矩阵变换器调制策略优化及应用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术已成为柔性直流输电、新能源并网,电能质量治理等方面的关键技术。功率器件的飞速发展,促进了新型拓扑结构电路及相应控制算法、调制策略的深入研究,其中无直流环节交-交矩阵变换器因具备拓扑结构简洁、功率密度大、输入功率因数可调、四象限运行等优点,成为电力电子领域重要研究方向。本文围绕矩阵变换器控制机理展开分析,对其间接空间矢量调制策略进行了深入研究:
     矩阵变换器间接空间矢量调制算法通过“虚拟整流器”+“虚拟逆变器”相结合控制模式进行综合调制,传统虚拟整流及虚拟逆变调制需对直接检测信号进行复杂坐标变换以获取相应控制量,调制过程涉及扇区判断及大量三角函数运算。基于三角函数解析直接检测信号关系,提出一种新型虚拟整流、虚拟逆变直接检测信号扇区判断及占空比计算方法。针对不对称运行工况,推导了直接检测信号的空间矢量调制系数前馈补偿控制方法。与传统间接空间矢量调制方法相比,该方法能省去a-β坐标变换与极坐标变换、简化程序实现流程。理论分析与实验仿真验证了所提出算法的正确性。
     间接空间调制占空比组合方式繁冗,运行工况复杂。在第一阶段推出虚拟整流侧SVPWM简化算法的基础上,提出虚拟逆变侧无扇区空间矢量脉宽调制,建立非正交K-L120°坐标系,无需扇区判断直接求解虚拟逆变侧三相桥臂开关占空比。通过新型占空比与传统虚拟整流占空比区间结合,将常规矩阵式变换器虚拟整流+虚拟逆变调制算法扇区判断的36种工况缩减至18种,简化Matlab程序S函数编写流程并提高计算实时性。
     深入研究非正交K-L120°坐标系与传统α-β90°坐标系在解析扇区划分和占空比计算上的内在联系,传统算法在解决α-β90°坐标系至扇区60°坐标系分解时存在复杂三角函数关系,导致扇区划分与占空比计算繁琐,物理意义不明确。基于非正交K-L1200坐标系,通过详细数理推导,提出一种物理意义明确,易于矩阵变换器实现的5段式空间矢量脉宽调制策略,进一步推导出适用于常规两电平整流、逆变装置的简化7段式空间矢量脉宽调制策略。
     利用Matlab软件建立矩阵变换器非实时仿真模型,对提出的新型调制算法进行前期仿真验证;矩阵变换器运行及保护工况复杂,中期采用RTDS数字实时仿真与物理控制器进行闭环实验;最后利用双DSP数字控制系统,构建了一套柔性直流输电实验平台,对所提出矩阵变换器新型调制策略进行虚拟逆变实验验证。仿真及实验结果表明所提出调制策略正确有效。
Power electronics have become a key technology in flexible DC transmission, gird integration of renewable energy generation and power quality management. Development of power device has contributed to the further research of new topology of circuits and its corresponding control algorithm, among them, the AC-AC matrix converter without DC link has become an important research direction for its simple topology, high power density, adjustable input power factor and four quadrant operation. As a typical application of non-constant-amplitude PWM, this paper has conducted the following research:
     The indirect space vector modulation approach of matrix converters (MC) can be synthesized by the fictitious rectifier and fictitious inverter. In traditional fictitious rectifier and fictitious inverter, complex coordinate transformation is required to acquire relevant control variable, and sectors judgment and quantity of trigonometric operations are involved in the modulation process. In this paper, trigonometric function analysis is applied to detect the signal relations directly, moreover, a novel sector judging and duty cycle calculation method in fictitious rectifier and fictitious inverter is proposed. Comparing with the traditional ISVM, this method can omits the α-β coordinate and polar coordinate transformation, thus, greatly simplify the calculation process.
