工业过程运行安全性能分析与在线评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工业过程中,为了降低生产成本、减少排放与能耗,保持企业的竞争力,需要使过程安全、可靠、平稳地运行,其中安全问题为至关重要。过程故障是引起工业安全隐患、危险状况的重要原因,过程监控的研究致力于解决故障的检测、分离、诊断、过程恢复等,已经成为自动化领域的一个重要分支。根据过程监控模型的不同,一般可以将监控方法分为基于解析模型、数据驱动和基于知识或定性模型的方法。相比于故障检测和诊断,安全分析与评价更多地是从工艺角度具体细致地描述过程设备、运行状态的安全性。过程故障的自动恢复性控制、实时安全性评价和自动安全控制等将是过程控制今后的一个重要发展方向,而实现这工作的第一步则需要得到过程安全性的实时分析和评价结果。
     过程监控与故障诊断、安全性能的分析评价等研究已取得许多理论和应用成果,但同时也存在较多尚未解决的问题。本文从初步讨论控制策略对故障检测的影响出发,接着提出解决一类复杂故障的分离问题的方法,然后探索性地构造了两种安全性指数,从变量安全约束和动态稳定型两方面得到运行状态的安全性的在线评价结果。由于该领域涉及的方面较广,文中不可能巨细无遗地对所有问题进行研究,但也希望借助本文的探讨抛砖引玉,供作深入研究的引子。本文主要工作和创新结果如下:
     (1)针对工业过程运行中的一些复杂现象进行介绍和讨论。由于工业过程涉及到很多复杂的物质、能量交换和物理化学变化,往往具备规模大、变量多,高度非线性、强耦合性与相关性等特征。控制策略的引入改变了系统输入输出、动态关系;受到各种过程固有特征和外在因素变化的影响,工业过程会呈现出多工况或多模式的运行状态;作为非线性系统,许多工业过程存在分岔现象,影响系统的稳定性与安全性。工业过程复杂的运行状态给故障检测和诊断、安全分析和评价的研究带来了较大的困难和挑战。然后以Tennessee Eastman(TE)过程为例,初步讨论了过程控制策略对监控性能的影响。
     (2)基于结构化残差(Structured Residuals)的故障分离方法的原理在于为不同故障设计具有区分功能的残差响应特征,将故障特征进行解耦。工业过程中普遍存在对系统有复杂影响的故障,其解耦难度较大,甚至是不可分离性的。在过程的主成分分析(Principal Component Analysis, PCA)模型下,提出一种多层策略,去除复杂故障的共同影响特征,将其转化成简单故障。然后分配至不同层进行区分,在设计结构化残差时,每个残差被设置为对某一故障不敏感,同时最大化其对其余故障响应的敏感度。经过逐层特征抽取和结构化残差设计,最后得到表征各残差对全部故障响应特征的事件矩阵,用于分类全部简单或复杂的故障。将该方法应用于TE过程,仿真实验结果证明了其有效性。
     (3)为了实时地给出过程运行安全性的在线评价,提出一种基于多模式工况识别的方法。首先基于工业过程的历史运行数据,使用混合高斯模型(Gaussian Mixture Model, GMM)来表征过程的多工况状态,并在线识别当前工况。将过程变量变化至其安全边界的概率作为安全性指数(Safety Index, SI),用于描述当前工况的安全程度,该指数的构造可以视为从高维的过程变量空间至指数空间的一个映射。根据历史运行的安全性能指数值的范围进行等级划分,并在一个较低的D空间中得到与不同安全性能等级的子集(子空间)与区域边界,然后可以得到当前安全性能在子空间内的裕度。将该指数应用于TE过程和一个工业聚丙烯(Polypropylene, PP)生产过程,实验结果表明SI能够实时指示过程运行安全性的变化,并为提高过程安全性能的进一步操作提供调节方向的参考。
     (4)基于Hopf分岔分析,从动态稳定性方面对工业过程运行状态进行安全性评价。采用分岔方程描述过程系统的Hopf分岔点所在的临界曲面,并作为系统参数或操作变量的安全边界,然后构造了一个动态安全性指数(Dynamic Safety Index, DSI)用于综合描述各参数到其分岔点的距离。将该方法应用于一个聚乙烯(Polyethylene, PE)流化床反应器的仿真过程中,结果表明该动态安全性指数能够有效指示过程系统的运行状态至分岔现象的距离,并能提早对可能发生不稳定振荡现象进行预警。
     最后,对全文作出总结,归纳了研究和分析的内容及结果,指出研究成果中存在的一些未解决的问题,并展望了接下来的研究方向。
In modern industry, in order to lower the production cost, reduce the emission and energy consumption, it is necessary to keep the process operations in safe, reliable and steady states. In all of them, the safety issue is the most important. In practical industries, process faults or malfunctions are the main causes of unsafe threats and hazardous situations. The research of process monitoring is focused on the solution of fault detection, isolation, diagnosis, process recovery, etc. And it is now more of the important branch of industry automation. According to different monitoring models, the methodology of process monitoring can be usually classified into three categories:the approaches based on analytical models, data-driven, and based on knowledge or qualitative models. Compared with the fault detection and diagnosis, the approaches of safety analysis and assessment provide more particular descriptions on process operation or equipment safety degree based on the process characterizations. The automation in fault diagnosis, fault-recovery control, online safety assessment, and safety control is one of the future directions in process automation. And the step to achieve these is to obtain the online assessment results of operation safety.
