50-64.
    120.Liu FC, Chen YM, Lin JH,Tseng WL. Synthesis of highly fluorescent glutathione-capped ZnxHg1-xSe quantum dot and its application for sensing copper ion.J Colloid InterfSci, 2009a, 337: 414-419.
    121.Liu FC, Cheng TL, Shen CC, Tseng WL, Chiang MY. Synthesis of cysteine-capped ZnxCd1-xSe alloyed quantum dots emitting in the blue-green spectral range. Langmuir, 2008a, 24: 2162-2167.
    122.Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 2010a, 132: 7279-7281.
    123. Liu KP, Zhang JJ, Wang CM, Zhu JJ. Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens Bioelectron, 2011,26:3627-3632.
    124. Liu KP, Zhang JJ, Yang GH, Wang CM, Zhu JJ. Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun,2010b,12:402-405.
    125. Liu X, Cheng L, Lei J, Ju H. Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. Analyst,2008b,133: 1161-1163.
    126. Liu X, Guo L, Cheng L, Ju H. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta,2009b,78: 691-694.
    127. Liu X, Jiang H, Lei J, Ju H. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem,2007, 79:8055-8060.
    128. Liu X, Ju H. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Anal Chem,2008c,80:5377-5382.
    129. Ma Q, Su X. Near-infrared quantum dots:synthesis, functionalization and analytical applications. Analyst,2010,135:1867-1877.
    130. Mangolini L, Jurbergs D, Rogojina E, Kortshagen U. High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. Phys Status Solidi (c),2006,3:3975-3978.
    131. Mao W, Guo J, Yang W, Wang C, He J, Chen J. Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology,2007,18:485611(1-7).
    132. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. JAm Chem Soc,2000,122:12142-12150.
    133. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater,2005,4:435-446.
    134. Mei YL, Wang HS, Li YF, Pan ZY, Jia WL. Electochemiluminescence of CdTe/CdS quantum dots with triproprylamine as coreactant in aqueous solution at a lower potential and its application for highly sensitive and selective detection of Cu2+. Electroanalysis, 2010,22:155-160.
    135. Mekis I, Talapin DV, Kornowski A, Haase M, Weller H. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and "greener" chemical approaches. Jphys Chem B, 2003,107: 7454-7462.
    136. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev, 2008,108:2506.
    137. Michalet X, Pinaud F, Dentolila L, Tsay J, Doose S, Li J, Sundaresan G,Wu A, Gambhir S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005,307: 538-544.
    138. Micic O, Cheong H, Fu H, Zunger A, Sprague J, Mascarenhas A, Nozik A. Size-dependent spectroscopy of InP quantum dots.J phys Chem B, 1997, 101: 4904-4912.
    139. Micic OI, Smith BB, Nozik AJ. Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory.J phys Chem B,2000, 104: 12149-12156.
    140. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem, 1993, 4:105-111.
    141. Murase N, Yang P. Anomalous photoluminescence in silica-coated semiconductor nanocrystals after heat treatment. Small, 2009,5: 800-803.
    142.Murray C, Kagan C, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci, 2000, 30:545-610.
    143.Myung N, Bae Y, Bard AJ. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett, 2003,3:1053-1055.
    144. Myung N, Ding Z, Bard AJ. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett, 2002,2: 1315-1319.
    145. Myung N, Lu X, Johnston KP, Bard AJ. Electrogenerated chemiluminescence of Ge nanocrystals. Nano Lett, 2004,4: 183-185.
    146. Nann T, Mulvaney P. Single quantum dots in spherical silica particles. Angew Chem Int Edit, 2004,43: 5393-5396.
    147. Nemchinov A, Kirsanova M, Hewa-Kasakarage NN, Zamkov M. Synthesis and characterization of type Ⅱ ZnSe/CdS core/shell nanocrystals. J Phys Chem C,2008, 112:9301-9307.
    148. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater,2003,15:1957-1962.
    149. Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods:off-surface plasmon resonance condition. Chem Phys Lett,2002,366:17-23.
