船舶电力推进系统直流母线稳定控制及低电压穿越技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上个世纪八十年代以来,随着电力电子技术的发展,电机控制技术的提高及计算机的广泛应用,美英等发达国家对于船舶全电力推进系统的研究取得突破并应用于许多种类的船舶,采用全电力推进的舰船对总体设计及动力系统的优化和简化,有利于节约能源,提高舰船隐蔽性,同时可为未来舰载高能武器提供动力保障,是未来舰船动力系统的发展方向。目前国内外对此的研究取得了长足进展,其中,美国海军提出的采用直流分区配电的电力网络拓扑结构有着许多优点,本文针对船舶电力推进系统中的以下几个问题进行了研究:
     首先,建立了一个包括交流源-二极管整流器-直流母线-直流母线滤波器-推进变频器-推进电机-螺旋桨在内的船舶电力推进系统仿真模型,考虑了船舶操纵运动与推进系统间的相互影响,及波浪通过影响螺旋桨性能对推进系统造成的影响。本仿真模型可以用作研究船舶全电力推进系统的平台。在此基础上研究了一种功率-转速联合控制方法,以抑制船舶在波浪中航行时推进电机的功率波动。
     其次,对直流区域配电系统中的直流母线稳定性进行了研究,介绍了几种基于阻抗分析的对于电力电子级联系统的稳定性分析方法,推导了直流母线-滤波器-推进变频器-推进电机系统的输入阻抗及输出阻抗,分析了直流母线滤波器参数对直流母线输出阻抗的影响,研究了另外一种可用于分析直流母线稳定性的方法,这种方法与阻抗分析法相比更加简单直观,在此基础上推导出一种有源阻尼控制方法,能够在不增加损耗的情况下增加直流母线阻尼,在直流母线滤波电容不满足系统稳定性要求时仍能保证直流母线稳定,提高了直流母线的稳定性。
     最后,对提高推进电机低电压穿越能力的方法进行了研究,分析了引起船舶电力推进系统电压跌落的几种原因,确定应用弱磁控制可以使推进电机在电压跌落期间保持运转,介绍了在不同区域下弱磁控制的目标,分析了目前已有的一种基于定子电压控制的弱磁控制方法,考虑了非理想转子磁场定向下对于定子q轴电流最大值的选择的影响,提出了一种优于传统的基于定子电压控制的基于SVPWM矢量调节的弱磁控制方法。结果表明,这种方法针对直流母线的电压跌落具有很强的适应性且能更充分利用直流母线及推进电机剩余输送能力,并将这种方法应用于船舶在波浪中航行时的电机控制算法中。接下来应用电机阻抗分析方法分析了异步电机磁通大小对于直流母线稳定性的影响,将有源阻尼控制与弱磁控制结合进一步增强直流母线系统稳定性并提高推进系统低电压穿越能力。
With the development of power electronics technology, improvement of motor controltechnology and wide application of computer, the research on Marine Integrated Full ElectricPropulsion (IFEP) system in developed countries like Great Britain and the United States hasmade a great breakthrough and applied to many types of ships since the eighties of the lastcentury. Future direction of development of marine power system is IFEP, as the ship withIFEP is helpful for simplification of the whole ship design, optimization of the power systemand enhances the marine stealth performance. Meanwhile, the IFEP can also provide powerassurance for future ship-borne high-energy weapons. The U.S. Navy has proposed a powernetwork topology which has many advantages called Multi Zonal Medium Voltage DC(MVDC) Shipboard Power System (SPS) for the next generation of their surface combatants.In this dissertation, the following issues in the marine integrated full electric propulsionsystem are studied:
     First of all, a simulation model based on MATLAB of marine electric propulsion systemincluding AC source, diode rectifier, DC bus, DC bus filter, propulsion frequency converter,propulsion motor and propulsion propeller has been built. The mutual influence between shipmaneuvering motion and propulsion system was considered. The effection of wave wasintroduced which is working on the propulsion system by influencing performance ofpropeller. The simulation model can be used as a research propulsion system by the fullelectric propulsion of ships sailing in the waves. A power-speed combined control methodwas studied to restrain propulsion system power fluctuations when ship sailing in waves.
