核受体PPARγ和FXR的抗炎机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症是机体为了抵抗外界病原物质的浸入或者细胞损伤物质而产生的保护性应答反应,由此导致一系列复杂的炎症调节作用,并最终达到组织结构或功能的恢复。而核受体与炎症因子基因启动子区中DNA特异位点的直接结合,于转录水平上实现对炎症因子信号激活引起的一系列反应应答调控作用。核受体是一个结构特异的配体依赖性转录因子超家族,与目的基因的启动子DNA序列特异性结合,对维持细胞稳态及各种反应的蛋白分子表达从转录水平上起着调控作用。而本论文则主要以核受体PPARγ与FXR为研究对象,以窥核受体在炎症反应中抗炎作用的分子机制。PPARγ方面主要通过以LPS诱导的急性肺损伤小鼠模型(野生型小鼠及A2AR基因敲除鼠)、LPS诱导的小鼠单核巨噬炎症模型细胞Raw264.7为研究对象,对炎症模型中PPARγ对腺受体A2AR表达调控分子机制研究为主探讨PPARγ抗炎的分子机制。而FXR方面,则在实验室以前研究的基础上,以在炎症反应各个过程中均占有重要地位的血管内皮细胞,以细胞系EA.hy926为模型,探讨了FXR对血栓调节蛋白TM表达调控分子机制,以此丰富FXR在抗炎活动中的机制。
     本论文以LPS刺激建立ALI小鼠模型,通过HE染色、免疫组化分析中性粒细胞浸润程度等手段检测ALI小鼠肺组织损伤程度及炎症的严重程度,并采用小鼠单核巨噬细胞系细胞Raw264.7判断激活PPARγ或A2AR后,对炎症的抑制作用。Real-time、Western Blot等常规手段也被用于检测炎症因子mRNA表达水平、PPARγ或A2AR表达水平变化。在此基础上,还采用基因表达调控研究中常见的载体构建技术、置换点突变技术、EMSA、ChIP实验等探索PPARγ-A2AR正反馈环路中两分子上调的分子机制。通过以上实验技术从体内/体外水平上证实了PPARγ-A2AR正反馈环路存在,并证实了此环路具有抑炎作用,进而从基因表达调控的角度阐述了此环路存在所依赖的分子机制,揭示了PPARγ通过与A2AR基因启动子区DR10PPRE(-218~-197)位点直接结合上调A2AR基因的转录水平从而上调A2AR蛋白的表达,而A2AR的激活继而引发了A2AR-PKA通路的激活,导致在此通路中磷酸化的CREB与PPARγ启动子区+4~+11CRE-like位点的直接结合作用,从而上调PPARγ转录活性并上调PPARγ蛋白表达上调依次完成PPARγ-A2AR正反馈环路且进一步完成在炎症反应中的抑制作用。因而以PPARγ与A2AR的正反馈环路为例探讨了在生命活动调控作用中均占据重要地位的核受体超家族与G蛋白偶联受体蛋白家族之间的联系,并为以急性肺损伤为例的病症中抗炎治疗提供了一个新的策略。
     本论文的第二部分则集中于FXR对血栓调节蛋白TM的上调分子机制研究。本室以前的研究已明确在血管内皮细胞中,激活FXR可明显上调TM分子mRNA及蛋白表达水平,同时也可明显增强TM分子活化,本论文则同样以上述通过基因表达调控实验技术:荧光素酶检测实验、置换点突变实验、EMSA实验以及ChIP实验在以前研究的基础上,明确了激活的FXR可通过直接结合于TM分子启动子区IR8位点增强TM基因启动子活性,并上调TM转录水平,从而达到上调TM表达的作用。这为FXR与TM在抑炎作用、抗纤维化以及心血管疾病的治疗中,提供了新的思路。
Inflammation is a protective host response to external challenge or cellular injury thatleads to the activation of a complex array of inflammatory mediators, finalizing therestoration of tissue structure and function[1]. An important general mechanism responsible forthis activity is referred to as transrepression, in which nuclear receptors interfere withsignal-dependent activation of inflammatory response genes through protein-proteininteractions with coregulatory proteins and promoter-bound transcription factors, rather thandirect, sequence-specific interactions with DNA. Nuclear receptors comprise a superfamily ofstructurally conserved, ligand-dependent transcription factors that regulate diverse aspects ofdevelopment and homeostasis by both positively and negatively regulating gene expression.Our studies foucused on two classical NRs, PPARγ and FXR, employing the LPS-inducedAcute lung injury mice (wild-type and A2AR KO mice), LPS-induced murine macrophagesRaw264.7cells and HUVECs, discussed the underlying mechaniasms of regulation of thepotential inhibitor A2AR and TM respectively in anti-inflammation effection.