    150. Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H. DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc,2011,133:17606-17609.
    151. Pan D, Wang Q, Jiang S, Ji X, An L. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Adv Mater,2005,17:176-179.
    152. Parab HJ, Jung C, Lee JH, Park HG. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron,2010,26:667-673.
    153. Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc,2001,123:183-187.
    154. Perroy J, Pontier S, Charest PG, Aubry M, Bouvier M. Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods,2004,1:203-208.
    155. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmuller A, Gaponik N. Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. Jphys Chem B,2005,109:1094-1100.
    156. Qi H, Zhang Y, Peng Y, Zhang C. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta,2008,75:684-690.
    157. Qian H, Dong C, Peng J, Qiu X, Xu Y, Ren J. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J Phys Chem C,2007,111:16852-16857.
    158. Qian J, Zhang C, Cao X, Liu S. Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal Chem,2010,82: 6422-6429.
    159. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol, 2007,18: 17-25.
    160. Reiss P, Protiere M, Li L. Core/shell semiconductor nanocrystals. Small, 2009, 5: 154-168.
    161. Ren T, Xu JZ, Tu YF, Xu S, Zhu JJ. Electrogenerated chemiluminescence of CdS spherical assemblies. Electrochem Commun, 2005, 7: 5-9.
    162. Richter MM. Electrochemiluminescence (ECL). Chem Rev, 2004,104: 3003-3036.
    163. Rogach AL. Nanocrystalline CdTe and CdTe (S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater Sci Eng: B, 2000,69: 435-440.
    164. Rogach AL, Eychmuller A, Hickey SG, Kershaw SV. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small, 2007, 3: 536-557.
    165. Selvan ST. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (mini-review). Biointerphases, 2010, 5:110-115.
    166. Selvan ST, Tan TT, Ying JY. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater, 2005,17:1620-1625.
    167. Seo H, Kim SW. In situ synthesis of CdTe/CdSe core-shell quantum dots. Chem Mater, 2007,19: 2715-2717.
    168. Sevick-Muraca EM, Houston JP, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol, 2002,6: 642-650.
    169. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-1-lysine. Langmuir, 2009, 25: 12030-12033.
    170. Shen L, Cui X, Qi H, Zhang C. Electrogenerated Chemiluminescence of ZnS Nanoparticles in Alkaline Aqueous Solution. JPhys Chem C, 2007, 111: 8172-8175.
    171. Shen Y, Li L, Lu Q, Ji J, Fei R, Zhang J, Abdel-Halim E, Zhu J-J. Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu (Ⅱ). Chem Commun, 2012, 48: 2222-2224.
    172. Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z. Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc,2006,128: 10378-10379.
    173. Smith AM, Mancini MC, Nie S. Second window for in vivo imaging. Nat Nanotechnol,2009a,4:710-711.
    174. Smith AM, Mohs AM, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol,2008,4:56-63.
    175. Smith AM, Nie S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. JAm Chem Soc,2010,133:24-26.
    176. Smith AM, Nie S. Semiconductor nanocrystals:structure, properties, and band gap engineering. Accounts Chem Res,2009b,43:190-200.
    177. So MK, Loening AM, Gambhir SS, Rao J. Creating self-illuminating quantum dot conjugates. Nat Protocols,2006,1:1160-1164.
    178. Song C, Wang Z, Zhang R, Yang J, Tan X, Cui Y. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosens Bioelectron,2009,25:826-831.
    179. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 2006,442:282-286.
    180. Sun L, Bao L, Hyun BR, Bartnik AC, Zhong YW, Reed JC, Pang DW, Abruna HcD, Malliaras GG, Wise FW. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett,2008,9:789-793.
    181. Sun L, Chu H, Yan J, Tu Y. Study on electrochemiluminescent intensification between luminol, CdTe quantum dots and oxygen by resonance energy transfer. Electrochem Commun,2012,17:88-91.