     In the next place, Several power electronic cascade system stability analysis methodbased on impedance analysis were introduced for research on the stability of DC bus withinDC Zonal Distribution Systems (DC ZEDS). The input impedance and output impedance ofthe DC bus filter–propeller inverter–motor system were derived. The filter parametersinfluence over the DC bus output impedance was analyzed, Another method can be used foranalysis of the DC bus stability was applied with the Hurwitz Criterion, which was muchsimple and intuitive than classical impedance method, a new active damping control methodwas derived based on this criterion, this method was able to guarantee the stability of the DCbus when the DC bus filter capacitor cannot meet the system stability requirements.
     At last, the method can improve the low voltage ride through (LVRT) capability of thepropulsion system was studied, several reasons caused voltage drop of the ship electric propulsion system was analyzed, the weakening control method was established for keep thepropulsion motor running during the voltage drop, weakening control method widely used atpresent based on stator voltage control was analyzed after the target of weakening control indifferent regions was distinguished. Furthermore, one SVPWM field weakening controlmethod which was superior to those methods based on stator voltage control was appliedconsidered the choice of the maximum stator q-axis current in non-ideal rotor magnetic field.The results showed that this method has strong adaptability for voltage drop of DC bus andcan make full use of the remaining DC bus transmission capacity. In the next, the impedanceanalysis method was applied for analysis of the influence of asynchronous motor flux on DCbus stability. The field weakening control method was used in conjunction with activedamping control method to enhance the low voltage ride through capability of propulsionsystem and increase the stability of the DC bus.
引文
[1] McCoy T J. Trends in Ship Electric Propulsion. Power Engineering Society SummerMeeting.2002,(1):343-346P
    [2]李炜.基于嵌入式系统的船舶区域配电监控的研究.江苏科技大学硕士学位论文.2010:3-5页
    [3]王庆红.舰船综合电力系统总体概念研究的思考.中国舰船研究.2006,(03):25-29页
    [4] Dade. Advanced Electric Propulsion, Generator and Distribution System. NavalEngineers Journal,1994,106(2):83-94P
    [5] Clayton D H, Jebsen G M, et al. The All Electric Warship From Vision to Total ShipSystem Integration. Naval Surface Warfare Center Dahlgren Division,2002.
    [6] Doerry N H, Davis J C. Integrated Power System for Marine Applications. NavalEngineers Journal,1994,(3):77-90P
    [7] Ciezk J G, Ashton R W. A Technology Overview for a Proposed Navy SurfaceCombatant DC Zonal Electric Distributi on System. Naval Engineers Journal,1999,119(3):59-69P
    [8] Stautter M. Ship Systems Engineering Station to Perform Critical Test for DD(X).www.dt.navy.mil/wavelengths,2005-12-30
    [9]张志强,庄亚平,冀路明,马守军.舰船综合电力系统有源直流滤波器浅述.船电技术.2007,(04):230-232页,246页
    [10] Modeling of a Warship’s Electrical Power Generation and Propulsion System. Reportof UK Ministry of Defence and MathWorks,2006.
    [11]张志强,马守军,余林刚.船舶综合电力推进系统电力谐波标准探讨.船电技术.2012,(03):12-15页
    [12]栾成.船舶综合电力推进系统三维建模与初步实现.哈尔滨工程大学硕士学位论文.2012.
