无线数字微波通信技术在水库系统视频监控中的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的发展,视频监控在水库系统管理中所起的作用越来越明显,安全巡视、实时水位数据采集和监测等以往需要由现场人员亲自操作的工作,现在可借助高科技让现场人员足不出户即可在中央控制室中完成,这是水库自动化的一个体现。水库视频监控系统中,往往由于地理因素的限制,传统的电缆或光纤布线成本极高,施工难度极大。与此同时,考虑到安全性问题,水库系统通信不宜在公网上进行,因此新兴的无线通信方式3G、VPN也不适用。而作为水库无线通信领域中常被人忽视的方式——无线数字微波通信,则可以很好地解决上述问题。
     论文以无线数字微波通信技术为研究对象,在理论分析和实物搭建上进行了研究,介绍了微波在不同环境下的传播情况,针对球形地表、大气折射对微波传播的影响,修正了相应的参数;针对课题技术需求,对相关的频段、无线局域网标准、传输带宽、接收点位置等进行了分析和选择;比较了直扩技术和跳频技术的优劣,结合课题实际情况确定直扩技术来实现系统的抗干扰;应用Matlab/Simulink软件平台设计了基于直扩技术的无线数字微波通信系统模型;基于无线网桥模式设计和搭建了无线数字微波通信实物系统,配置了相应的软件参数;通过仿真和调试验证了无线数字微波通信系统在远距离无线通信、抗干扰、远程监控等方面是行之有效的。
     论文的成果有:1、采用无线数字微波通信技术来实现视频信号传输、水库系统远程监控、系统抗干扰,解决了有线传输和无线公网传输可行性不高的问题。2、在传统的无线数字微波通信系统基础上加入直扩技术模块来抗干扰。3、对通信系统硬件平台的搭建和软件平台的配置,提出了具体的方法,并调试成功。4、搭建水库系统无线局域网,实现局域网互连。
     本论文设计的通信系统虽然可以解决远距离无线通信、抗干扰、远程监控等问题,但还可在更高速传输、直扩技术和跳频技术结合(混频技术)、多普勒频移修正等方面做进一步改善。
With the development of communication technology, video surveillance has played a more important role in reservoir system. Site personnel can do work which they dealt with outside before in central control room by means of video surveillance, such as patrol, monitoring of realtime water level and so on. Because of geographical restriction and high cost, it isn't feasible for us to carry out wired video surveillance by cable or optical fiber in the reservoir system. Meanwhile, network security problem will be caused in public network by rising wireless communication technology which we should not apply, such as 3G, VPN, and so on. However, wireless digital microwave communication technology which is neglected by us can solve those problems above.
     This paper introduces wireless digital microwave communication technology as object of study, describes microwave propagation in different conditions, and revises relevant parameters because of the negative impact on microwave communication which is caused by spherical earth surface, atmospheric refraction and so on; According to the request for technology, it analyses and chooses relevant frequency range, standard of wireless local area network (WLAN), transmission bandwidth, location of receiver and so on; It compares direct sequence spread spectrum (DSSS) with frequency hopping spread spectrum (FHSS) and chooses DSSS to carry out anti-jamming; It designs wireless digital microwave communication system based on DSSS in Matlab/Simulink software platform, sets up real communication system based on wireless bridge mode and configurates relevant parameters in software platform. Finally, it proves that the wireless digital microwave communication system is achievable in long-distance communication, anti-jamming and remote video surveillance, after simulation in Matlab/Simulink and debugging in the campus.
     The achievement of this paper are as follow:1. It applies wireless digital microwave communication technology to carry out information communication, remote video surveillance and anti-jamming and solve problems of difficulties of wired transmission and communication in the public network.2. It applies DSSS to achieve anti-jamming based on traditional wireless digital microwave communication system.3. It presents solutions to hardware platform construction and software platform configuration and makes successful debugging.4. It constructs wireless local area network to work out interconnection in the reservoir system.
     Although the designed communication system can carry out wireless information communication, remote video surveillance and anti-jamming, we could make improvement in the faster transmission, combination of DSSS and FHSS (frequency mixing technology), revise of Doppler frequency shift and so on.
引文
[1]张阳.浅谈无线传输在水库视频监控中的应用[J].电器与线路,2005(10):154-155.
    [2]孙继平,关永,张杰.基于xDSL技术群与远程监控传输方式的研究[J].电子元件与材料,2002(12):37-39.
    [3]黄国栋.大坝安全监测技术研究[J].中国新技术新产品,2011(10):125.
    [4]乐坚,李国坚,陈伟雄.水库信息化系统中网络连接方式的选择[J].大坝与安全,2004(5):60-62.
    [5]姚冬苹,黄清,赵红礼.数字微波通信[M].北京:清华大学出版社,2004.