    182. Talapin DV, Gaponik N, Borchert H, Rogach AL, Haase M, Weller H. Etching of colloidal InP nanocrystals with fluorides:photochemical nature of the process resulting in high photoluminescence efficiency. J phys Chem B,2002,106: 12659-12663.
    183. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J phys Chem B, 2001,105:2260-2263.
    184. Talapin DV, Mekis I, Goetzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J phys Chem B, 2004,108:18826-18831.
    185. Tang J, Li J, Kang J, Zhong L, Zhang Y. Preliminary studies of application of eggshell membrane as immobilization platform in sandwich immunoassay. Sensor Actuat B:Chem,2009,140:200-205.
    186. Thomas J, Sherman DB, Amiss TJ, Andaluz SA, Pitner JB. Synthesis and biosensor performance of a near-IR thiol-reactive fluorophore based on benzothiazolium squaraine. Bioconjugate Chem,2007,18:1841-1846.
    187. Tian D, Duan C, Wang W, Cui H. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosens Bioelectron,2010,25:2290-2295.
    188. Tian D, Duan C, Wang W, Li N, Zhang H, Cui H, Lu Y. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta,2009,78:399-404.
    189. Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem, 2005,12:1161-1208.
    190. Wang J, Han H, Jiang X, Huang L, Chen L, Li N. Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification. Anal Chem, 2012,84:4893-4899.
    191. Wang J, Jiang XC, Han HY, Li N. Cathodic electrochemiluminescence from self-designed near-infrared-emitting CdTe/CdS/ZnS quantum dots on bare Au electrode. Electrochem Commun,2011,13:359-362.
    192. Wang XF, Xu JJ, Chen HY. Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemiluminescence behaviors in aqueous systems. JPhys Chem C,2008,112:7151-7157.
    193. Wu AH, Sun JJ, Fang YM, Su XL, Chen GN. Hot electron induced cathodic electrochemiluminescence at AuSb alloy electrode for fabricating immunosensor with self-assembled monolayers. Talanta,2010,82:1455-1461.
    194. Wu MS, Shi HW, Xu JJ, Chen HY. CdS quantum dots/Ru (bpy)32+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing. Chem Commun,2011,47:7752-7754.
    195. Wu Y, Chen C, Liu S. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem,2009,81:1600-1607.
    196. Xia YS, Zhu CQ. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta,2008a,75:215-221.
    197. Xia Y, Song L, Zhu C. Turn-on and near-infrared fluorescent sensing for 2,4, 6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal Chem,2011,83:1401-1407.
    198. Xia Y, Zhu C. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper (II). Analyst,2008b,133:928-932.
    199. Xie R, Battaglia D, Peng X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. JAm Chem Soc,2007,129:15432-15433.
    200. Xie R, Peng X. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc,2009a,131: 10645-10651.
    201. Xie R, Rutherford M, Peng X. Formation of high-quality Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc, 2009b,131:5691-5697.
    202. Xie R, Zhong X, Basche T. Synthesis, characterization, and spectroscopy of type-Ⅱ core/shell semiconductor nanocrystals with ZnTe cores. Adv Mater,2005,17: 2741-2745.
    203. Xu C, Wang X, Zhu J. Graphene-Metal Particle Nanocomposites. J Phys Chem C, 2008,112:19841-19845.
    204. Xue X, Wang F, Liu X. Emerging functional nanomaterials for therapeutics. J Mater Chem,2011,21:13107-13127.
    205. Yang DQ, Rochette J-F, Sacher E. Spectroscopic Evidence for π-π Interaction between Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes. Jphys Chem B,2005a,109:4481-4484.
    206. Yang P, Murase N. Preparation-condition dependence of hybrid SiO2-coated CdTe nanocrystals with intense and tunable photoluminescence. Adv Funct Mater,2010, 20:1258-1265.
    207. Yang Y, Gao M. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater,2005b,17: 2354-2357.
    208. Yao H, Zhang Y, Xiao F, Xia Z, Rao J. Quantum dot/bio luminescence resonance energy transfer based highly sensitive detection of proteases. Angew Chem Int Edit, 2007,46:4346-4349.
