髓系细胞触发受体-1在单核细胞凋亡中的作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脓毒症患者外周血单核细胞髓系细胞触发受体-1表达水平与凋亡的相关性
     研究目的:髓系细胞触发受体-1(TREM-1)分子是主要表达于外周血单核细胞和中性粒细胞表面的受体,能够放大Toll样受体(Toll-like receptors, TLRs)和Nod样受体(Nod-like receptors, NLRs)介导的炎症反应,在脓毒症等炎症性疾病发病机理中发挥重要作用。但是TREM-1在脓毒症单核细胞和中性粒细胞凋亡中的作用尚未明确。因此,本部分研究通过检测脓毒症患者外周血单核细胞和中性粒细胞TREM-1的表达水平和细胞凋亡率,分析细胞TREM-1的表达水平和细胞凋亡之间的相关性。
     研究方法:
     本研究纳入2012年7月1日至2012年9月4日大学附属医院外科ICU新入院脓毒症患者为研究组,排除化疗、艾滋病、激素治疗和器官移植等患者。所有纳入患者在入住重症监护病房(Intensive Care Unit, ICU)24小时内进行APACHE Ⅱ (Acute Physiology and Chronic Health Evaluation Ⅱ)评分和SOFA(Sequential Organ Failure Assessment)评分。所有纳入患者在入住ICU24小时内均抽取全血检测全血中单核细胞和中性粒细胞的凋亡水平;同时将全血中的单核细胞和中性粒细胞分离,检测两种细胞TREM-1的表达水平。分别分析单核细胞和中性粒细胞TREM-1表达水平与其凋亡率的相关性。
     研究结果:
     本研究共纳入外科ICU中符合脓毒症诊断标准的26例患者。在原发疾病中最常见的为急性腹膜炎(26.9%)和肺炎(26.9%),其他还包括急性化脓性梗阻性胆管炎和急性重症胰腺炎等。其中16例患者细菌培养结果阳性,另外10例患者存在临床感染证据。所有患者的外周血单核细胞都检测到TREM-1表达水平和细胞凋亡率,相关性分析显示单核细胞TREM-1表达水平和单核细胞凋亡率成负相关(r=-0.49,P=0.01)。此外,26例患者中有22例成功检测到中性粒细胞TREM-1表达水平与中性粒细胞凋亡率,4例患者检测失败。中性粒细胞TREM-1表达水平与中性粒细胞凋亡率之间无显著相关性(r=-0.28,P=0.21)。
     研究结论:
     脓毒症患者外周血单核细胞TREM-1表达水平与单核细胞凋亡率呈负相关,中性粒细胞TREM-1表达水平与中性粒细胞凋亡率无显著相关性。研究结果提示:TREM-1在单核细胞抗凋亡中可能具有重要作用。
     第二部分TREM-1在单核细胞凋亡中的作用并初步探讨其分子机制
     研究目的:
     通过构建携带TREM-1基因的重组腺病毒表达载体,获得高表达TREM-1的单核细胞,进行TREM-1在单核细胞凋亡中的作用及其机制的研究,探讨Erk和PI3K/Akt通路和Bcl-2蛋白家族在该凋亡机制中的作用。研究方法:
     构建高表达TREM-1的腺病毒表达载体,感染单核细胞系THP-1细胞,用Western blot和流式细胞术检测TREM-1蛋白的表达水平。以高表达TREM-1的THP-1细胞为研究对象,采用激动性抗体激活TREM-1通路,或同时用100ng/ml脂多糖(lipopolysaccharide, LPS)刺激,随后用星形孢菌素(staurosporine, STS)诱导该细胞凋亡,采用流式细胞术检测细胞凋亡水平。采用化学抑制试验观察细胞外信号调节激酶(extracellular-signal-regulated kinase, Erk)通路和磷脂酰肌醇3激酶(phosphatidylinositol3-kinase, PI3K)/Akt通路对TREM-1分子介导的细胞凋亡的影响。采用Western blot法技术检测Bcl-2蛋白家族在TREM-1分子介导的细胞凋亡中的表达水平变化。
     研究结果:
     Western-blot和流式细胞术检测证实TREM-1重组腺病毒载体构建成功,能在单核细胞系THP-1细胞中稳定表达。激活TREM-1通路能显著降低STS诱导的THP-1细胞的凋亡率(41.8%vs.63%,p<0.05),且在LPS刺激诱导的THP-1细胞(体外炎症模型)中也得到了相似的结果(33.7%vs.54.3%,p<0.05)。用化学药物抑制细胞外信号调节激酶(extracellular-signal-regulated kinase, Erk)或磷脂酰肌醇3激酶(phosphatidylinositol3-kinase, PI3K)/Akt通路的活化,能够减弱TREM-1对THP-1凋亡的抑制作用(Erk抑制剂:29.8%vs.77.7%, p<0.05; PI3K/Akt抑制剂:29.8%vs.69.3%, p<0.05)。Western blot结果显示TREM-1的激活不仅能显著地提高Bcl-2蛋白家族中抗凋亡蛋白髓样细胞白血病-1(myeloid cell leukemia-1, Mcl-1)的表达,而且还能逆转STS对Mcl-1蛋白的抑制作用(p<0.05)。
     研究结论:
     本研究证实激活TREM-1对单核细胞具有抗凋亡作用,其机制可能与Erk和Akt信号通路的激活、以及下游抗凋亡蛋白Mcl-1的表达升高有关。
     第三部分明确Mcl-1分子在TREM-1介导单核细胞抗凋亡通路中的重要作用
     研究目的:
     探讨上述研究中发现的髓样细胞白血病-1(myeloid cell leukemia-1, Mcl-1)蛋白在单核细胞TREM-1抗凋亡通路中的确切作用,从而明确单核细胞表面TREM-1分子在细胞凋亡、免疫调控中的重要作用。
     研究方法:
     以高表达TREM-1的THP-1细胞为研究对象,采用化学抑制剂抑制TREM-1通路的下游分子Erk和Akt,Western blot方法检测Mcl-1蛋白水平的变化。采用激动性TREM-1抗体激活TREM-1受体后,加入特异性抑制Mcl-1蛋白表达的Roscovitine (20μM)与0.6μg/ml STS,流式细胞术观察Mcl-1蛋白抑制后对TREM-1发挥抗凋亡作用的影响。
     研究结果:
     抑制Erk和/或Akt信号分子均导致Mcl-1蛋白表达显著下降(p<0.05)。20μM Roscovitine处理4小时后,TREM-1-THP-细胞的Mcl-1蛋白表达明显被抑制(p<0.05)。将激活TERM-1通路的TREM-1-THP-1细胞用20μM Roscovitine处理后,TREM-1的抗凋亡作用被抑制(68.1%vs.39.5%,p<0.05)。
     研究结论:
     本研究证实TREM-1可能是通过激活的Erk和Akt通路上调Mcl-1蛋白发挥抗凋亡作用,Mcl-1蛋白可能是TREM-1抗凋亡通路中的重要分子。
Part1The relationship between triggering receptor expressed on myeloid cells-1and monocyte apoptosis in sepsis