     In order to investigate the interaction between PPARγ and A2AR, we carried out ourstudies as followed:
     1. PPARγ activation attenuate lung damages of mice with ALI in an A2AR-dependentmanner.
     2. A2AR deficiency blocks the inhibitory effect of PPARγ activation on inflammatorycytokine expression.
     3. PPARγ agonist upregulate A2AR expression in lung tissues of mice with ALI andLPS-stimulated murine macrophages.
     4. A2AR activation positively regulates PPARγ mRNA and protein expressions in aPKA-dependent manner.
     In above parties, comparisons between histopathological evaluation, immunofluorescence analysis and test of lung water content of lung tissues of wild-type mice and A2AR geneknockout mice, which were treated with or without agonist and antagonist of A2AR orPPARγ showed that PPARγ activation attenuate lung damages of mice with ALI in anA2AR-dependent manner, while activation of A2AR could obviously prevent the inhibitionof LPS effect on the expression of PPARγ. Real-time, Western blot assays were employedto demonstrate the positive expression loop between PPARγ and A2AR in vivo and in vitro.
     5. PPARγ activation enhances the transcriptional activation of A2AR promoter.
     6. PPARγ directly targets A2AR in the A2AR promoter region.
     7. CREB, the downstream of PKA, directly mediates the A2AR-induced upregulationof PPARγ.
     In above parties, Luciferase reporter assays, point mutation technology, EMSA andChIP assays were showed that PPARγ activation enhance the transcriptional activation ofA2AR via a DR10PPRE in-218to-197sites in A2AR promoter region in murinemacrophages. And CREB, phosphorylated in A2AR-PKA-CREB pathway as a downstreamtranscription factor, directly mediated the A2AR-induced upregulation of PPARγ by bindingto a CRE-like site locating in+4to+11sites in PPARγ promoter region.
     8. Combined treatment of PPARγ agonist ROSI and A2AR agonist CGS21680exertsbetter protective effect than the single administration of them.
     In the above part, we used immunofluorescence to detecte the infliltration ofneutrophil in the lung tissues of LPS-induced ALI mice. And the combined treatement ofROSI and CGS21680achieved a better protective effect than the single administration ofthem.
     Taken together, our findings suggest PPARγ and A2AR form a positive feedback loopto inhibit inflammation and attenuate lung damages in ALI. This transcriptional regulationof PPARγ and A2AR appears to be critical in controlling their endogenous ligand’s (such as15d-PGJ2to PPARγ while adenosine to A2AR) response under pathophysiologicalconditions. In addition, it provides novel evidence for understanding the molecular basis ofPPARγ and A2AR expressions and their functions in ALI, as well as the action of the tworeceptors-related drugs for ALI.
     For another, we focused our studies on the regulation of FXR effect onThrombomdulin (TM), which is a significant mediator molecules expressed on vascular endothelial cells. Endothelial cells (ECs) dysfunction induced a variety of diseases such asinflammation, vascular diseases, fibrosis, thrombosis and even spontaneous metastasis[21-22].