     Further research found that the combination algorithm of duty cycle in indirect space vector modulation is cumbersome and its operating conditions are complex. Based on the simplified SVPWM algorithm in the fictitious rectifier side, a no-sector space vector pulse width modulation was proposed in the fictitious inverter side, in which a non-orthogonal K-L120°coordinate system was established. In this way, the switch duty cycle of the three-phase bridge arm could be solved directly without judging sectors. By combining the novel duty cycle mode and traditional fictitious rectifier duty cycle section,36operation conditions in traditional algorithm are reduced to the number of18, therefore, greatly simplified the program of function S and enhanced the real-time performance.
     After analyzing the consistency of K-L120°coordinate system and traditional a-β90°coordinate system in sector partition and duty cycle calculation, it is found that in traditional algorithms, complex trigonometric function analysis exists in the transformation from α-β90°coordinates to60°sector coordinate, thus the sector partition and duty cycle calculation are complex and lack of physical meaning. Based on the K-L120°coordinate system and math derivation, a easy-complemented SVPWM algorithm with a clear physical meaning is put forward.
     In earlier stages, a non real-time simulation model of matrix converter is established in MATLAB, which verifies the novel modulation algorithm. Considering the complexity of Process and protection in matrix converter, RTDS (real time digital system) and physical controller are adopted to proceed a close-loop experiment in the middle of research. In the end, back-to-back experiment platform is established using dual DSP digital control system, which verifies the novel modulation strategy of matrix converter in fictitious inverter side. The feasibility and validity of the new approach is verified by both simulation and experimental results.
引文
[1]肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004.
    [2]肖湘宁.电能质量手册[M].北京:中国电力出版社,2010.
    [3]丁荣军,黄济荣.大功率变流技术与应用-矩阵变流器[J].变流技术与电力牵引,2008,1:2-10.
    [4]汤宁平,方旭阳,邱培基.电流跟踪控制的矩阵式变换器的控制策略和试验研究[J].电工技术学报,1999,14(4):45-52.
    [5]王兴伟,林桦,邓建,余宏武.实际应用中的矩阵变换器空间矢量调制算法及优化调制模式[J].中国电机工程学报,2011,30(31):7-15.
    [6]Simon O, Mahlein J, Muenzer M N, et al. Modern solutions for industrial matrix converter applications[J]. IEEE Transaction on Indusrial Electronics.2002,49(2):401-406.
    [7]Klumpner C, Nielsen P, Boldea I, et al. A new matrix converter mortor for industrial applications[J]. IEEE Transactions on Industrial Electronics.2002, 49(2):325-335.
    [8]Snary P, Bhangu B, Bingham C M, et al. Matrix converter for sensorless control of PMSMs and auxiliaries on deep-sea ROVs[J]. IEE Proceeding on Electric Power Applications,2005,152(2):382-292.
    [9]Lee K B, Blaabjerg F. Simple power control for sensorless induction motor drives fed by a matrix converter[J]. IEEE Trans, on Energy Conversion,2008, 23(3):781-788.
    [10]Wheeler P W, Clare J C, Apap M, et al. Power supply loss ride-though and device voltage drop compensation in a matrix converter permanent magnet motor drive for an aircraft actuator[C]//Proceeding IEEE PESC'04,2004: 149-154.
    [11]Cardenas R, Pena R, Wheeler P, et al. Control of reactive power supplied by WECS based on an induction generator fed by a Matrix Converter[J].IEEE Trans. On Industrial Electronics,2009,56(2):429-438.
    [12]Ratanapanachote S, Han J C, Enjeti P N. A digitally controlled switch mode power supply based on matrix converter[C]//Proceedings IEEE PESC'04, 2004:2237-2243.
    [13]Katsis D, Wheeler P, Clare J, et al. A three-phase utility power supply based on the matrix converter[C]//Proceedings IEEE IAS'04,2004:1447-1451.