    [13]李莉红.船舶电力推进系统仿真可信度评估研究.哈尔滨工程大学.2012
    [14]吴双,夏立,张超,王新枝.电力推进对船舶直流区域配电稳定性影响.中国航海.2012,(04):45-49页
    [15]华云鹏.基于多源信息融合技术的船舶电力推进系统故障诊断研究.大连海事大学硕士学位论文.2012
    [16]曹中才.船舶电力推进系统监控平台的研究与设计.武汉理工大学硕士学位论文.2012
    [17]陈虹.基于直流配电系统的船舶综合电力系统.舰船科学技术.2005, S1:31-37页
    [18]杨国科.先进飞机电气系统汇流条控制器的设计与研制.西北工业大学硕士学位论文.2002:11-13页
    [19] Amy V. Considerations in the Design of Naval Electric Power Systems. PowerEngineering Society Summer Meeting,2002,(1):331-335P
    [20]张狄林.美国综合电力推进技术发展综述.船电技术.2010,(12):47-49页,53页
    [21] Dahono, P.A. A control method to damp oscillation in the input LC filter. PowerElectronics Specialists Conference,2002. pesc02.2002IEEE33rd Annual,vol.4:1630-1635P
    [22] T. C. Wang, Z. H. Ye, G. Sinha, et al. Output Filter Design for a Grid interconnectedThree Phase Inverter Proc. of PESC’03,2003,2:779-784P
    [23] V. Blasko, V. Kaura. A novel control to actively damp resonance in input LC filter of athree phase voltage source converter. IEEE Transactions on Industry Applications,1997,33(2):542-550P
    [24]陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器.电工技术学报.2007,22(9):124-129页
    [25] N. Roux and F. Richardeau. Stability of DC link with reduced energy storage forregenerative synchronous drive—Analytical approach. Proc. EPE, Aalborg, Denmark,Sep.2007:1–10P
    [26] J.Wang, A. Griffo, L.Han, and D. Howe. Input admittance characteristics of permanentmagnet brushless AC motor drive systems. Proc. IEEE VPPC, Arlington, TX, Sep.2007:191–196P
    [27] R. D. Middlebrook. Input filter considerations in design and application of switchingregulators. Proc. IAS1976:366–382P
    [28] A. Emadi, B. Fahimi, and M. Ehsani. On the concept of negative impedance instabilityin the more electric aircraft power systems with constant power loads. Proc.34thIntersoc. Energy Convers. Eng. Conf., Vancouver, BC, Canada,1999.
    [29] Y. Jang and R. W. Erickson. Physical origins of input filter oscillations in currentprogrammed converters. IEEE Trans. Power Electron., vol.7, no.4, Oct.1992:725–733P
    [30] M. Al-Fayyoumi, D. Boroyevich, and A. Nayfeh. Input filter interactions in DC–DCswitching regulators. Proc.IEEE PESC1999:926–932P
    [31] R. Ortega and D. Taoutaou. Indirect field oriented speed regulation of inductionmotors is globally stable. IEEE Trans. Ind. Electron., vol.43:340-341P
    [32]陈世浩,冯晓云,李官军,王利军.基于转子磁场定向的异步电机矢量控制仿真研究.电气技术.2008,03:43-45页
    [33] T.A. Lipo and P.C. Krause. Stability Analysis of a Rectifier-Inverter Induction MotorDrive. IEEE Trans., PAS-88,(1):55-66P
    [34] S. D. Sudhoff, K. A. Corzine, S. F. Glover, H. J. Hegner, and H. N. Robey, Jr. DC linkstabilized field oriented control of electric propulsion systems. IEEE Trans. EnergyConvers.1998(3):27–33P
    [35] H. Mosskull, J. Gali′c, and B.Wahlberg. Stabilization of induction motor drives withpoorly damped input filters. IEEE Trans. Ind. Electron.2007(10):2724–2734P
    [36] X. Liu, A. J. Forsyth, and A. M. Cross. Negative input-resistance compensator for aconstant power load. IEEE Trans. Ind. Electron.2007(12):3188–3196, Dec.2007.