     The studies on process monitoring & fault diagnosis, safety assessment have developed greatly, both on theories and practical applications. However, there are many unsolved issues. In this thesis, the impact of control strategy on the fault detection performance is discussed firstly. Then, a method is proposed to address the issue of complex fault isolation based on structured residuals. As an explorative work, two types of safety index are then constructed, characterizing the operation safety based on the process variable constraints and dynamic stability properties. Since the area of process monitoring & fault diagnosis and safety assessment is very vast, it is impossible to list and discuss all issues detailedly in the thesis. The main innovative work of this paper is as follows.
     (1) Some introductory discussions on the complex phenomena in the industrial processes. The practical industries are always involved with complicated mass and energy exchanges and meanwhile accompanied with physical or chemical reactions. And the process systems usually have the features like large-scale, high dimension of variables, nonlinearity, strong coupling, and correlation. The introduction of process control loops changes the input-output relations and dynamic characterizations of the system. The process operations may have multiple modes in practical situations due to parametric drifts, disturbance, feedstock, and environmental impacts. For nonlinear systems, there might be some complex phenomena, like bifurcation, which may have impacts on the system stability properties. It is stated that the complexity operation states in industrial process bring a great of difficulties and challenges to study and application of the process monitoring and safety assessment. Taking the Tennessee Eastman (TE) process as an example, some preliminary discussions on the impact of control strategies on the fault detection performance.
     (2) The principle of fault isolation approach based on structured residuals lies in the decoupling of the fault features by designing appropriate structured residuals. However, many faults in industry processes are too complicated to be decomposed. Under the principal component analysis (PCA) model, a multi-level strategy is proposed to extract the complex fault features, and assign the faults on different levels, where the structured residuals are designed to achieve best isolation performance. Each residual is expected to be insensitive to one fault and most sensitive to others. Lastly, a general incidence matrix is obtained to represent all residual response to faults, based on which all faults are isolated. The approach is applied in the TE process simulation results, which demonstrates the effectiveness.
     (3) A method based on multiple-mode identification is proposed in order to give an online assessment on the process operation. The Gaussian Mixture Model (GMM) is adopted to characterize the historical operation modes and identify the current state. A probabilistic safety index (SI) is constructed to denote the distance from the current operation to the safety limits. The calculation of the SI can be seen as two successive mappings. The original process variable space can be segmented into several subspaces, which are corresponding to different SI levels. In the D space, which have lower dimensions, the boundaries between different subspaces are obtained, and the current operation margin in a certain SI level can be calculated. The method is applied to the TE process and an industrial polypropylene (PP) process, and the results show that the SI can effectively show the variations in the operation safety, and provide preliminary advice on the manipulating directions to improve the process operation safety.
     (4) Considering the dynamic stability of process system, an approach is proposed to assess the process operation safety based on Hopf bifurcation analysis. Hopf bifurcation equations are adopted to characterize the curved surface of the Hopf points in the parameter space. A dynamic safety index (DSI) is constructed to represent the distance of the current operation state to the safety limits, i.e., the Hopf surface. The DSI is applied in a simulated gas-phase fluidized polyethylene reactor process. The results demonstrate that the DSI can effectively characterize the distance of the operation state to the Hopf bifurcation, and it is also able to give alerts on the unstable oscillations in advance, which is very beneficial to the practical maintenance of process operation.
     In the last chapter, conclusions of the thesis are summarized. Some unsolved problems and the prospects on the future study areas are pointed out and preliminarily discussed.
引文
[1]Nimmo, I., Adequately address abnormal situation operations. Chemical Engineering Progress,1995.91(9):p.36-45.
    [2]Venkatasubramanian, V, et al., A review of process fault detection and diagnosis Part I:Quantitative model-based methods. Computers & Chemical Engineering,2003.27:p.293-311.
    [3]Chiang, L.H., E.L. Russell, R.D. Braatz,段建民译,工业系统的故障检测与诊断.2001,北京:机械工业出版社.
    [4]Russell, E.L., L.H. Chiang, R.D. Braatz, Data-driven methods for fault detection and diagnosis in chemical processes. Advances in industrial control. 2000, London:Springer-Verlag.