    [14]Julian A L, Oriti G. A DC traction drive application of a regenerative rectifier using AC/AC matrix converter theory[C]//Proceeding IEEE IAS'03.2003,1: 198-204.
    [15]Klumpner C, Nielsen P, Boldea I, et al. A new matrix converter motor(MCM) for industry applications[J]. IEEE Transactions in Industrial Electronics, 2002,49(2):325-335.
    [16]邹兵.矩阵变换器及在风力发电控制系统中的应用研究[D].广州:广东工业大学,2008.
    [17]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报,2002,22(11):100-105.
    [18]关英.采用矩阵变换器的直驱式永磁风力发电机运行控制研究与实现[D].天津:天津大学,2008.
    [19]宋鹏,夏长亮,阎彦,陈炜.矩阵变换器-永磁同步电机驱动系统静态稳定性分析[J].中国电机工程学报,2011,31(9):58-65.
    [20]孙凯.基于矩阵式变换器的异步电动机高性能调速系统研究[D].北京:清华大学,2005.
    [21]Kim S, Sul S K, Lipo T A. AC/AC power convertion based on matrix converter topology with unidirectional switches [J]. IEEE Transactions on Industry Application,2000,36(1):139-145.
    [22]Klumpner C, Blaabierg F. Two stage direct power converters:an alternative to the matrix converter[C]//IEE Seminar on Matrix Converters,2003.
    [23]Klumpner C, Wheeler P, Blaabierg F. Control of a two-stage direct power converter with a single voltage sensor mounted in the intermediary circuit[C] //Proceeding IEEE PESC'04,2004,3:2386-2392.
    [24]Kolar J W, Baumann M, Schafmeister F, et al. Novel three-phase AC-DC-AC sparse matrix converter[C]//Proceedings IEEE APEC'02,2002,2:777-791.
    [25]Kolar J W, Schafmeister F. Novel modulation schemes minimizing the switching losses of sparse matrix converters[C]//Proceedings IEEE IECON'03,2003,3:2085-2090.
    [26]Wei L, Lipo T A, Chan H. Matrix converter topologies with reduced numbers of switches[C]//Proceedings IEEE PESC' 02,2002,1:57-63.
    [27]孙凯,周大宁,梅杨.矩阵式变换器技术及其应用[M].北京:机械工业 出版社,2007.
    [28]Jun-ichi Itoh, Ikuya Sato, Akihiro Odaka. A novel approach to practical matrix converter motor drive system with reverse blocking IGBT[C]//IEEE PESC, 2004. Aachen Germany,2004:2380-2385.
    [29]Peter Nielsen, Frede Blaabjerg, John K. Pederse. New Protection issues of a matrix converter:design consideration for adjustable-speed drives[J]. IEEE Trans. Ind. Applications,1999,35(5):1150-1161.
    [30]黄科元.矩阵式变换器的空间矢量调制及其应用研究[D].杭州:浙江大学,2005.
    [31]Casadei D, Serra G, Tani A, et al. Effects of input voltage measurement on stability of matrix converter drive system[J]. IEE Proceedings on Electric Power Applications,2004,151(4):487-497.
    [32]Casadei D, Serra G, Tani A, et al. Theoretical and experimental investigation on the stability of matrix converters[J]. IEEE Transactions on Industrial Electronics,2005,52(5):1409-1419.
    [33]Casadei D, Serra G, Lee Empringham, et al. Large-signal nodel for the stability analysis of matrix converters[J]. IEEE Transactions on Industrial Electronics,2007,54(2):939-950.
    [34]赵洋.静止同步串联补偿器控制策略及抑制次同步谐振的研究[D].北京:华北电力大学,2009.
    [35]刘颖英.串联型电能质量复合调节装置的补偿策略研究[D].北京:华北电力大学,2010.
    [36]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1992.
    [37]张华强,王新生,徐殿国.矩阵变换器在变速恒频风力发电中的应用研究[J],电子器件,2006,29(3):859-863.