     In the studies of Li. et al., we have already demonstrated that activation of FXR by itsnatural ligand CDCA or synthetic ligand GW4064lead to both a significant up-regulationof TM expression and an increase of TM activity. Furthermore, FXR induces TMexpression maybe though directly binding to the IR8FXRE sites in the promoter region ofTM. Then we performed directly sites mutant, electrophoretic mobility shift assay (EMSA)and ChIP assays to inquire into the underlying mechanisms of the regulation and clearifiedthis transcriptional regulation of TM appears to be achieved via a novel IR8FXRE in thepromoter region of TM. Additionally, it provides novel angel to investigate FXR and TMfunctions in the inflammation, fibrosis, and other vascular diseases.
引文
1. Gabriel Pascual, Christopher K.Glass,2010.Nuclear receptors versus inflammation:mechanisms of transrepression. TRENDS in endocrinology and metabolism.17,321-327.
    2. Ware LB, Matthay MA2000.The acute respiratory distress syndrome. The NewEngland journal of medicine342:1334-1349[3] Welbourn CR, Young Y1992.Endotoxin, septic shock and acute lung injury: neutrophils, macrophages andinflammatory mediators. The British journal of surgery79:998-1003
    3. Schwab JM, Chiang N, Arita M, Serhan CN2007. Resolvin E1and protectin D1activate inflammation-resolution programmes. Nature447:869-874
    4. Serhan CN, Krishnamoorthy S, Recchiuti A, Chiang N2011.Novel anti–inflammatory--pro-resolving mediators and their receptors. Current topics in medicinal chemistry11:629-647
    5. Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA, SzczeklikW, Drazen JM, Serhan CN2002. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nature medicine8:1018-1023
    6. Ohta A, Sitkovsky M2001. Role of G-protein-coupled adenosine receptors indownregulation of inflammation and protection from tissue damage. Nature414:916-920
    7. Reutershan J, Cagnina RE, Chang D, Linden J, Ley K2007. Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation inlipopolysaccharide-induced lung injury. J Immunol179:1254-1263
    8. Sharma AK, Linden J, Kron IL, Laubach VE2009.Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respiratory research10:58
    9. Eckle T, Koeppen M, Eltzschig HK2009. Role of extracellular adenosine in acute lunginjury. Physiology (Bethesda)24:298-306
    10. Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, Marton A,Szabo C2000. Adenosine inhibits IL-12and TNF-[alpha] production via adenosineA2a receptor-dependent and independent mechanisms. FASEB journal: officialpublication of the Federation of American Societies for Experimental Biology14:2065-2074
    11. Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M,Nemenoff RA, Geraci MW, Voelkel NF2003. Peroxisome proliferator-activatedreceptor gamma (PPARgamma) expression is decreased in pulmonary hypertension andaffects endothelial cell growth. Circulation research92:1162-1169
    12. Patel HJ, Belvisi MG, Bishop Bailey D, Yacoub MH, Mitchell JA2003. Activation ofperoxisome proliferator-activated receptors in human airway smooth muscle cells has asuperior anti-inflammatory profile to corticosteroids: relevance for chronic obstructivepulmonary disease therapy. J Immunol170:2663-2669
    13. Reddy RC, Keshamouni VG, Jaigirdar SH, Zeng X, Leff T, Thannickal VJ, StandifordTJ2004. Deactivation of murine alveolar macrophages by peroxisomeproliferator-activated receptor-gamma ligands. American journal of physiology Lungcellular and molecular physiology286: L613-619
    14. Wang AC, Dai X, Luu B, Conrad DJ2001. Peroxisome proliferator-activatedreceptor-gamma regulates airway epithelial cell activation. American journal ofrespiratory cell and molecular biology24:688-693
    15. Aoki Y, Maeno T, Aoyagi K, Ueno M, Aoki F, Aoki N, Nakagawa J, Sando Y, ShimizuY, Suga T, Arai M, Kurabayashi M2009. Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury andfibrosis. Respiration; international review of thoracic diseases77:311-319
    16. Becker J, Delayre-Orthez C, Frossard N, Pons F2006. Regulation of inflammation byPPARs: a future approach to treat lung inflammatory diseases? Fundamental&clinicalpharmacology20:429-447
    17. Paola RD, Cuzzocrea S2007. Peroxisome proliferator-activated receptors and acutelung injury. PPAR research2007:63745
    18. Esmon CT.2003. Inflammation and thrombosis. J Thromb Haemost.1,1343-1348.
    19. Owen, W.G., Esmon, C.T.,1981. Functional properties of an endothelial cell cofactorfor thrombin-catalyzed activation of protein C. The Journal of biological chemistry.256,5532-5535.