     Objective:
     Triggering receptor expressed on myeloid cells-1(TREM-1) is a cell surface receptor selectively expressed on myeloid cells, which can amplify pro-inflammatory response initiated by Toll-like receptors and Nod-like receptors, and may contribute to the pathogenesis of inflammatory disease such as sepsis. However, the role of TREM-1in monocyte fate and the detailed molecular mechanisms evoked by TREM-1are unknown. Thus, the expression levels of TREM-1in monocyte and the magnitude of monocyte apoptosis were measured.
     Methods:
     From July1st2012, to September4th2012, patients who were newly hospitalized in the surgical Intensive Care Unit in the University Hospitals were screened for eligibility. The diagnosis of sepsis met the criteria recommended by American College of Chest Physicians and Society of Critical Care Medicine Consensus Conference. The Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score, and the Sequential Organ Failure Assessment (SOFA) score were recorded. Results of microbiological culture were also recorded. Notable exclusion criteria included:human immunodeficiency virus (HIV) positive, treatment with long-term corticosteroids within6months or short-term corticosteroids within4weeks, chemotherapy or radiation therapy within4weeks, or a history of organ transplantation. Ten milliliters of EDTA-anticoagulation peripheral whole blood were drawn from each patient within24hours after diagnosis of sepsis. Monocytes and neutrophils were isolated and extracted for detection of TREM-1by real-time PCR; meanwhile, the magnitude of apoptosis in monocytes and neutrophils in the septic patients were measured by flow cytometry.
     Results:
     During the study period, twenty-six patients who were diagnosed as sepsis were enrolled in the study. Among them, peritonitis (26.9%) and pneumonia (26.9%) were the most frequent initial diagnosis for the patients. Other diagnosis included obstructive cholecystitis, severe acute pancreatitis, and so on. Microbiological inspection evidenced that16patients experienced a documented infection. The other10patients showed clinically suspected infections stated by senior intensivists. The expression levels of TREM-1and the magnitude of apoptosis in monocyte were successfully detected in all of the patients. Correlation analysis showed that the expression levels of TREM-1were reversely correlated with the magnitude of apoptosis in monocyte (r=-0.49, P=0.01). In addition, the expression levels of TREM-1and the magnitude of apoptosis in neutrophil were measured in22out of26septic patients. Although the expression levels of TREM-1were not significantly correlated with the magnitude of apoptosis (r=-0.28, P=0.21), a trend that the neutrophil with higher expression levels of TREM-1have less magnitude of apoptosis was observed.
     Conclusion:
     In septic patients, TREM-1levels were reversely correlated to the magnitude of apoptosis in monocyte. This study demonstrated that TREM-1played an important role in monocyte apoptosis.