    [5]Crowl, D.A.,J.F. Louvar,蒋军成,潘旭海译,化工过程安全理论及应用.2006,北京:化学工业出版社.
    [6]Rouvroye, J.L.,E.G.v.d. Bliek, Comparing Safety Analysis Techniques. Reliability Engineering & System Safety,2002.75:p.289-294.
    [7]Khan, F.I.,T. Husain, Risk Assessment and Safety Evaluation Using Probabilistic Fault Tree Analysis. Human and Ecological Risk Assessment, 2001.7(7):p.1909-1927.
    [8]Venkatasubramanian, V., J. Zhao, S. Viswanathan, Intelligent Systems for HAZOP Analysis of Complex Process Plants. Computers & Chemical Engineering,2000.24:p.2291-2302.
    [9]Meel, A.,W.D. Seider, Plant-Specific Dynamic Failure Assessment Using Bayesian Theory. Chemical Engineering Science,2006.61:p.7036-7056.
    [10]Meel, A.,W.D. Seider, Real-Time Risk Analysis of Safety Systems. Computers & Chemical Engineering,2008.32:p.827-840.
    [11]Zhou, J., G. Chen, Q. Chen, Real-Time Data-Based Risk Assessment for Hazard Installations Storing Flammable Gas. Process Safety Progress 2008. 27:p.205-211.
    [12]Isermann, R., Supervision, fault-detection and fault-diagnosis methods-an introduction. Control Engineering Practice,1997.5(5):p.639-652.
    [13]Patton, R.J., P.M. Frank, R.N. Clark, Issues of Fault Diagnosis for Dynamic Systems.2000, London:Springer.
    [14]周东华,叶银忠,现代故障诊断与容错控制.2000,北京:清华大学出版社.
    [15]Isermann, R., Model-based fault-detection and diagnosis-status and applications. Annual Reviews in Control,2005.29:p.71-85.
    [16]Venkatasubramanian, V., et al., A review of process fault detection and diagnosis Part Ⅱ:Qualitative models and search strategies. Computers & Chemical Engineering,2003.27:p.313-326.
    [17]Venkatasubramanian, V., et al., A review of process fault detection and diagnosis Part Ⅲ:Process history data based methods. Computers & Chemical Engineering,2003.27:p.327-346.
    [18]Gertler, J.,D. Singer, A New Structural Framework for Parity Equation-Based Failure-Detection and Isolation. Automatica,1990.26(2):p.381-388.
    [19]Hwang, I., et al., A Survey of Fault Detection, Isolation, and Reconfiguration Methods. IEEE Transactions on Control Systems Technology,2010.18(3):p. 636-653.
    [20]Gertler, J., et al., Isolation enhanced principal component analysis. AIChE Journal,1999.45(2):p.323-334.
    [21]Kourti, T., Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Ccontrol and Signal Processing,2005.19:p.213-246.
    [22]MacGregor, J.F.,T. Kourti, Statistical Process Control of Multivariate Processes. Control Engineering Practice,1995.3(3):p.403-414.
    [23]MacGregor, J.F., T. Kourti, P. Nomikos. Analysis, monitoring and fault diagnosis of industrial processes using multivariate statistical projection methods, in Proceedings of 13th IFAC World Congress 1996. San Francisco: Elsevier Science Ltd.
    [24]Kano, M., S. Hasebe, I. Hashimoto, Statistical process monitoring based on dissimilarity of process data. AIChE Journal,2002.48(6):p.1231-1240.
    [25]Gertler, J.,J. Cao, PCA-based fault diagnosis in the presence of control and dynamics. AIChE Journal,2004.50(2):p.388-402.
    [26]Li, W., et al., Recursive PCA for adaptive process monitoring. Journal of Process Control,2000.10:p.471-486.
    [27]Kourti, T., J. Lee, J.F. MacGregor, Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering,1996.20:p. S745-S750.
    [28]Wise, B.M.,N.B. Gallagher, The process chemometrics approach to process monitoring. Journal of Process Control,1996.6:p.329-348.
    [29]Wilson, D.J.H.,G.W. Irwin, PLS modelling and fault detection on the Tennessee Eastman benchmark. International Journal of Systems Science, 2000.31(11):p.1449-1457.
    [30]熊丽,基于数据驱动技术的过程监控与优化方法研究.控制科学与工程系,浙江大学2008.博士论文.
    [31]Hyvarinen, A.,E. Oja, Independent component analysis:Algorithms and application. Neural Network,2000.13:p.411-430.
    [32]Kano, M., et al., Evolution of multivariate statistical process control: application of independent component analysis and external analysis. Computers & Chemical Engineering,2004.28:p.1157-1166.