    [38]杨培志.三相电压型PWM整流器控制技术研究[D].哈尔滨:哈尔滨工业大学,2008.
    [39]朱永亮,马惠,张宗濂.三相高功率因数PWM整流器双闭环控制系统设计[J].电力自动化设备,2006,26(11):87-90.
    [40]孙孝峰.高频开关型逆变器及其并联并网技术[M].北京:机械工业出版社,2011.
    [41]王恩德,黄声华.三相电压型PWM整流的新型双闭环控制策略[J].中国电机工程学报,2012,32(15):24-30.
    [42]马振国,李鹏,赵保利,等.DVR电压波形跟踪无差拍控制方法[J].电 力自动化设备,2005,25(3):13-17.
    [43]曾国宏,郝荣泰.有源滤波器滞环电流控制的矢量方法[J].电力系统自动化,2003,27(5):31-35.
    [44]曾江,刘艳,叶小军,余涛.有源滤波器的低损耗滞环电流控制方法[J].电网技术,2010,34(1):73-78.
    [45]Kang J K, Hara H, Hava A M, et al. The matrix converter drive performance under abnormal input voltage conditions[J]. IEEE Transaction on Power Electronics.2002,17(5):721-730.
    [46]Casadei D, Serra G, Tani A. The use of matrix converters in direct torque control of induction machines[J]. IEEE Transactions on Industrial Electronics,2001,48(6):1057-1064.
    [47]Burany N. Safe control of four-quadrant switches[C]//Proceeding IEEE IAS'89.1989:1190-1194.
    [48]Ziegler M, Hoffman W. Semi natural two steps commutation strategy for matrix converters[C]//Proceedings IEEE PESC'98.1998,1:727-731.
    [49]Ziegler M, Hoffman W. Implementation of a two steps commutated matrix converter[C]//Proceedings IEEE PESC 99.1999,1:727-731.
    [50]林桦,佘宏武,何必,寿海明.矩阵变换器的电压型两步换流策略[J].中国电机工程学报,2009,29(3):36-41.
    [51]Empringham L, Wheeler P W, Clare J C. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques[C] //Proceedings IEEE PESC'98.1998:707-713.
    [52]Empringham L, Wheeler P W, Clare J C. A matrix conver induction motor drive using intelligent gate drive level current communitation techniques [C] //Proceedings IEEE IAS'00,2000:1936-1941.
    [53]Mahlein J, Igney J, Weigold J, et al. Matrix converter commutation strategies with and without explicit input voltage sign measurement[J]. IEEE Transactions on Industrial Electronics,2002,49(2):407-414.
    [54]王勇,吕征宇,文辉清,等.用可编程逻辑器件实现矩阵变换器自适应换流[J].电力系统自动化,2004,28(17):60-63.
    [55]孙凯,黄立培,松濑贡规.基于矩阵式变换器的异步电动机矢量控制[J].清华大学学报,2004,44(7):909-912.
    [56]Zhou Daning, Sun Kai, Huang Lipei, et al. Novel improvements for matrix converter fed induction motor drive using RB-IGBT[C]//Proceedings IEEE IAS2005,2005,4:2347-2354.
    [57]姜俊峰,刘会金,陈允平,孙建军.有源滤波器的电压空间矢量双滞环电流控制新方法[J].中国电机工程学报,2004,24(10):82-86.
    [58]John Salmon, Liping Wang, Nouman Noor, and A. W. Krieger. A Carrier-Based Unipolar PWM Current Controller That Minimizes the PWM-Cycle Average Current-Error Using Internal Feedback of the PWM Signals[J]. IEEE Transactions on Industrial Electronics,2007,22(5): 1708-1718.
    [59]洪峰,单任仲,王慧贞,等.一种变环宽准恒频电流滞环控制方法[J].电工技术学报,2009,24(1):115-119.
    [60]姜旭,肖湘宁,尹忠东,马玉龙.基于载波移相SPWM级联式变换器输出谐波分析[J].电力电子技术,2005,39(5):57-59.