     Part2The effect and mechanism of TREM-1on monocyte apoptosis
     Objective:
     To investigate the effect and mechanism of TREM-1on monocyte apoptosis.
     Method:
     Adenoviruses overexpressing TREM-1were constructed and transfected into monocytic THP-1cells. After activation of TREM-1by agonist antibody with/without lipopolysaccharide, apoptosis was induced by staurosporine and assayed using flow cytometry. The signaling pathways downstream of TREM-1were illustrated by inhibitory experiments. Pro-/anti-apoptotic protein levels were measured using immunoblot.
     Results:
     Activation of TREM-1protected monocytes from staurosporine induced apoptosis (41.8%vs.63%, p<0.05). This characteristic was also obtained under lipopolysaccharide stimulation (33.7%vs.54.3%, p<0.05), an in vitro inflammatory model. The protection of TREM-1against monocyte apoptosis was abrogated after inhibition of extracellular-signal-regulated kinase (Erk)(77.7%vs.29.8%, p<0.05) or PI3K/Akt (69.3%vs.29.8%, p<0.05) signaling. Western blot analysis showed that cross-linking of TREM-1remarkably upregulated myeloid cell leukemia-1(Mcl-1) protein level and reversed staurosporine-suppressed Mcl-1expression (p<0.05).
     Conclusion:
     This study demonstrated that activation of TREM-1protected monocytic cells from apoptosis through activation of both Erk and Akt pathways and increased expression of Mcl-1protein.
     Part3The importance of myeloid cell leukemia-1in TREM-1mediated protection against apoptosis
     Objective:
     To illustrate the importance of myeloid cell leukemia-1(Mcl-1) in TREM-1mediated protection against apoptosis.
     Method:
     The extracellular-signal-regulated kinase (Erk) and/or PI3K/Akt, down stream of TREM-1signaling, were inhibited to detect Mcl-1expression level. Then a cyclin dependent kinase inhibitor, Roscovitine, which could specifically downregulate Mcl-1, was added into the transfected cells simultaneously with STS in a final concentration of20μM.
     Results:
     Inhibition of Erk or Akt resulted in the reduction of Mcl-1expression (p<0.05). Treatment of the agonist-activated Ad.TREM-1-transfected cells with20μM Roscovitine for4hours did suppress the protein levels of Mcl-1(p<0.05). Roscovitine abrogated the protective effect of TREM-1against apoptosis (68.1%vs.39.5%, p<0.05).
     Conclusion:
     This study confirming that Mcl-1was a critical molecule accounting for TREM-1mediated signaling pathway against apoptosis.
引文
[1]Haynes AB, Weiser TG, Berry WR, et al. Surgery Saves Lives Study Group. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med 2009;360:491-499
    [2]Kennedy A, Bakir C, Brauer CA. Quality indicators in pediatric orthopaedic surgery:a systematic review. Clin Orthop Relat Res 2012;470:1124-1132
    [3]Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associtated with inpatient surgery. N Engl J Med 2009;361:1368-1375
    [4]Pearse RM, Moreno RP, Bauer P, et al. Mortality after surgery in Europe:a 7day cohort study. Lancet 2012;380:1059-1065
    [5]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/ Society of Critical Care Medicine. Chest 1992; 101:1644-1655
    [6]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003;31:1250-1256
    [7]Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-1554
    [8]Kumar G, Kumar N, Taneja A, et al. Nationwide trends of severe sepsis in the 21 st century (2000-2007). Chest 2011;140:1223-1231
    [9]Lagu T, Rothberg MB, Shieh MS, et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med 2012;40:754-761
    [10]徐笑益,方向明.全身性感染发病机制及治疗的研究进展.国外医学麻醉学与复苏分册2005;26:15-19
    [11]Danai P, Martin GS. Epidemiology of sepsis:Recent advances. Curr Infect Dis Rep 2005;7:329-334
    [12]Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China. Crit Care Med 2007;35:2538-2546
    [13]Shen HN, Lu CL, Yang HH. Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 2010;138:298-304
    [14]Watson RS, Carcillo JA. Scope and epidemiology of pediatric sepsis. Pediatr Crit Care Med 2005;6:S3-S5
    [15]刘娟,钱素云.小儿脓毒症和严重脓毒症发病情况单中心调查.临床儿科杂志2010;28:26-29
    [16]胡皓夫.与国际接轨,提高我国儿童脓毒症的诊治水平.中华急诊医学杂志2006;15:487-488
    [17]Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock:2008. Crit Care Med 2008;36:296-327
    [18]Bouchon A, Dietrich J, Colonna M. Cutting edge:inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164:4991-4995
    [19]Knapp S. Update on the role of Toll-like receptors during bacterial infections and sepsis. Wien Med Wochenschr 2010;160:107-111
    [20]Salomao R, Martins PS, Brunialti MK, et al. TLR signaling pathway in patients with sepsis. Shock 2008;30 suppl 1:73-77
    [21]Steams-Kurosawa DJ, Osuchowski MF, Valentine C, et al. The pathogenesis of sepsis. Annu Rev Pathol 2011;6:19-48
    [22]Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001;166:6952-6963