    [33]Lee, J.M., S.J. Qin, I.B. Lee, Fault Detection and Diagnosis Based on Modified Independent Component Analysis. AIChE Journal,2006.52:p. 3501-3514.
    [34]Yoo, C.K., et al., On-line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intellegent Laboratory System,2004.71:p.151-163.
    [35]Gertler, J.,T.J. McAvoy. Principal component analysis and parity relations-A strong duality.in IFAC SAFEPROCESS Symp.1997. Hull, UK.
    [36]Huang, Y., J. Gertler, T.J. McAvoy, Sensor and actuator fault isolation by structured partial PC A with nonlinear extensions. Journal of Process Control, 2000.10(5):p.459-469.
    [37]Gertler, J.,J. Cao, Design of optimal structured residuals from partial principal component models for fault diagnosis in linear systems. Journal of Process Control,2005.15(5):p.585-603.
    [38J Dunia, R., et al., Identification of faulty sensors using principal component analysis. AIChE Journal,1996.42(10):p.2797-2812.
    139] Dunia, R.,S.J. Qin, Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal,1998.44(8):p.1813-1831.
    [40]Chiang, L.H., E.L. Russell, R.D. Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems,2000.50(2):p.243-252.
    [41]Chiang, L.H., M.E. Kotanchek, A.K. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers & Chemical Engineering,2004.28:p.1389-1401.
    [42]He, Q.P., S.J. Qin, J. Wang, A New Fault Diagnosis Method Using Fault Directions in Fisher Discriminant Analysis. AIChE Journal,2005.51:p. 555-571.
    [43]Kulkarni, A., V.K. Jayaraman, B.D. Kulkarni, Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Computers & Chemical Engineering,2005.29(10):p.2128-2133.
    [44]Davy, M., et al., An online support vector machine for abnormal events detection. Signal Processing,2006.86:p.2009-2025.
    [45]边肇琪,张学工,模式识别.2000,北京:清华大学出版社.
    [46]Detroja, K.P., R.D. Gudi, S.C. Patwarkhan, A possihilistic clustering approach to novel fault detection and isolation. Journal of Process Control,2006.16(10): p.1055-1073.
    [47]刘育明,动态过程数据的多变量统计监控方法研究.控制科学与工程系, 浙江大学2006.博士论文.
    [48]Ku, W., R.H. Storer, C. Georgakis, Disturbance detection and isolation using dydamic principal component analysis. Chemometrics and Intellegent Laboratory System,1995.30:p.179-196.
    [49]Bakshi, B., Multiscale PCA with Application to Multivariate Statistical Process Monitoring. AIChE Journal,1998.44(7):p.1596-1610.
    [50]Aradhye, H.B., et al., Multiscale SPC using wavelets:theoretical analysis and properties. AIChE Journal,2003.49(4):p.939-958.
    [51]Yoon, S.,J.F. MacGregor, Principal-Component Analysis of Multiscale Data for Process Monitoring and Fault Diagnosis. AIChE Journal,2004.50(11):p. 2891-2903.
    [52]Reis, M.S., P.M. Saraiva, B.R. Bakshi, Multiscale statistical process control using wavelet packets. AIChE Journal,2008.54(9):p.2366-2378.
    [53]刘育明,et al.,一移基于多尺度分析的多变量统计过程监测方法.化工学报,2009.60(4):p.952-958.
    [54]Liu, Y., et al., Multiscale classification and its application to process monitoring. Journal of Zhejiang Univ-Sci C (Comput & Electron),2010.11(6): p.425-434.
    [55]Choi, S.W., et al., Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics and Intellegent Laboratory System,2005. 75:p.55-67.
    [56]Cho, J.-H., et al., Fault identification for processmonitoring using kernel principal component analysis. Chemical Engineering Science,2005.60:p. 279-288.
    [57]Choi, S.W.,I.-B. Lee, Nonlinear dynamic processmonitoring based on dynamic kernel PCA. Chemical Engineering Science,2004.59:p.5897-5908.
    [58]Chen, Q., et al., The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Engineering Practice,2000.8:p.531-543.
    [59]Dong, D.,T.J. McAvovy, Nonlinear principal component analysis-based on principal curves and neural networks. Computers & Chemical Engineering, 1996.20(1):p.65-78.
    [60]Chen, J.,C.-M. Liao, Dynamic process fault monitoring based on neural network and PCA. Journal of Process Control,2002.12:p.277-289.
    [61]Qin, S.J., Recursive PLS algorithms for adaptive data modeling Computers & Chemical Engineering,1998.22(4):p.503-514.
    [62]Isermann, R., On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Transactions on system, man and cybernetics-Part A:Systems and humans,1998.28(2):p.221-235.
    [63]Dash, S., M.R. Maurya, V. Venkatasubramanian, A novel interval-halving framework for automated identification of process trends. AIChE Journal, 2004.50(1):p.149-162.