    20. Salem, H.H., Maruyama, I., Ishii, H., Majerus, P.W.,1984. Isolation and characterizationof thrombomodulin from human placenta. The Journal of biological chemistry.259,12246-12251.
    21. William A. Dittman, Philp W.Majerus.1990. Structure and function of thrombomodulin:A natural anticoagulant. Blood.75,329-336.
    22. Morser, John.2012. Thrombomodulin links coagulation to inflammation and immunity.Current drug targets.13,421-431.
    23. Richard H.Sohn, Clayton B.Deming, David C.Johns, et al.,2005. Regulation ofendothelial thrombomodulin expression by inflammatory cytokines is mediated bactivation of nuclear factor-kappa B. Blood.105,3910-3917.
    24. Takayuki Okamoto, Hironobu Tanigami, et al.2012. Thrombomodulin: ABifunctionalModulator of Inflammation and Coagulation in Sepsis. Critical Care Researchand Practice.1155-1165.
    25. Ito, T., Maruyama, I.,2011. Thrombomodulin: protectorate God of the vasculature inthrombosis and inflammation. Journal of thrombosis and haemostasis: JTH9Suppl1,168-173.
    26. Li, Y.H., Shi, G.Y., Wu, H.L.,2009. Thrombomodulin in the treatment of atherothromboticdiseases. Front Biosci (Schol Ed)1,33-38.
    27. Comin, C.E., Saieva, C., Messerini, L.,2007. h-caldesmon, calretinin, estrogen receptor,and Ber-EP4: a useful combination of immunohistochemical markers for differentiatingepithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. TheAmerican journal of surgical pathology31,1139-1148.
    28. Horie, S., Ishii, H., Matsumoto, F., Kusano, M., Kizaki, K., Matsuda, J., Kazama, M.,2001. Acceleration of thrombomodulin gene transcription by retinoic acid: retinoic acidreceptors and Sp1regulate the promoter activity through interactions with two differentsequences in the5'-flanking region of human gene. The Journal of biological chemistry276,2440-2450.
    29. Wu-Wong, J.R., Nakane, M., Ma, J., Ruan, X., Kroeger, P.E.,2007. Elevated phosphorusmodulates vitamin D receptor-mediated gene expression in human vascular smooth musclecells. American journal of physiology. Renal physiology293, F1592-1604.
    30. Li, D., Chen, K., Sinha, N., Zhang, X., Wang, Y., Sinha, A.K., Romeo, F., Mehta, J.L.,2005. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation andarterial thrombus formation. Cardiovascular research65,907-912.
    31. Mangan, S., Clancy, P., Golledge, J.,2008. Modulation of endothelial cell thrombomodulinby PPAR.
    32. Bishop-Bailey, D., Walsh, D.T., Warner, T.D.,2004. Expression and activation of thefarnesoid X receptor in the vasculature. Proceedings of the National Academy ofSciences of the United States of America101,3668-3673
    33. Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V.,Lustig, K.D., Mangelsdorf, D.J., Shan, B.,1999. Identification of a nuclear receptor forbile acids. Science284,1362-1365
    34. Maloney, P.R., Parks, D.J., Haffner, C.D., Fivush, A.M., Chandra, G., Plunket, K.D.,Creech, K.L., Moore, L.B., Wilson, J.G., Lewis, M.C., Jones, S.A., Willson, T.M.,2000.Identification of a chemical tool for the orphan nuclear receptor FXR. Journal ofmedicinal chemistry.43,2971-2974.
    35. Zhang S, Wang J, Liu Q, et al.2009. Farnesoid X receptor agonist WAY-362450attenuates liver inflammation and fibrosis in murine model of non-alcohlicsteatohepatitis. J Hepatol.51,380-388.