    [23]Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, et al. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care 2012;16:R112
    [24]Schwulst SJ, Grayson MH, DiPasco PJ, et al. Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis. J Immunol 2006; 177:557-565
    [25]Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11:762-774
    [26]Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010;10:427-439
    [27]Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2010;2:204-215
    [28]Adrie C, Bachelet M, Vayssier-Taussat M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med.2001;164:389-395
    [29]Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, et al. Early apoptosis of blood monocytes in the septic host:is it a mechanism of protection in the event of septic shock? Crit Care 2006;10:R76
    [30]Antonopoulou A, Raftogiannis M, Giamarellos-Bourboulis EJ, et al. Early apoptosis of blood monocytes is a determinant of survival in experimental sepsis by multi-drug-resistant pseudomonas aeruginosa. Clin Exp Immunol 2007;149:103-108
    [31]Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. N Engl J Med 2009;361:1570-1583
    [32]Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742-758
    [33]Munoz-Pinedo C. Signaling pathways that regulate life and cell death:evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 2012;738:124-143
    [34]Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol 2003;3:445-453
    [35]Netea MG, Azam T, Ferwerda G, et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J Leukoc Biol 2006;80:1454-1461
    [36]Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001;410:1103-1107
    [37]Wang F, Liu S, Wu S, et al. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol 2012;272:251-258
    [38]Ferat-Osorio E, Wong-Baeza I, Esquivel-Callejas N. Triggering receptor expressed on myeloid cells-1 expression on monocytes is associated with inflammation but not with infection in acute pancreatitis. Crit Care 2009;13:R69
    [39]Liao R, Liu Z, Wei S, et al. Triggering Receptor in Myeloid Cells (TREM-1) specific expression in peripheral blood mononuclear cells of sepsis patients with acute cholangitis. Inflammation 2009;32:182-190
    [40]Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2011;117:2625-2639
    [41]Gibot S, Le Renard PE, Bollaert PE, et al. Surface triggering receptor expressed on myeloid cells 1 expression patterns in septic shock. Intensive Care Med 2005;31:594-597
    [42]Knapp S, Gibot S, de Vos A, et al. Cutting Edge:Expression patterns of surface and soluble Triggering Receptor Expressed on Myeloid cells-1 in human endotoxemia. J Immunol 2004;173:7131-7134
    [43]LaDuca JR, Gaspari AA. Targeting tumor necrosis factor alpha. New drugs used to modulate inflammatory diseases. Dermatol Clin 2001;19:617-635
    [44]Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009;21:38-46
    [45]Yu Q, Chow EM, Wong H, et al. CEACAM1 (CD66a) promotes human monocyte survival via a phosphatidylinositol 3-kinase- and AKT-dependent pathway. J Biol Chem 2006;281:39179-39193
    [46]Numata T, Araya J, Fujii S, et al. Insulin-dependent phosphatidylinositol 3-kinase/Akt and ERK signaoling pathways inhibit TLR3-mediated human bronchial epithelial cell apoptosis. J Immunol 2011;187:510-519
    [47]Prieto P, Cuenca J, Traves PG, et al. Lipoxin A4 impairment of apoptotic signaling in macrophages:implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 2010;17:1179-1188
    [48]Dai Y, Rahmani M, Pei XY. Farnesyltransferase inhibitors interact synergistically with the Chkl inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 2005;105:1706-1716
    [49]Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59
    [50]Westphal D, Dewson G, Czabotar PE, et al. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011;1813:521-531
    [51]Krishna S, Low IC, Pervaiz S. Regulation of mitochondrial metabolism:yet another facet in the biology of the oncoprotein Bcl-2. Biochem J 2011;435:545-551
    [52]Shamas-Din A, Brahmbhatt H, Leber B, et al. BH3-only proteins:Orchestrators of apoptosis. Biochim Biophys Acta 2011;1813:508-520
    [53]Kozopas KM, Yang T, Buchan HL, et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 1993;90:3516-3520
    [54]Opferman JT, Letai A, Beard C, et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003;426:671-676
    [55]Kodama T, Hikita H, Kawaguchi T, et al. Mcl-1 and Bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages. Cell Death Differ 2012;19:1856-1869
    [56]Chan G, Nogalski MT, Bentz GL, et al. PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J Immunol 2010; 184:3213-3222
    [57]Sun HL, Tsai AC, Pan SL, et al. EPOX inhibits angiogenesis by degradation of Mcl-1 through ERK inactivation. Clin Cancer Res 2009; 15:4904-4914
    [58]Ding Q, Huo L, Yang JY, et al. Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Cancer Res 2008;68:6109-6117