    [64]Maurya, M.R., R. Rengaswamy, V. Venkatasubramanian, Fault diagnosis using dynamic trend analysis:A review and recent developments. Engineering Applications of Artificial Intelligence,2007.20(2):p.133-146.
    [65]Maurya, M.R., R. Rengaswamy, V. Venkatasubramanian, A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis. Chemical Engineering Research and Design,2007.85(19):p. 1407-1422.
    [66]Verron, S., J. Li, T. Tiplica, Fault detection and isolation of faults in a multivariate process with Bayesian network. Journal of Process Control,2010. 20(8):p.902-911.
    [67]廖学品,化工过程危险性分析.2000,北京:化学工业出版社.
    [68]Rahmana, M., A.-M. Heikkila, M. Hurme, Comparison of inherent safety indices in process concept evaluation. Journal of Loss Prevention in the Process Industries,2005.18:p.327-334.
    [69]Khan, F.I., T. Husain, S.A. Abbasi, Design and Evaluation of Safety Measures Using a Newly Proposed Methodology "SCAP". Journal of Loss Prevention in the Process Industries,2002.15:p.129-146.
    [70]邓正龙,过程系统的可靠性.1996,北京:中国石化出版社.
    [71]Tugnoli, A., V. Cozzani, G. Landucci, A Consequence Based Approach to the Quantitative Assessment of Inherent Safety. AIChE Journal,2007.53(12):p. 3137-3182.
    [72]Meel, A., et al., Operational risk assessment of chemical industries by exploiting accident databases. Journal of Loss Prevention in the Process Industries,2007.20:p.113-127.
    [73]Lou, H.H., R. Muthusamy, Y. Huang, Process Security Assessment: Operational Space Classification and Process Security Index. Trans IChemE, Part B, Process Safety and Environmental Protection,2003.81(B6):p. 418-429.
    [74]Uygun, K., Y. Huang, H.H. Lou, Fast Process Security Assessment Theory. AIChE Journal,2004.50(9):p.2187-2202.
    [75]Harris, T.J., Assessment of control loop performance. Canadian Journal of Chemical Engineering,1989.67:p.856-861.
    [76]Huang, B., S.L. Shah, E.K. Kwok, Good, bad or optimal? Performance assessment of multivariable processes. Automatica,1997.33(6):p.1175-1183.
    [77]Huang, B., S.L. Shah, H. Fujii, The unitary interactor matrix and its estimation using closed-loop data. Journal of Process Control,1997.7(3): p.195-207.
    [78]Jelali, M., An overview of control performance assessment technology and industrial applications. Control Engineering Practice,2006.14:p.441-466.
    [79]Agarwal, N., B. Huang, E.C. Tamay, Assessing Model Prediction Control (MPC) Performance.1. Probabilistic Approach for Constraint Analysis. Industrial & Engineering Chemistry Research,2007.46:p.8101-8111.
    [80]Agarwal, N., B. Huang, E.C. Tamayo, Assessing model prediction control (MPC) performance.2. Bayesian approach for constraint tuning. Industrial & Engineering Chemistry Research,2007.46:p.8112-8119.
    [81]Qin, S.J.J. Yu, Recent developments in multivariable controller performance monitoring. Journal of Process Control,2007.17:p.221-227.
    [82]Seborg, D.C.a.D.E., PI/PID controller design based on direct synthesis and disturbance rejection. Industrial & Engineering Chemistry Research,2002.41: p.4807-4822.
    [83]Skogestad, S., Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control,2003.13(4):p.291-309.
    [84]王海清,工业过程监测:基于小波与统计学的方法.控制科学与工程系,浙江大学2001.博士论文.
    [85]Zhao, S.J., J. Zhang, Y.M. Xu, Performance monitoring of processes with multiple operating modes through multiple PLS models. Journal of Process Control,2006.16:p.763-772.
    [86]Liu, J., Fault Detection and Classification for a Process with Multiple Production Grades. Industrial & Engineering Chemistry Research,2008.47:p. 8250-8262.
    [87]Choi, S.W., J.H. Park, I. Lee, Process Monitoring Using a Gaussian Mixture Model via Principal Component Analysis and Discriminant Analysis. Computers & Chemical Engineering,2004.28:p.1377-1387.
    [88]Thissen, U., et al., Multivariate Statistical Process Control Using Mixture Modelling. Journal of Chemometrics,2005.19:p.23-31.
    [89]Yu, J.,S.J. Qin, Multimode Process Monitoring with Bayesian Inference-based finite Gaussian Mixture Models. AIChE Journal,2008.54:p.1811-1829.
    [90]Hwang, D.-H.,C. Han, Real-time monitoring for a process with multiple operating modes. Control Engineering Practice,1999.7:p.891-902.