    36. Wang XX, Jiang T, Shen Y, et al.2009. The farnesoid X receptor modulates renal lipidmetabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am JPhysiol renal Physiol.297, F1587-1596.
    37.何征宇,朱也森,姜虹.2010.间断腹腔注射脂多糖制作内毒素诱导的小鼠急性肺损伤纤维化动物模型。中国呼吸与危重监护杂志.9,76‐81.
    38. Soledade CS, Franchini KG, Linden J, Huol Y.Stimulation of Adenosine A2A receptorRegulates peroxisome proliferator activated receptors in macrophages. The FASEBJournal,2007.21,816-822.
    39.李新普、汪建新,急性肺损伤动物模型研究进展,国外医学呼吸系统分册,2005,25,506-508,511.
    40. Olman MA,White KE,Ware LB,et al.2004.Pulmonary edema fluid from patients withearly lung injury stimulates fibroblast proliferation through IL-1β-induced IL-6expression. J.Immunol.172,2668-2677.
    41. He Z, Zhu Y, Jiang H.Toll-like receptor4mediates lipopolysaccharide-inducedcollagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acutelung injury.J.Recept. Signal Transduct Res.2009.29,119-125.
    42. Paola RD, Cuzzocrea S. Peroxisome proliferator activated receptors and acute lunginjury. PPAR Res.2007.2007:63745.
    43. Safhi MM,Rutherford C, Ledent C, Sands WA, Palmer TM.2010. Priming of signal transducerand activatorof transcription proteins for cytokine-triggered polyubiquitylation and degradationby the A2A adenosine receptor. Mol Pharmacol.77,968-978.
    44. Moore CC, Martin EN,Lee GH, Obrig T, Linden J, Scheld WM.2008. An A2Aadenosine receptor agonist, ATL313, reduces inflammation and improves survival inmurine sepsis models. BMC Infect Dis.8,141.
    45. Hasko G, Pacher P. A2A receptors in inflammation and injury: lessons learned fromtransgenicanimals. J Leukoc Biol.2008;83,447-455.
    46. Wang H, Zhang W, Tang R, Zhu C, Bucher C, Blazar B, Geng J, Zhang C, Linden J,Wu C, Huo Y. Adenosine receptor A2A deficiency in leukocytes increases arterialneointima formation in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol.2010.30,915-922.
    47. Becker J, Delayre-Orthez C, Frossard N, Pons F.2006. Regulation of inflammation byPPARs: a future approach to treat lung inflammatory diseases? Fundam Clin Pharmacol.20,429-447.
    48. Toshio Maekawa, Wanzhu Jin, Shunsuke Ishii The Role of ATF-2Family TranscriptionFactors in Adipocyte Differentiation: Antiobesity Effects of p38Inhibitors. Molecularand Cellular Biology.2010.30,613-625.
    49. Shi CS, Shi GY, Hsiao SM, et al.2008. Lectin-like domain of thrombomdulin binds toits specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-inducedinflammatory response. Blood.112,3661-3670.
    50. Scaldaferri F, Sans M, Vetrano S, et al. Crucial role of the protein C pathway ingoverning microvascular inflammation in inflammatory bowel disease. J Clin Invest,117,1951-1960.
    1. Lingling Chen and Gordon G.Carmichael.2010. Long noncoding RNAs in mammaliancells:What, Where and Why? Wires RNA.1,2-21.
    2. Carninci P, Yasuda J, Hayashizaki Y.2008. Multifaceted mammalian transcriptome.Curr Opin Cell Biol.20,274–280.
    3. Bartel DP.2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.116,281–297.
    4. Carthew RW, Sontheimer EJ.2009. Origins and Mechanisms of miRNAs and siRNAs.Cell.136,642–655.
    5. Aravin AA, Hannon GJ, Brennecke J.2007. The PiwipiRNA pathway provides anadaptive defense in the transposon arms race. Science.318,761–764.
    6. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, et al. Analysis of the mousetranscriptome based on functional annotation of60,770full-length cDNAs. Nature2002,420:563–573.
    7. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, et al. Global identification ofhuman transcribed sequences with genome tiling arrays. Science.2004,306:2242–2246.