    209. Yigit MV, Mishra A, Tong R, Cheng J, Wong GC, Lu Y. Inorganic mercury detection and controlled release of chelating agents from ion-responsive liposomes. Chem Biol, 2009,16:937-942.
    210. Yong KT, Roy I, Ding H, Bergey EJ, Prasad PN. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small,2009,5:1997-2004.
    211. Yoon S, Miller EW, He Q, Do PH, Chang CJ. A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem Int Edit,2007,46: 6658-6661.
    212. Yu K, Zaman B, Romanova S, Wang Ds, Ripmeester JA. Sequential synthesis of type II colloidal CdTe/CdSe core-shell nanocrystals. Small,2005,1:332-338.
    213. Yu XY, Lei BX, Kuang DB, Su CY. Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chem Sci,2011,2:1396-1400.
    214. Yuan L, Hua X, Wu Y, Pan X, Liu S. Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem,2011,83: 6800-6809.
    215. Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H. Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. JPhys Chem C,2008,112:8587-8593.
    216. Zeng Q, Zhang Y, Liu X, Tu L, Kong X, Zhang H. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem Commun,2012,48:1781-1783.
    217. Zeng R, Zhang T, Liu J, Hu S, Wan Q, Liu X, Peng Z, Zou B. Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells. Nanotechnology,2009,20:095102.
    218. Zhang H, Lv X, Li Y, Wang Y, Li J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano,2009a,4:380-386.
    219. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W. Hydrothermal synthesis for high-quality CdTe nanocrystals.Adv Mater,2003,15:1712-1715.
    220. Zhang J, Zhang D. Photoluminescence and growth kinetics of high-quality indium arsenide and InAs-based core/shell colloidal nanocrystals synthesized using arsine (AsH3) generated via zinc arsenide as the arsenic source. Chem Mater,2010,22: 1579-1584.
    221. Zhang L, Shang L, Dong S. Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem Commun,2008,10: 1452-1454.
    222. Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. Ag2S quantum dot:A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano,2012,6:3695-3702.
    223. Zhang Y, Li Y, Yan XP. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Anal Chem,2009b,81: 5001-5007.
    224. Zhang Y, Li Y, Yan XP. Aqueous layer-by-layer epitaxy of type-II CdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applications. Small, 2009c,5:185-189.
    225. Zhao D, He Z, Chan W, Choi MM. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-1-cysteine via hydrothermal method. J Phys Chem C,2008a,113: 1293-1300.
    226. Zhao Q, Li XF, Shao Y, Le XC. Aptamer-based affinity chromatographic assays for thrombin. Anal Chem,2008b,80:7586-7593.
    227. Zhao S, Huang Y, Liu R, Shi M, Liu YM. A nonenzymatic chemiluminescent reaction enabling chemiluminescence resonance energy transfer to quantum dots. Chem-Eur J,2010a,16:6142-6145.
    228. Zhao S, Huang Y, Shi M, Liu R, Liu YM. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem,2010b,82: 2036-2041.
    229. Zhou H, Liu J, Xu JJ, Chen HY. Ultrasensitive DNA detection based on Au nanoparticles and isothermal circular double-assisted electrochemiluminescence signal amplification. Chem Commun,2011,47:8358-8360.
    230. Zhu CN, Jiang P, Zhang ZL, Zhu DL, Tian ZQ, Pang DW. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl Mater Inter,2013,5: 1186-1189
    231. Zou GZ, Liang GD, Zhang XL. Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials. Chem Commun,2011,47:10115-10117.
    232. Zou G, Ju H. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem,2004,76:6871-6876.
    233. Zou L, Gu Z, Zhang N, Zhang Y, Fang Z, Zhu W, Zhong X. Ultrafast synthesis of highly luminescent green-to near infrared-emitting CdTe nanocrystals in aqueous phase. JMater Chem,2008,18:2807-2815.
    234. Zu Y, Bard AJ. Electrogenerated chemiluminescence.66. The role of direct coreactant oxidation in the ruthenium tris (2,2') bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem,2000,72:3223-3232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700