    [37] Xiaogang Feng, Jinjun Liu, Lee F C. Impedance specifications for stable DCdistributed power systems. Power Electronics, IEEE Transactions on:2002,17(2):157-162P
    [38]阳世荣.舰船直流幅压电网短路电流录波装置研究.舰船电子工程.2010(9):187-191页
    [39]回志澎,冀路明,陈新刚,王硕丰.现代舰船区域配电.船舶工程.2005(6):63-67页
    [40] John G Ciezki, Robert W.Ashtom. Selection and stability issues associated with a navyshipboard DC zonal electric distribution system. IEEE Trans on Power Delivery1999(3):665-669P
    [41] DD(X) Ship service distribution system. Ship Service Distribution System Overview.2002
    [42] E. Styvaktakis, M.H.J. Bollen. Signatures of voltage dips: transformer saturation andmultistage dips. IEEE Trans. on Power Delivery,2003(1):265-270P
    [43] D. D. Sabin and A. Sundaram. Quality enhances reliability. IEEE Spectrum.1996(2):35–41P
    [44] Kai Pietil inen. Voltage Sag Ride-Through of AC Drives: Control and Analysis.Licentiate thesis. Royal Inst. Technol., Stockholm, Sweden,2003
    [45] Khersonsky Y, Hingorani N, Peterson K.L. IEEE Electric Ship Technologies Initiative.Industry Applications Magazine, IEEE.2011(1-2):65-73P
    [46] H. G. Sarmiento and E. Estrada. A voltage sag study in an industry with adjustablespeed drives. IEEE Ind. Applicat. Mag.1996(1/2):16–19P
    [47] M. H. J. Bollen and L. D. Zhang. Analysis of voltage tolerance of AC adjustable-speeddrives for three-phase balanced and unbalanced sags. IEEE Trans on IndustryApplications,2000(5):904-910P
    [48] E. R. Collins, Jr. and A. Mansoor. Effects of voltage sags on AC motor drives. Proc.Textile, Fiber and Film Industry Technical Conference, IEEE1997:1-7P
    [49] M. H. J. Bollen. Voltage sags: effects, mitigation and prediction. Power EngineeringJournal.1996(6):129-135P
    [50] A. Van Zyl, R. Spee, A. Faveluke, and S. Bhowmik. Voltage sag ride through foradjustable-speed drives with active rectifiers. IEEE Transactions on IndustryApplications.1997(11):1270-1277P
    [51] I.K. Hatzilau, J. Prousalidis, E. Styvaktakis, E. Sofras. Voltage and Current Spikes&Transients-Power Supply Quality aspects for the AES. Proceedings of2005AllElectric Ship Symposium (AES2005), Paris.2005(10)
    [52] I.K. Hatzilau, J. Prousalidis, E. Styvaktakis. Electric power supply quality concepts forthe All Electric Ship (AES)..2006World Marine Transport Technology Conference,London,2006(3)
    [53]周飞,蒋晓春,赵小英,邓占锋.动态电压恢复器电压跌落检测算法的研究.电工技术.2010(4):9-11页
    [54] Ali, M. A.; Fozdar, M.; Niazi, K. R. Effect of STATCOM placement on performanceof voltage sag mitigation Power and Energy Society General Meeting,2012(6):1,7,22-26P
    [55] Harnefors L, Pietilainen K. Inverter DC-link stabilizing control with improved voltagesag ride-through capability. Power Electronics and Applications,2005European,2006:1-10P
    [56] Zhongdong Yin, Minxiao Han, Yunlong du, Zheran Zhang. A Practical Approach forRide Through of Super Capacitor Energy Storage Based ASD System. Transmissionand Distribution Conference and Exhibition,2005/2006IEEE PES,2006(5):744-746P
    [57] Long Zhou; Zhiping Qi. Modeling and simulation of flywheel energy storage systemwith IPMSM for voltage sags in distributed power network Mechatronics andAutomation,2009. ICMA2009.2009(8):5046-5051P
    [58] Braz A, Hofmann P, Mauro R, Melhorn, C.J. An evaluation of energy storagetechniques for improving ride-through capability for sensitive customers onunderground networks. Industrial and Commercial Power Systems TechnicalConference,1996(5):55-64P
    [59] Sillapawicharn, Y.; Kumsuwan, Y. Voltage sag compensation using two three-phasevoltage-fed PWM converters. Electrical Engineering/Electronics, Computer,Telecommunications and Information Technology (ECTI-CON),2011(5):776-779P
    [60] Peng F Z. Z-Source Inverter for Motor Drives. Power Electronics SpecialistsConference,2004,2004(6):249-254P
    [61] Ndjana H J N, Sicard P, Lahaic S. Auxiliary Voltage Sag Ride-through System forAdjustable-speed Drives. Electric Machines and Drives,2005IEEE InternationalConference,2005(5):450-457P
    [62]丁新平,钱照明,崔彬,彭方正.具有承受电网电压跌落能力的交流调速系统的策略.电气传动.2007,37(4):3-8页
    [63] T. M. Jahns. Flux weakening regime operation of an interior permanent magnetsynchronous motor drive. IEEE Trans. Ind. Appl.1987(6):681–689P
    [64] B. K. Bose. A high-performance inverter fed drive system of an interior permanentmagnet synchronous machine. IEEE Trans. Ind. Appl.1988(11):987–997P
    [65] J. Kim and S. Sul. Speed control of interior permanent magnet synchronous motordrive for the flux weakening operation. IEEE Trans. Ind. Appl.1997(1):43–48P
    [66] G. Gallegos-López, F. S. Gunawan, and J. E. Walters. Optimum torque control ofpermanent magnet AC machines in the field-weakened region. IEEE Trans. Ind. Appl.,2005(7):1020–1028P
    [67] D. W. Novotny and T. A. Lipo. Vector Control and Dynamics of AC Drives. Oxford, U.K.: Oxford Science,1996, ch.9.