    [911 Liu, J.L.,D.S. Chen, Operational Performance Assessment and Fault Isolation for Multimode Processes. Industrial & Engineering Chemistry Research,2010. 49(8):p.3700-3714.
    [92]Kayc, R.J.,F.F. Wu, Dynamic Security Regions of Power Systems. IEEE Transactions on Circuits and Systems,1982.29(9):p.612-623.
    [93]Wu, F.F.,Y.-K. Tsai, Probabalistic Dynamic Security Assessment of Power Systems:Part Ⅰ-Basic Model IEEE Transactions on Circuits and Systems,1983.30(3):p.148-159.
    [94]Chiang, H.-D., M.W. Hirsch, F.F. Wu, Stability Regions of Nonlinear Autonomous Dynamical Systems. IEEE Transactions on Automatic Control, 1988.33(1):p.16-27.
    [95]Cheng, D.,J. Ma. Calculation of Stability Region.in Proceedings of the 42nd IEEE Conference on Decision and Control.2003. Maui Hawaii, USA.
    [96]Xue, A., et al., Power System Dynamic Security Region and Its Approximations. IEEE Transactions on Circuits and Systems,2006.53(12):p. 2849-2859.
    [97]Xue, A., et al., Power system transient stability assessment based on quadratic approximation of stability region. Electric Power Systems Research,2006.76: p.709-715.
    [98]陈予恕,非线性振动系统的分叉和混沌理论.1993,北京:高等教育出版社.
    [99]McAuley, K.B., D.A. Macdonald, P.J. McLellan, Effects of Operating Conditions on Stability of Gas-Phase Pol yet hylene Reactors AIChE Journal, 1995.41(4):p.868-879.
    [100]Dadebo, S.A., et al., Temperature control of industrial gas phase polyethylene reactors. Journal of Process Control,1997.7(2):p.83-95.
    [101]Russo, L.P.,B-W. Bequette, Operability of chemical reactors:multiplicity behavior of a jacketed styrene polymerization reactor Chemical Engineering Science,1997.53(1):p.27-45.
    [102]Zhang, Y.,M.A. Henson, Bifurcation Analysis of Continuous Biochemical Reactor Models. Biotechnol. Prog,2001.17:p.647-660.
    [103]Zhang, Y., et al., Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors. Journal of Process Control, 2002.12:p.721-734.
    [104]Salau, N.P.G., et al., Dynamic Behavior and Control in an Industrial Fluidized-Bed Polymerization Reactor. Industrial & Engineering Chemistry Research,2008.47:p.6058-6069.
    [105]Morud, J.C.,S. Skogestad, Analysis of Instability in an Industrial Ammonia Reactor AIChE Journal,1998.44(4):p.888-895.
    [106]Mancusi, E., et al., Multistability and Hysteresis in an Industrial Ammonia Reactor. AIChE Journal,2000.46(4):p.824-828.
    [107]Molnar, A., J. Markos, L. Jelemensky, Safety analysis of CSTR towards changes in operating conditions. Journal of Loss Prevention in the Process Industries,2003.16:p.373-380.
    [108]Molnar, A., J. Markos, L. Jelemensky, Some Considerations for Safety Analysis of Chemical Reactors. Trans IChemE, Part A, Chemical Engineering Research and Design,2005.83(A2):p.167-176.
    [109]Vandova, Z.S., et al., Steady states analysis and dynamic simulation as a complement in the HAZOP study of chemical reactors. Trans IChemE, Part B, Process Safety and Environmental Protection,2005.83(B5):p.463-471.
    [110]Kubecek, M.,M. Marek,刘式达,刘式适译,分岔理论和耗散结构的计算方法.1990,北京:科学出版社.
    [111]Doedel, E.J., AUTO:Software for Continuation and Bifurcation Problems in Ordinary Differential Equations.1986, California Institute of Technology: Pasadena, CA.
    [112]Doedel, E.J.,B.E. Oldeman, AUTO-07P:Continuation and Bifurcation Software for Ordinary Differential Equations.2009, Concordia University: Montreal, Canada.
    [113]Dhooge, A., W. Govaerts, Y.A. Kuznetsov, MATCONT.A MATLAB Package for Numerical Bifurcation Analysis of ODEs. ACM Transactions on Mathematical Software,2003.29(2):p.141-164.
    [114]Dhooge, A., et al., Matcont:A Matlab package for dynamical systems with applications to neural activity.2006, Department of Applied Mathematics and Computer Science Ghent University, Mathematisch Instituut Universiteit Utrecht, Vakgroep Informatietechnologie KAHO Sint-Lieven.
    [115]Dobson, I., Computing a Closest Bifurcation Instability in Multidimensional Parameter Space. Journal of Nonlinear Science,1993.3:p.307-327.