    8. Birney E, Stamatoyannopoulos JA,Dutta A, Guigo R, Gingeras TR, et al. Identificationand analysis of functional elements in1%of the human genome by the ENCODE pilotproject. Nature2007,447:799–816.
    9. Kapranov P, Cheng J, Dike S,Nix DA, Duttagupta R, et al. RNA maps reveal new RNAclasses and a possible function for pervasive transcription. Science2007,316:1484–1488.
    10. Dechao Bu, Kuntao Yu, Silong Sun, Chaoyong Xie, Geir Skogerb, Ruoyu Miao, HuiXiao, Qi Liao, Haitao Luo, Guoguang Zhao, Haitao Zhao, Zhiyong Liu, Changning Liu,Runsheng Chen, and Yi Zhao.2011.NONCODE v3.0: integrative annotation of longnoncoding RNAs. Nucleic Acids Research.40, D210-215.
    11. Jia,H., Osak,M., Bogu,G.K., Stanton,L.W., Johnson,R. and Lipovich,L.2010. Genome-wide computational identification and manual annotation of human long noncodingRNA genes. RNA.16,1478–1487.
    12. Prensner,J.R., Iyer,M.K., Balbin,O.A., Dhanasekaran,S.M.,Cao,Q., Brenner,J.C., Laxman,B.,Asangani,I.A., Grasso,C.S. and Kominsky,H.D.2011.Transcriptome sequencing across aprostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in diseaseprogression. Nat. Biotechnol.,29,742–749.
    13. Cabili,M.N., Trapnell,C., Goff,L., Koziol,M., Tazon-Vega,B., Regev,A. and Rinn,J.L.2011. Integrative annotation of human large intergenic noncoding RNAs reveals globalproperties and specific subclasses. Genes Dev.,25,1915–1927.
    14. Taft,R.J., Pang,K.C., Mercer,T.R., Dinger,M. and Mattick,J.S.2010. Non-coding RNAs:regulators of disease. J. Pathol.,220,126–139.
    15. Mercer,T.R., Dinger,M.E. and Mattick,J.S.2009. Long non-coding RNAs: insights intofunctions. Nat. Rev. Genet.,10,155–159.
    16. Banfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling, W. E., Jr et al.2012. Longnoncoding RNAs are rarely translated in two human cell lines. Genome Res.22,1646–1657.
    17. Sleutels, F., Zwart, R.&Barlow, D. P.2002. The non-coding Air RNA is required forsilencing autosomal imprinted genes. Nature,415,810–813.
    18. Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J. et al.2008.
    19. Kcnq1ot1antisense noncoding RNA mediates lineage-specific transcriptional silencingthrough chromatin-level regulation. Mol. Cell,32,232–246.
    20. Vallot, C., Huret, C., Lesecque, Y., Resch, A.,Oudrhiri, N., Bennaceur-Griscelli, A. et al.2013. XACT, a long noncoding transcript coating the active X chromosome in humanpluripotent cells. Nat. Genet.45,239–241.
    21. Irina V. Novikova, Scott P. Hennelly, Chang-Shung Tung and Karissa Y. Sanbonmatsu.2013. Rise of the RNA Machines: Exploring the Structure of Long Non-Coding RNAs.JMB.
    22. Xu, B., Yang,W.H.,Gerin, I., Hu,C.D.,Hammer,G.D.&Koenig, R. J.2009. Dax-1andsteroid receptor RNA activator (SRA) function as transcriptional coactivators forsteroidogenic factor1in steroidogenesis. Mol. Cell. Biol.29,1719–1734.
    23. Colley, S. M.&Leedman, P. J.2009. SRA and its binding partners: an expanding rolefor RNAbinding coregulators in nuclear receptor-mediated gene regulation. Crit. Rev.Biochem. Mol. Biol.44,25–33.
    24. Yao, H., Brick, K., Evrard, Y., Xiao, T., Camerini-Otero, R. D.&Felsenfeld, G.2010.Mediation of CTCF transcriptional insulation by DEAD-box RNAbinding protein p68and steroid receptor RNA activator SRA. Genes Dev.24,2543–2555.