    [61]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化,2010,34(2):53-58.
    [62]管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,36(5):1127-1132.
    [63]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [64]管敏渊,徐政,屠卿瑞,潘伟勇.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化.2010,34(2):48-52.
    [65]单任仲,肖湘宁,刘乔,等.多电平并联型复合电流质量扰动发生器[J].中国电机工程学报,2010,30(21):26-31.
    [66]王兆安,杨君,刘进军.谐波抑制与无功功率补偿[M].北京:机械工业出版社,1998.
    [67]张崇巍,张兴.PWM整流器及其控制值[M].北京:机械工业出版社,2003.
    [68]陈坚.电力电子学-电力电子变换和控制技术[M].北京:高等教育出版社,2004.
    [69]Venturini M. A new sine wave in, sine wave out, conversion technique eliminates reactive elements[C]//Proc. Powercon 7. San Diego, CA:IEEE, 1980:E3-1-E3-15
    [70]Alesina A, Venturini M. Solid-state power conversion:a Fourier analysis approach to generalized transformer synthesis[J]. IEEE Trans.on Circuits Systems,1981 CAS-28(4):319-330.
    [71]Huber L, Borojevic D, Burany N, Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors[J]. Electric Power Applications, IEE Proceedings B,1992, 139(2):103-113.
    [72]Ziogas P D, Khan S I, Rashid M H. Analysis and design of forced commutate cyclocoverter structures with improved transfer characteristics[J]. IEEE Transactions on Industry Electronics,1986, IE(33):271-280.
    [73]Ziogas P D, Khan S I, Rashid M H. Some improved forced commutated cyclocoverter structures[J]. IEEE Transactions on Industry Applications? 1985, IA(21):1242-1253.
    [74]Huber L, Borojevic D. Space vector modulated three-phase to three-phase matrix converter with input factor correction[J]. IEEE Transactions on Industry Applications,1995,31(6):1234-1246.
    [75]Casadei D, Grandi G, Serra G, et al. Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms[C]//Fifth European Conference on Power Electronics and Applications. Brighton, UK: IEEE,1993:170-175.
    [76]Teichmann R, Oyama J. ARCP soft-switching technique in matrix converters[J]. IEEE Transaction on Industrial Electronics,2002,49(2): 353-361.
    [77]Mutschler P, Marcks M. A direct control method for matrix converters[J]. IEEE Transactions on Industrial Electronics,2002,49(2): 362-369.
    [78]Hara H, Yamamoto E, Kang J K, et al. Improvemnt of output voltage control performance for low speed operation of matrix converter[C]//Proceedings IEEE PESC'04,2004:2910-2916.
    [79]Schafmeister F, Kolar J W. Novel modulation schemes for conventional and sparse matrix converters facilitating reactive power transfer independent of active power flow[C]//Proceedings IEEE PESC 04,2004:2917-2923.
    [80]Rodriguez J. A new control technique for AC-AC converters[C]//Proceedings IFAC Control in Power Electronics and Electrical Drives Conference.1983: 203-28.
    [81]王勇.矩阵变换器的空间矢量调制、系统集成及应用研究[D].浙江:浙江大学,2005.
    [82]汤宁平,王建宽,吴汉光.矩阵变换器的SPWM控制技术及其实现[J].电 工技术学报,2003,18(4):25-29.
    [83]佘宏武,林桦,王兴伟,等.矩阵变换器在非正常输入电压下的控制策略[J].中国电机工程学报,2009,29(33):28-33.
    [84]吴保芳,权建州,吴胜华,等.非正常输入条件下SPWM矩阵变换器的前馈补偿控制[J].电工技术学报,2005,20(12):24-29.
    [85]权建州,吴保芳,孙容磊,等.基于前馈补偿的SPWM矩阵变换器控制方法研究[J].中国电机工程学报,2006,26(5):88-94.