    [1]Bouchon A, Dietrich J, Colonna M. Cutting edge:inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 2000; 164:4991-4995
    [2]Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009;21:38-46
    [3]Bosco MC, Pierobon D, Blengio F, et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2011;117:2625-2639
    [4]Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11:762-774
    [5]Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010; 10:427-439
    [6]Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2010;2:204-215
    [7]Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644-1655
    [8]Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003;31:1250-1256
    [9]Wu S, Zhang K, Lv C, et al. Nuclear factor-κB mediated lipopolysaccharide-induced mRNA expression of hepcidin in human peripheral blood. Leukocytes Innate Immun 2012;18:318-324
    [10]陈齐兴,周景琳,Book M,等.白细胞介素-10对人外周血白细胞p-防御素2基因诱导性表达的影响.浙江大学学报(医学版)2006;6:596-599
    [11]Knaus WA, Draper EA, Wagner DP, et al. APACHE II:a severity of disease classification system. Crit Care Med 1985; 13:818-829
    [12]Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001;286:1754-1758
    [13]Hadley JS, Wang JE, Foster SJ, et al. Peptidoglycan of Staphylococcus aureus upregulates monocyte expression of CD 14, Toll-like receptor 2 (TLR2), and TLR4 in human blood:possible implications for priming of lipopolysaccharide signaling. Infect Immun 2005;73:7613-7619
    [14]Barnard MR, Krueger LA, Frelinger AL 3rd, et al. Whole blood analysis of leukocyte-platelet aggregates. Curr Protoc Cytom 2003;Chapter 6:Unit 6.15
    [15]Biswas P, Mantelli B, Sica A, et al. Expression of CD4 on human peripheral blood neutrophils. Blood 2003; 101:4452-4456
    [16]Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol 2003;3:445-453
    [17]Netea MG, Azam T, Ferwerda G, et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J Leukoc Biol 2006;80:1454-1461
    [18]Gibot S, Le Renard PE, Bollaert PE, et al. Surface triggering receptor expressed on myeloid cells 1 expression patterns in septic shock. Intensive Care Med 2005;31:594-597
    [19]Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001;410:1103-1107
    [20]Knapp S, Gibot S, de Vos A, et al. Cutting Edge:Expression patterns of surface and soluble Triggering Receptor Expressed on Myeloid cells-1 in human endotoxemia. J Immunol 2004; 173:7131-7134
    [21]Gonzalez-Mejia E, Doseff AI. Regulation of monocytes and macrophages cell fate. Front Biosci 2009;14:2413-2431
    [22]Majer O, Bourgeois C, Zwolanek F, et al. Type 1 interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophis during candida infections. Plos Pathog 2012;8:e 1002811
    [23]Schiopu A, Nadig SN, Cotoi OS, et al. Inflammatory Ly-6Chi monocytes play an important role in the development of severe transplant arteriosclerosis in hyperlipidemic recipients. Atherosclerosis 2012;223:291-298
    [24]Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, et al. Early apoptosis of blood monocytes in the septic host:is it a mechanism of protection in the event of septic shock? Crit Care 2006;10:R76
    [25]Antonopoulou A, Raftogiannis M, Giamarellos-Bourboulis EJ, et al. Early apoptosis of blood monocytes is a determinant of survival in experimental sepsis by multi-drug-resistant pseudomonas aeruginosa. Clin Exp Immunol 2007;149:103-108
    [26]Steams-Kurosawa D, Osuchowski M, Valentine C, et al. The pathogneesis of sepsis. Annu Rev Pathol Mech Dis 2011;6:19-48
    [27]Oku R, Oda S, Nakada TA, et al. Differential pattern of cell-surface and soluble TREM-1 between sepsis and SIRS. Cytokine 2013;61:112-117
    [28]Jacobs R, Honore PM, Joannes-Boyau O, et al. Septic acute kidney injury:the culprit is inflammatory apoptosis rather than ischemic necrosis. Blood Purif 2011;32:262-265
    [29]Huttunen R, Aittoniemi J. New concepts in the pathogenesis, diagnosis and treatment of bacteremia and sepsis. J Infect 2011;63:407-419
    [30]Lee SY, Lee YS, Choi HM, et al. Distinct pathophysiologic mechanisms of septic acute kidney injury:Role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med 2012;40:2997-3006
    [31]Steams-Kurosawa DJ, Osuchowski MF, Valentine C, et al. The pathogenesis of sepsis. Annu Rev Pathol 2011;6:19-48
    [1]Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009;21:38-46
    [2]Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009;21:38-46
    [3]Yu Q, Chow EM, Wong H, et al. CEACAM1 (CD66a) promotes human monocyte survival via a phosphatidylinositol 3-kinase- and AKT-dependent pathway. J Biol Chem 2006;281:39179-39193
    [4]Numata T, Araya J, Fujii S, et al. Insulin-dependent phosphatidylinositol 3-kinase/Akt and ERK signaoling pathways inhibit TLR3-mediated human bronchial epithelial cell apoptosis. J Immunol 2011;187:510-519