    [116]Monnigmann, M.,W. Marquardt, Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems. Journal of Nonlinear Science,2002.12:p.85-112.
    [117]Monnigmann, M., W. Marquardt, L.f. Prozesstechnik. Parametrically robust control-integrated design of nonlinear systems in Proceedings of the American Control Conference.2002. Anchorage, AK.
    [118]Monnigmann, M.,W. Marquardt, Steady-State Process Optimization with Guaranteed Robust Stability and Feasibility. AIChE Journal,2003.49(12):p. 3110-3126.
    [119]Marquardt, W.,M. Monnigmann, Constructive nonlinear dynamics in process systems engineering. Computers & Chemical Engineering,2005.29:p. 1265-1275.
    [120]Monnigmann, M.,W. Marquardt, Steady-State Process Optimization with Guaranteed Robust Stability and Flexibility:Application to HDA Reaction Section. Industrial & Engineering Chemistry Research,2005.44:p. 2737-2753.
    [121]Tsung, F., Jointly monitoring of PID-controlled processes. Journal of Quality Technology,1999.31(3):p.275-285.
    [122]Tsung, F.,D.W. Apley, The dynamic T-2 chart for monitoring feedback-controlled processes. HE Transaciton,2002.34:p.1043-1053.
    [123]Ohran, B.J., et al., Enhancing Data-based Fault Isolation Through Nonlinear Control. AIChE Journal,2008.54(1):p.223-241.
    [124]Ohran, B.J., et al., Plantwide Fault Isolation Using Nonlinear Feedback Control. Industrial & Engineering Chemistry Research,2008.47:p. 4220-4229.
    [125]Ohran, B.J., et al., Data-based fault detection and isolation using feedback control:Output feedback and optimality. Chemical Engineering Science,2009. 64:p.2370-2383.
    [126]Yoon, S.,J.F. McGregor, Fault dignosis with multivariate statistical models part I:using steady state fault signatures. Journal of Process Control,2001. 11:p.384-400.
    [127]Hand, D., H. Mannila, P. Smyth,张银奎,廖丽,宋俊等译,数据挖掘原理.2003,北京:机械工业出版社.
    [128]Paalanen, P., et al., Feature Representation and Discrimination Based on Gaussian Mixture Model Probability Densities-Practices and Algorithms. Pattern Recognition,2006.39:p.1346-1358.
    [129]Slotine, J.-J.E.,W. Li,程代展等译,应用非线性控制.2006,北京:机械工业出版社.
    [130]Downs, J.J.,E.F. Vogel, A plant-wide industrial process control problem. Computers & Chemical Engineering,1993.17(3):p.245-255.
    [131]McAvoy, T.J.,N. Ye, Base control for the Tennessee Eastman problem. Computers & Chemical Engineering,1994.18(5):p.383-413.
    [132]Ricker, N.L., Decentalized control of the Tennessee Eastman challenge process. Journal of Process Control,1996.6(4):p.205-221.
    [133]Lyman, P.R., Plant-wide control structures for the Tennessee Eastman process. Lehigh University 1992.
    [134]Lyman, P.R.,C. Georgakis, Plant-Wide Control of the Tennessee Eastman Problem. Computers & Chemical Engineering,1995.19:p.321-331.
    1135] Ricker, N.L.J.H. Lee, Nonlinear Model Predictive Control of the Tennessee Eastman Challenge Process. Computers & Chemical Engineering,1995.19(9): p.961-981.
    [136]Luyben, W.L., Simple regulatory control of the Eastman process. Industrial & Engineering Chemistry Research,1996.35(10):p.3280-3289.
    [137]Larsson, T., et al., Self-optimizing control of a large-scale plant:the Tennessee Eastman process. Industrial & Engineering Chemistry Research,2001.40(22): p.4889-4901.
    [138]Yan, M.,N.L. Ricker. On-line optimization of the tennessee eastman challenge process, in Proceedings of the American Control Conference.1997. Albuquerque, New Mexico.
    [139]Duvall, P.M.J.B. Riggs, On-line optimization of the Tennessee Eastman challenge problem. Journal of Process Control,2000.10:p.19-33.
    [140]Golshan, M., R.B. boozarjomehry, M.R. Pishvaie, A new approach to real time optimization of the Tennessee Eastman challenge problem. Chemical Engineering Journal,2005.112:p.33-44.
    [141]Chen, G.,T.J. McAvoy, Predictive on-line monitoring of continuous processes. Journal of Process Control,1998.8(5-6):p.409-420.
    [142]Zhou, S.Y.,S.Q. Wang, On-line fault detection and diagnosis in industrial processes using hidden Markov model. Developments in Chemical Engineering and Mineral Processing,2005.13(3-4):p.397-406.
    [143]Srinivasan, R.,M. Qian, S., Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science,2006.61(18):p.6109-6132.