    [68] R. Jotten and H. Schierling. Control of the induction machine in the field weakeningrange. Proc. IFAC,1983:297–304P
    [69] B. K. Bose. Modern Power Electronics and AC Drives. Englewood Cliffs, NJ:Prentice-Hall,2002.
    [70] X. Xu and D. W. Novotny. Selecting the flux reference for induction machine drives inthe field weakening range. IEEE Trans. Ind. Appl.1992(11):1353–1358P
    [71] S. H. Kim and S. K. Sul. Maximum torque control of an induction machine in the fieldweakening region. IEEE Trans. Ind. Appl.1994(7):787–794P
    [72] M. H. Shin, D. S. Hyun, and S. B. Cho. Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region. IEEE Trans. Ind.Appl.2002(1):117–122P
    [73] M. S. Huang and C. M. Liaw. Field-weakening control for an IFO induction motordrive. in Proc. TENCON, Oct.2002(3):1994–1998P
    [74] J.Wiesing and H. Grotstollen. Field oriented control of an asynchronous motor with avery wide region of flux weakening. in Proc. IEEE IECON, May1992:606–610P
    [75] S. H. Kim and S. K. Sul. Voltage control strategy for maximum torque operation of aninduction machine in the field-weakening region. IEEE Trans. Ind. Electron. Aug.1997:512–518P
    [76] A. Bunte, H. Grotstollen, and P. Krafka. Field weakening of induction motors in a verywide region with regard to parameter uncertainties. in Proc. IEEE PESC, Jun.1996:944–950P
    [77] G. Gallegos-López, F. Gunawan, and J.Walters. Optimum torque control of inductionmachines in the field-weakened region. in Proc. APEC, Mar.2005:437–443P
    [78] F. Yusivar et al..|Iq|added flux weakening strategy for the rotor flux oriented controlof a sinusoidal PWM VSI-fed induction motor. in Proc. IECON, Nov.2001:1160–1165P
    [79]曹梅亮.变沉深及波浪中的螺旋桨敞水性能.上海交通大学学报.1988,(03):27-35页,107-108页
    [80]范佘明,盛子寅,陶尧森,祝伟敏,於家鹏.船舶在波浪中的操纵运动预报.中国造船.2001,02:28-35页
    [81]苏兴翘,高士奇,黄衍顺.船舶操纵性.北京:国防工业出版社,1989:35-45页
    [82]於家鹏,达荣庭.剖面的保角变换及其在船舶运动计算中的应用.中国造船.1979(1):29-44页
    [83]苏晓鹰.三电平变频器控制算法的研究.中国石油大学硕士学位论文.2011:30-38页
    [84]黄斌.异步电机直接矢量控制开发与转子电阻辨识方法研究.清华大学硕士学位论文,2004:20-22页
    [85]陆志刚.异步电动机调速系统的混合控制方法.清华大学硕士学位论文.2004:56-58页
    [86]顾绳谷.电机及拖动基础(第四版).机械工业出版社,2011:113-114页
    [87] RTDS Notional E-ship model Technical guide. Florida State University, Version3.4,June2008.