    [5]Prieto P, Cuenca J, Traves PG, et al. Lipoxin A4 impairment of apoptotic signaling in macrophages:implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 2010;17:1179-1188
    [6]Dai Y, Rahmani M, Pei XY. Farnesyltransferase inhibitors interact synergistically with the Chkl inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 2005;105:1706-1716
    [7]Westphal D, Dewson G, Czabotar PE, et al. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011; 1813:521-531
    [8]Krishna S, Low IC, Pervaiz S. Regulation of mitochondrial metabolism:yet another facet in the biology of the oncoprotein Bcl-2. Biochem J 2011;435:545-551
    [9]Shamas-Din A, Brahmbhatt H, Leber B, et al. BH3-only proteins:Orchestrators of apoptosis. Biochim Biophys Acta 2011;1813:508-520
    [10]Shu Q, Shi Z, Zhao Z, et al. Protection against pseudomonas aeruginosa pneumonia and sepsis-induced lung injury by overexpression of beta-defensin-2 in rats. Shock 2006;26:3653-3671
    [11]胡艳,舒力琪,陈齐兴等.髓系细胞触发受体-1真核表达质粒的构建及鉴定.浙江大学学报(医学版)2010;39:477-482
    [12]Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59
    [13]Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2010;2:204-215
    [14]Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011;11:762-774
    [15]Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010;10:427-439
    [16]Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, et al. Early apoptosis of blood monocytes in the septic host:is it a mechanism of protection in the event of septic shock? Crit Care 2006;10:R76
    [17]Antonopoulou A, Raftogiannis M, Giamarellos-Bourboulis EJ, et al. Early apoptosis of blood monocytes is a determinant of survival in experimental sepsis by multi-drug-resistant pseudomonas aeruginosa. Clin Exp Immunol 2007;149:103-108
    [18]Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742-758
    [19]Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. N Engl J Med 2009;361:1570-1583
    [20]Munoz-Pinedo C. Signaling pathways that regulate life and cell death:evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 2012;738:124-143
    [21]Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol 2003;3:445-453
    [22]Netea MG, Azam T, Ferwerda G, et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J Leukoc Biol 2006;80:1454-1461
    [23]Tessarz AS, Cerwenka A. The TREM-1/DAP12 pathway. Immunol Lett 2008;116:111-116
    [24]Scarlett JL, Sheard PW, Hughes G, et al. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000;475:267-272
    [25]Steams-Kurosawa D, Osuchowski M, Valentine C, et al. The pathogneesis of sepsis. Annu Rev Pathol Mech Dis 2011;6:19-48
    [26]Dower K, Ellis DK, Saraf K, et al. Innate Immune Responses to TREM-1 Activation:Overlap, Divergence, and Positive and Negative Cross-Talk with Bacterial Lipopolysaccharide. J Immunol 2008;180:3520-3534
    [27]Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifes inflammation and is a crucial mediator of septic shock. Nature 2001;410:1103-1107
    [28]Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009;21:38-46
    [29]Sharif O, Knapp S. From expression to signaling:role of TREM-1 and TREM-1 in innate immunity and bacterial infection. Immunobiology 2008;213:701-713
    [30]Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol 2006;7:1266-1273
    [31]Longo PG, Laurenti L, Gobessi S, et al. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptoticsignals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008;111:846-855
    [32]Martinou JC, Youle RJ. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011;21:92-101
    [33]Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 2000;7:1182-1191
    [34]Antico Arciuch VG, Elguero ME, Poderoso JJ, et al. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-1180
    [35]Shi X, Zhou B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci 2010;115:391-400
    [36]Niu H, Chen X, Gruppo RA, et al. Integrin αⅡb-Mediated PI3K/Akt Activation in Platelets. PLoS One 2012;7:e47356
    [1]Kozopas KM, Yang T, Buchan HL, et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 1993;90:3516-3520
    [2]Yang-Yen HE Mcl-1:a highly regulated cell death and survival controller. J Biomed Sci 2006; 13:201-204
    [3]Cuconati A, Mukherjee C, Perez D, et al. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 2003;17:2922-2932
    [4]Opferman JT, Letai A, Beard C, et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003;426:671-676
    [5]Chan G, Nogalski MT, Bentz GL, et al. PI3K-dependent upregulation of Mcl-1 by human cytomegalovirus is mediated by epidermal growth factor receptor and inhibits apoptosis in short-lived monocytes. J Immunol 2010; 184:3213-3222
    [6]Ding Q, Huo L, Yang JY, et al. Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Cancer Res 2008;68:6109-6117
    [7]Sun HL, Tsai AC, Pan SL, et al. EPOX inhibits angiogenesis by degradation of Mcl-1 through ERK inactivation. Clin Cancer Res 2009; 15:4904-4914