    [144]Singhal, A.,D.E. Seborg, Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control,2006.16:p. 601-613.
    [145]Lin, W., Y. Qian, X. Li, Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis. Computers & Chemical Engineering,2000.24(2-7):p.423-429.
    [146]Kresta, J.V., T.E. Marlin, J.F. MacGregor, Multivariable statistical monitoring of process operating performance. Canadian Journal of Chemical Engineering, 1991.69:p.35-47.
    [147]Kano, M., et al., A new multivariate statistical process monitoring method using principal component analysis. Computers & Chemical Engineering, 2001.25:p.1103-1113.
    [148]Kano, M., et al., Comparison of statistical process monitoring methods: application to the eastman challenge problem. Computers & Chemical Engineering,2000.24(2-7):p.175-181.
    [149]Kano, M., et al., Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers & Chemical Engineering,2002.26:p.161-174.
    [150]Zhang, Y.,S.J. Qin, Adaptive actuator/component fault compensation for nonlinear systems. AIChE Journal,2008.54(9):p.2404-2412.
    [151]Zhang, Y.,S.J. Qin, Adaptive actuator fault compensation for linear systems with matching and unmatching uncertainties. Journal of Process Control,2009. 19:p.985-990.
    [152]Jiang, B., M. Staroswiecki, V. Cocquempot, Fault accommodation for nonlinear dynamic systems. IEEE Transactions On Automatic Control,2006. 51(9):p.1578-1583.
    [153]Qin, S.J..W.H. Li, Detection, identification, and reconstruction of faulty sensors with maximized sensitivity. AIChE Journal,1999.45(9):p.1963-1976.
    [154]Kwan, C.,R. Xu, A note on simultaneous isolation of sensor and actuator faults. IEEE Transactions on Control Systems Technology,2004.12(1):p. 183-192.
    [155]Lin, W.L.,S.J. Qin, Optimal structured residual approach for improved faulty sensor diagnosis. Industrial & Engineering Chemistry Research,2005.44(7): p.2117-2124.
    [156]Cheng, H., M. Nikus, S.L. Jamsa-Jounela, Evaluation of PC A methods with improved fault isolation capabilities on a paper machine simulator. Chemometrics and Intelligent Laboratory Systems,2008.92(2):p.186-199.
    [157]Arena, U., E. Romeo, M.L. Mastellone, Recursive Operability Analysis of a pilot plant gasifier. Journal of Loss Prevention in the Process Industries,2008. 21:p.50-65.
    [158]Lisnianski, A.,G. Levitin, Multi-State System Reliability-Assessment, Optimization and Application.2003, Singapore:World Scientific.
    [159]Jiang, H., et al. Safety Analysis of Process Industry System Based on Complex Networks Theory in International Conference on Mechatronics and Automation.2007. Harbin, China:IEEE.
    [160]Bishop, C.M., Neural Networks for Pattern Recognition.1995, New York: Oxford University Press.
    [161]Cao, S.,R.R. Rhinehart, An Efficient Method for on-line Identification of Steady State. Journal of Process Control,1995.5(6):p.363-374.
    [162]Jiang, T., et al., Application of Steady-State Detection Method Based on Wavelet Transform. Computers & Chemical Engineering,2003.27:p. 569-578.
    [163]Duda, R.O., P. E.Hart, D.G. Stork, Pattern Classification, Second Edition.2001, New York:John Wiley & Sons, Inc.
    [164]Staak, D., et al., Safety Assessment on Distillation Columns:from Shortcut Methods and Heuristics to Dynamic Simulation. AIChE Journal,2011.57(2): p.458-472.
    [165]Jang, S.-S., B. Joseph, H. Muka, Comparison of Two Approaches to On-Line Parameter and State Estimation of Nonlinear Systems Industrial & Engineering Chemistry Process Design and Devlopment,1986.25:p. 809-814.
    [166]Lee, J.H.,N.L. Ricker, Extended Kalman Filter Based Nonlinear Model Predictive Control. Industrial & Engineering Chemistry Research,1994.33:p. 1530-1541.
    [167]Ricker, N.L.,J.H. Lee, Nonlinear modeling and state estimation for the Tennessee Eastman challenge process. Computers & Chemical Engineering, 1995.19(9):p.983-1005.
    [168]Sirohi, A.,K.Y. Choi, On-Line Parameter Estimation in a Continuous Polymerization Process. Industrial & Engineering Chemistry Research,1996. 35:p.1332-1343.
    [169]Li, R., et al., On-line state and parameter estimation of EPDM polymerization reactors using a hierarchical extended Kalman filter. Journal of Process Control,2004.14:p.837-852.
    [170]Gani, A., P. Mhaskar, P.D. Christofides, Fault-tolerant control of a polyethylene reactor. Journal of Process Control,2007.17:p.439-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700