    [88]邱苍宇.DC/DC模块阻抗特性研究.浙江大学博士学位论文.2007:30-38页
    [89]张军明.中功率DC/DC变流器模块标准化若干关键问题研究.浙江大学博士学位论文.2005:10-18页,44-48页
    [90]吴国良.中功率DC/DC变流器标准化模块阻抗分析与拓扑优选.浙江大学博士学位论文.2006:53-55页
    [91]杨晓平,张浩,马西奎.基于ESAC标准的分布式电源系统稳定裕度监控.电工技术学报.2009,(08):14-21页
    [92]吕世家,罗耀华,游江,康少波.船舶电力推进系统稳定性分析与控制.大连海事大学学报.2012,(03):27-30页
    [93] Norbert Doerry. Next Generation Integrated Power System Technology DevelopmentRoadmap. November2007
    [94] K.Stockman,F.D’hulster,and R.Belmans. Torque capability of a field orientedinduction motor drive under voltage sag conditions.in Proc.10th Eur. Conf. PowerElectron. And Appl., Toulouse, France,2003
    [95] A. Lucia, D. Franco, H. Bourl`es, E.R. De Pieri, and H. Guillard. Robust nonlinearcontrol associating robust feedback linearization and H control. IEEE Trans. Autom.Control, Jul.2006:1200–1207P
    [96] Y.-S. Kun and M.-H. Tsai. FPGA-based speed control IC for PMSM drive withadaptive fuzzy control. IEEE Trans. Power Electron. Nov.2007:2476–2486P
    [97] Liutanakul, P.; Awan, A.-B.; Pierfederici,et al. Linear Stabilization of a DC BusSupplying a Constant Power Load: A General Design Approach. Power Electronics,IEEE Transactions on Feb.2010:475-488P
    [98] Nahid Mobarakeh, B.; Meibody-Tabar, F.; Sargos, F.M. On-line identification ofPMSM electrical parameters based on decoupling control. Industry ApplicationsConference,2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the2001IEEE. Sept.2001:266-273P
    [99] B.H.Bae, B.H.Cho,and S.K.Sul. Damping control strategy for the vector controlledtraction drive. presented at the EPE2001,Graz,Austria.
    [100] H.Mosskull. Stabilization of an induction machine drive. RoyalInst. Technol.,Stockholm, Sweden,2003.
    [101] A. M. Walczyna, K. Hasse, and R. Czarnecki. Input filter stability of drives fed fromvoltage inverters controlled by direct flux and torque control methods. Proc. Inst. Elect.Eng.—Electr. Power Appl. Sep.1996:396–402P
    [102] L. Harnefors and H.-P. Nee. Model-based current control of ac machines using theinternal model control method. IEEE Trans. Ind. Appl. Jan./Feb.1998:133–141P
    [103] Hong-Seok Song; Kwanghee Nam. Dual current control scheme for PWM converterunder unbalanced input voltage conditions. Industrial Electronics, IEEE Trans on. Oct1999:953-959P
    [104] P. N. Enjeti and S. A. Choudhury. A new control strategy to improve the performanceof a PWM ac to dc converter under unbalanced operating conditions. IEEE Trans onPower Electronics. October2003:493-500P
    [105] Y. Suh, V. Tijeras, and T. A. Lipo. A nonlinear control of the instantaneous power in dqsynchronous frame for PWM AC/DC converter under generalized unbalancedoperating condition. in Conference Record of the37th IAS Annual Meeting. October2002:1189-1196P
    [106]刘永生.电网电压不平衡时PWM整流器控制策略研究.西南交通大学硕士学位论文2011:71-86页
    [107]刘军锋.感应电动机在弱磁区的高性能电流控制策略.电工技术学报.2010,(07):61-66页
    [108]刘军锋,李叶松.感应电机宽范围调速时电流分配策略研究.电力电子技术.2008,(02):50-51页,59页
    [109]陈琼良.电动汽车感应电机的弱磁控制方法研究.重庆大学硕士学位论文.2011:48-50页
    [110] L. Harnefors, K. Pietil inen, and L. Gertmar. Torque-maximizing field weakeningcontrol: Design, analysis, and parameter selection. IEEE Trans. Ind. Electron. Feb.2001:161–168P
    [111] B. K. Bose, Ed. Power Electronics and Variable Frequency Drives. Piscataway, NJ:IEEE Press,1996,28(3):221-225P
    [112] J. Holtz. Pulsewidth modulation for electronic power conversion. Proc. IEEE. Aug.1994:1194–1214P
    [113] G.Gallegos-López, F.S.Gunawan, and J.E.Walters. Current control of inductionmachines in the field-weakened region. IEEE Trans. Ind. Appl. Jul./Aug.2007:981–989P
    [114]丁浩华,陈辉明.带过流和短路保护的IGBT驱动电路研究.电子电子技术.1997年1期:30-32页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700