    [8]Raje N, Kumar S, Hideshima T, et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 2005;106:1042-1047
    [9]Duffin R, Leitch AE, Sheldrake TA, et al. The CDK inhibitor, R-roscovitine, promotes eosinophilo apoptosis by down-regulation of Mcl-1. FEBS Lett 2009;583:2540-2546
    [10]Rossi AG, Sawatzky DA, Walker A, et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 2006;12:1056-1064
    [11]Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x L is an essential survival protein of human myeloma cells. Blood 2002; 100:194-199
    [12]Moulding DA, Giles RV, Spiller DG, et al. Apoptosis is rapidly triggered by antisense depletion of MCL-1 in differentiating U937 cells. Blood 2000;96:1756-1763
    [13]Warr MR, Shore GC. Unique biology of Mcl-1:therapeutic opportunities in cancer. Curr Mol Med 2008;8:138-147
    [14]Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 2009;66:1326-1336
    [15]Maurer U, Charvet C, Wagman AS, et al. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006 21:749-760
    [16]Rajalingam K, Sharma M, Lohmann C, et al. Mcl-1 is a key regulator of apoptosis resistance in chlamydia trachomatis-infected cells. Plos one 2008;3:e3102
    [17]Coloff JL, Macintyre AN, Nichols AG, et al. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition. Cancer Res 2011;71:5204-5213
    [18]Domina AM, Vrana JA, Gregory MA, et al. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 2004;23:5301-5315
    [19]Le Gouill S, Podar K, Amiot M, et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 2004; 104:2886-2892
    [20]Nencioni A, Hua F, Dillon CP, et al. evidence for a protective role of mcl-1 in proteasome inhibitor-induced apoptosis. Blood 2005;105:3255-3262
    [21]Garrofe-Ochoa X, Cosialls AM, Ribas J, et al. Transcriptional modulation of apoptosis regulators by roscovitine and related compounds. Apoptosis 2011; 16:660-670
    [22]Nifoussi SK, Vrana JA, Domina AM, et al. Thr 163 Phosphorylation Causes Mcl-1 Stabilization when Degradation Is Independent of the Adjacent GSK3-Targeted Phosphodegron, Promoting Drug Resistance in Cancer. PLoS One 2012;7:e47060
    [1]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-257
    [2]Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5:897-907
    [3]Munoz-Pinedo C. Signaling pathways that regulate life and cell death:evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 2012;738:124-143
    [4]Hughes PD, Belz GT, Former KA, et al. Apoptosis regulators Fas and Bim cooperate in shut-down of chronic immune responses and prevention of autoimmunity. Immunity 2008;28:197-205
    [5]Green DR. Apoptotic pathways:ten minutes to dead. Cell 2005;121:671-674
    [6]Yu JW, Shi Y. FLIP and the death effector domain family. Oncogene 2008;27:6216-6227
    [7]Salmena L, Lemmers B, Hakem A, et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 2003; 17:883-895
    [8]Murai M, Inoue T, Suzuki-Karasaki M, et al. Diallyl trisulfide sensitizes human melanoma cells to TRAIL-induced cell death by promoting endoplasmic reticulum-mediated apoptosis. Int J Oncol 2012;41:2029-2037
    [9]Taylor RC, Cullen SP, Martin SJ, et al. Apoptosis:controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9:231-241
    [10]Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 2010;9:447-464
    [11]Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, et al. Different mitochondrial-intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 2006; 103:11573-11578
    [12]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell 2004; 116:205-219
    [13]Goldstein JC, Munoz-Pinedo C, Ricci JE, et al. Cytochrome c is released in a single step during apoptosis. Cell Death Differ 2005; 12:453-462
    [14]Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102:33-42
    [15]Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59
    [16]Krishna S, Low IC, Pervaiz S. Regulation of mitochondrial metabolism:yet another facet in the biology of the oncoprotein Bcl-2. Biochem J 2011;435:545-551
    [17]Kim H, Rafiuddin-Shah M, Tu HC, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 2006;8:1348-1358
    [18]Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007;315:856-859
    [19]Westphal D, Dewson G, Czabotar PE, et al. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011; 1813:521-531
    [20]Strasser A. The role of BH.-only proteins in the immune system. Nat Rev Immunol 2005;5:189-200
    [21]Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond:an overview. Oncogene 2008;27:S2-S19
    [22]Shamas-Din A, Brahmbhatt H, Leber B, et al. BH3-only proteins:Orchestrators of apoptosis. Biochim Biophys Acta 2011;1813:508-520
    [23]Levy MM, Dellinger RP, Townsend SR, et al. Surviving Sepsis Campaign. The Surviving Sepsis Campaign:results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 2010;38:367-374
    [24]Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006;6:813-822