    25. Lucks, J. B., Mortimer, S. A., Trapnell, C., Luo, S., Aviran, S., Schroth, G. P. et al.2011.Multiplexed RNA structure characterization with selective2′-hydroxyl acylationanalyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA,108,11063–11068.
    26. Chris P. Ponting, Peter L. Oliver, and Wolf Reik.2009.Evolution and functions of longnoncoding RNAs. Cell.136,629-641.
    27. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F., and Mattick, J.S.2008.Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci.USA105,716–721.
    28. Babak, T., Blencowe, B.J., and Hughes, T.R.2007. Considerations in the identificationof functional RNA structural elements in genomic alignments.BMC Bioinformatics8,33.
    29. Kapranov, P., Cheng, J., Dike, S., Nix, D.A., Duttagupta, R., Willingham, A.T., Stadler, P.F.,Hertel, J., Hackermuller, J., Hofacker, I.L., et al.2007. RNA maps reveal new RNA classesand a possible function for pervasive transcription.Science316,1484–1488.
    30. Goodrich, J.A., and Kugel, J.F.2006. Non-coding-RNA regulators of RNA polymeraseII transcription. Nat. Rev. Mol. Cell Biol.7,612–616.
    31. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N.,Oyama, R.,Ravasi, T., Lenhard, B., Wells, C., et al.2005. The transcriptional landscape of themammalian genome. Science309,1559–1563.
    32. Conley, A.B., Miller, W.J., and Jordan, I.K.2008. Human cis natural antisensetranscripts initiated by transposable elements. Trends Genet.24,53–56.
    33. Katayama, S.,Tomaru, Y.,Kasukawa, T.,Waki, K.,Nakanishi, M.,Nakamura, M.,Nishida,H., Yap, C.C., Suzuki, M.,Kawai, J., et al.2005. Antisense transcription in themammalian transcriptome. Science309,1564–1566.
    34. Ponjavic, J., and Ponting, C.P.2007. The long and the short of RNA maps. Bioessays29,1077–1080.
    35. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R., and Fraser, P.2000. Intergenictranscription and developmental remodeling of chromatin subdomains in the humanbeta-globin locus. Mol. Cell5,377–386.
    36. Osato, N., Suzuki, Y., Ikeo, K., and Gojobori, T.2007. Transcriptional interferences incis natural antisense transcripts of humans and mice. Genetics176,1299–1306.
    37. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N.,Oyama, R.,Ravasi, T., Lenhard, B., Wells, C., et al.2005. The transcriptional landscape of themammalian genome. Science309,1559–1563.
    38. Ponjavic, J., Ponting, C.P., and Lunter, G.2007. Functionality or transcriptional noise?Evidence for selection within long noncoding RNAs. Genome Res.17,556–565.
    39. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N., and Akoulitchev, A.2007.Repression of the human dihydrofolate reductase gene by a noncoding interferingtranscript. Nature.445,666–670.
    40. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD.2006.The Evf-2noncoding RNA istranscribed from the Dlx-5/6ultraconserved region and functions as a Dlx-2transcriptional coactivator. Genes Dev.20,1470-1484.
    41. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, GlassCK, Kurokawa.2008.Induced ncRNAs allosterically modify RNA-binding proteins incis to inhibit transcription. Nature.454,126-130.
    42. Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI:Paraspeckles.2002. A novel nuclear domain. Curr Biol.12,13-25.
    43. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A.2007.Repression ofthe human dihydrofolate reductase gene by a non-coding interfering transcript. Nature.445,666-670.
    44. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, GoodrichJA:2008. Human Alu RNA is a modular transacting repressor of mRNA transcriptionduring heat shock. Mol Cell.29,499-509.
    45. Yakovchuk P, Goodrich JA, Kugel JF:2009. B2RNA and Alu RNA represstranscription by disrupting contacts between RNA polymerase II and promoter DNAwithin assembled complexes. Proc Natl Acad Sci U S A.106,5569-5574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700