    [86]邓文浪,杨欣荣,朱建林,等.改进矩阵变换器在输入电压非正常情况下的调制方法[J].控制与决策,2006,21(8):908-917.
    [87]Jussila M, Tuusa H. Comparison of simple control strategies of space-vector modulated indirect matrix converter under distorted supply voltage[J]. IEEE Transaction on Power Electronics,2007,22(1):139-148.
    [88]陈玉东,刘玉兵,朱武标,等.一种矩阵变换器空间矢量调制改进方法[J].中国电机工程学报,2010,30(18):21-25.
    [89]Antoni A, Wheeler P W. Elimination of waveform distortions in matrix converters using a new dual compensation method[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2079-2087.
    [90]Hidenori, EijiY. Improvement of output voltage control performance for low-speed operation of matrix converter[J]. IEEE Transactions on Power Electroncis,2005,20(6):1372-1378.
    [91]何必,林桦,佘宏武,等.矩阵变换器在窄脉冲作用下的性能改善[J].中国电机工程学报,2009,29(27):42-47.
    [92]李生民,雷佳,田昌会.矩阵变换器的双馈风电系统最大风能捕获研究[J].电力电子技术,2012,46(2):41-44.
    [93]贺益康,刘勇.交-交直接变换控制下矩阵变换器的仿真研究[J].电工技术学报,2002,17(3):48-53.
    [94]李志勇,朱建林,易灵芝,等.空间矢量调制的矩阵式变换器仿真模型研究[J].中国电机工程学报,2003,23(3):80-84.
    [95]胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报,2005,3(25):13-17.
    [96]Jacobina C B, Nogueira Lima, AM, da Silva E R C, et al. Digital scalar pulse-width modulation:a simple approach to introduce nonsinusoidal modulating waveforms[J]. IEEE Transactions on Power Electronics,2001, 16(3):351-359.
    [97]方斯琛,李丹,周波,等.新型无扇区空间矢量脉宽调制算法[J].中国电机工程学报,2008,28(30):35-40.
    [98]姜旭,肖湘宁,赵洋,等.改进的多电平SVPWM及其广义算法研究[J].中国电机工程学报,2007,27(4):90-95.
    [99]肖湘宁,刘昊,姜旭,等.非正交坐标系多电平SVPWM及其在DVR中的应用. 电力电子技术,2004,38(6):20-30.
    [100]刘和平.TMS320LF2407DPS结构、原理及应用[M].北京:北京航空航天大学出版社,2002.
    [101]王晓民.电动机的DSP控制-TI公司DSP应用[M].北京:北京航空航天大学出版社,2009.
    [102]Maxfield, C. FPGA设计指南:器件、工具和流程[M].北京:人民邮电出版社,2007.
    [103]阮毅,陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2010.
    [104]姜旭,肖湘宁.级联结构SSSC的RTDS小步长建模[J].高电压技术,2006,32(10):72-75.
    [105]RTDS technologies. VSC Small Time2Step Modeling Users Manual [M]. Manitoba, Canada:RTDS Technologies,2005.
    [106]王哲,张豪.电力系统机电—电磁暂态混合仿真接口技术[J].电力科学与工程,2009,25(4):5-10.
    [107]马玉龙,陶瑜,周静,等.基于实时数字仿真器的特高压直流换流单元投退特性分析[J].电网技术,2007,31(21):5-10.
    [108]李秋硕,张剑,肖湘宁,等.基于RTDS的机电-电磁暂态混合实时仿真及其在FACTS中的应用研究[J].电工技术学报,2012,27(3):219-225.
    [109]Jeffrey Travis, Jim Kring. Lab VIEW for Everyone:Graphical Programming Made Easy and Fun(Third Edition)[M]. Beijing:Publishing House of Electronics Industry,2008.
    [110]陈树学,刘萱.Lab VIEW宝典[M].北京:电子工业出版社,2010.
    [111]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700