    [25]Hotchkiss RS, Coopersmith CM, McDunn JE, et al. Tilting toward immunosuppression. Nat Med 2009; 15:496-497
    [26]Hotchkiss RS, Strasser A, McDunn JE, et al. Cell Death. N Engl J Med 2009;361:1570-1583
    [27]Hotchkiss RS, Osmon SB, Chang KC, et al. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol 2005; 174:5110-5118
    [28]Weber SU, Schewe JC, Lehmann LE, et al. Induction of Bim and Bid gene expression during accelerated apoptosis in severe sepsis. Crit Care 2008;12:1281-1290
    [29]Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11:762-774
    [30]Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010;10:427-439
    [31]Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2010;2:204-215
    [32]Adrie C, Bachelet M, Vayssier-Taussat M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 2001;164:389-395
    [33]Giamarellos-Bourboulis EJ, Routsi C, Plachouras D, et al. Early apoptosis of blood monocytes in the septic host:is it a mechanism of protection in the event of septic shock? Crit Care 2006;10:R76
    [34]Antonopoulou A, Raftogiannis M, Giamarellos-Bourboulis EJ, et al. Early apoptosis of blood monocytes is a determinant of survival in experimental sepsis by multi-drug-resistant pseudomonas aeruginosa. Clin Exp Immunol 2007;149: 103-108
    [35]Luo HR, Loison F. Constitutive neutrophil apoptosis:mechanisms and regulation. Am J Hematol 2008;83:288-295
    [36]El Kebir D, Filep JG. Role of neutrophil apoptosis in the resolution of inflammation. Scientific World Journal 2010;10:1731-1748
    [37]Taneja R, Parodo J, Jia SH, et al. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Crit Care Med 2004;32:1460-1469
    [38]Paunel-Gorgulu A, Kirichevska T, Logters T, et al. Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol Med 2012;18:325-335
    [39]Fotouhi-Ardakani N, Kebir DE, Pierre-Charles N, et al. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. Am J Respir Crit Care Med 2010;182:341-350
    [40]Hotchkiss RS, Chang KC, Grayson MH, et al. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA 2003; 100:6724-6729
    [41]Delsesto D, Opal SM. Future perspectives on regulating pro-and anti-inflammatory responses in sepsis. Contrib Microbiol 2011;17:137-156
    [42]Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11:109-124
    [43]Braun JS, Novak R, Herzoq KH, et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nature Med 1999;5:298-302
    [44]Hotchkiss RS, Tinsley KW, Swanson PE, et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 1999;96:14541-14546
    [45]Chung CS, Yang S, Song GY, et al. Inhibition of Fas signaling prevents hepatic injury and improves organ blood flow during sepsis. Surgery 2001; 130:339-345
    [46]Chung CS, Song GY, Lomas J, et al. Inhibition of Fas/Fas ligand signaling improves septic survival:differential effects on macrophage apoptotic and functional capacity. J Leukoc Biol 2003;74:344-351
    [47]Hotchkiss RS, Chang KS, Swanson PE, et al. Caspase inhibitors improve survival in sepsis:a critical role of the lymphocyte. Nature Immunol 2000; 1:496-501
    [48]Wesche-Soldato DE, Chung CS, Loma-Neira J, et al. In vivo delivery of caspase 8 or Fas siRNA improves the survival of septic mice. Blood 2005; 106:2295-2301
    [49]Weaver JG, Rouse MS, Steckelberg JM, et al. Improved survival in experimental sepsis with an orally administered inhibitor of apoptosis. FASEB J 2004;18:1185-1191
    [50]Power C, Fanning N, Redmond HP. Cellular apoptosis and organ injury in sepsis: a review. Shock 2002;18:197-211
    [51]Jimenez MF, Watson RW, Parodo J, et al. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg 1997;132:1263-1269
    [52]Brown KA, Brain SD, Pearson JD, et al. Neutrophils in development of multiple organ failure in sepsis. Lancet 2006;368:157-169
    [53]Hoogerwerf JJ, van Zoelen MA, Wiersinga WJ, et al. Gene expression profiling of apoptosis regulators in patients with sepsis. J Innate Immun 2010;2:461-468
    [54]Bilbault P, Lavaux T, Lahlou A, et al. Transient Bcl-2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died despite appropriate intensive care. Intensive Care Med 2004;30:408-415
    [55]Tang BM, McLean AS, Dawes IW, et al. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med 2009;37:882-888
    [56]Zhang Y, Li J, Lou J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care 2011;15:R70
    [57]Pelekanou A, Tsangaris I, Kotsaki A, et al. Decrease of CD4-lymphocytes and apoptosis of CD14-monocytes are characteristic alterations in sepsis caused by ventilator-associated pneumonia:results from an observational study. Crit Care 2009;13:R172
    [58]Vaki I, Kranidioti H, Karagianni V, et al. An early circulating factor in severe sepsis modulates apoptosis of monocytes and lymphocytes. J Leukoc Biol 2011;89:343-349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700