    [6]袁宇望,王健.微波技术在视频图像无线传输中的应用[J].光电子技术,2006,26(1):66-68.
    [7]Truhachev D. Distance Bounds for Periodically Time-varying and Tail-biting LDPC Convolutional Codes[J]. IEEE Transactions on Information Theory,2010, 56(9):4301-4303.
    [8]贺鹤云.LDPC码基础与应用[M].北京:人民邮电出版社,2009.
    [9]Earl McCune. DSSS vs. FHSS Narrowband Interference Performance Issues[J]. RF Design,2000,23(9):90-98.
    [10]Akopian D, Agaian S. A Fast Time-recursive Correlator for DSSS Communications[J]. IEEE Signal Processing Letters,2008,15(4):589-592.
    [11]梅文华.跳频通信[M].北京:国防工业出版社,2005.
    [12]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.
    [13]郭祥武.微波无源转接站的设计与应用[J].广播与电视技术,2004,31(1):81-82.
    [14]房少军.数字微波通信[M].北京:电子工业出版社,2008.
    [15]段水福,厉晓华.无线局域网设计与实现[M].浙江:浙江大学出版社,2007.
    [16]唐闲远,李兴.数字微波通信系统[M].北京:电子工业出版社,2004.
    [17]穆维新.现代通信网技术[M].北京:人民邮电出版社,2006.
    [18]田竹梅,李艳萍.基于SYSTEMVIEW的QAM调制与解调的仿真研究[J]. 长春师范学院学报(自然科学版),2010,29(4):50-53.
    [19]郭勇.数字通信原理[M].成都:电子科技大学出版社,2010.
    [20]高强,李峭,费礼.现代数字通信[M].北京:高等教育出版社,2010.
    [21]孙学康,张政.微波与卫星通信[M].北京:人民邮电出版社,2003.
    [22]白杉.微波通信的回顾与展望[J].电力系统通信,2002,23(6):25-28.
    [23]宋祖顺.现代通信原理[M].北京:电子工业出版社,2001.
    [24]车晴.数字卫星广播与微波技术[M].北京:中国广播电视出版社,2003.
    [25]李白萍,姚军.微波与卫星通信技术[M].西安:西安电子科技大学出版社,2006.
    [26]傅海阳.SDH微波通信系统[M].北京:人民邮电出版社,2000.
    [27]黄志洵.微波传输线理论与实际应用[M].北京:科学出版社,1996.
    [28]林福华.微波通信与卫星通信[M].北京:电子工业出版社,1996.
    [29]金国钧.数字MMDS网络技术[M].北京:中国广播电视出版社,2006.
    [30]孙海山.数字微波通信[M].北京:人民邮电出版社,1992.
    [31]井庆丰.微波与卫星通信技术[M].北京:国防工业出版社,2011.
    [32]栾秀珍,房少军,金红.微波技术[M].北京:北京邮电大学出版社,2009.
    [33]王新稳.微波技术与天线[M].北京:电子工业出版社,2011.
    [34]董金明,林萍实,邓晖.微波技术[M].北京:机械工业出版社,2010.
    [35]边莉.微波技术基础与应用[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [36]全绍辉.微波技术基础[M].北京:高等教育出版社,2011.
    [37]房少军.数字微波通信[M].北京:电子工业出版社,2008.
    [38]Warren L Stutzman, Gray A Thiele. Antenna Theory and Design[M]. Beijing: Posts & Telecom Press,2006.
    [39]王英丽,王冬立,何晓东.IEEE 802.11系列标准[J].信息技术,2005,29(5):96-97.
    [40]刘焕淋,向劲松,代少升.扩展频谱通信[M].北京:北京邮电大学出版社,2008.
    [41]Roger L Peterson, David E Borth. Introduction to Spread Spectrum Communications[M]. Beijing:Publishing House of Electronics Industry,2006.
    [42]Marvin K Simon. Spread Spectrum Communications Handbook[M]. Beijing: Posts & Telecom Press,2002.
    [43]田日才.扩频通信[M].北京:清华大学出版社,2007.
    [44]曹学军.无线电通信设备原理与系统应用[M].北京:机械工业出版社,2006.
    [45]赵刚.扩频通信系统实用仿真技术[M].北京:国防工业出版社,2009.
    [46]孙韶辉,慕建君.低密度校验码研究和进展[J].西安电子科技大学学报,2001,28(3):393-397.
    [47]Bernard Sklar. Digital Communications Fundamentals and Applpications[M]. Beijing:Publishing House of Electronics Industry,2002.
    [48]吕虹,段颖妮,管必聪.一种非线性最大长度伪随机序列发生器的设计[J].电子器件,2008,31(3):898-900.
    [49]许学梅.数字通信[M].北京:高等教育出版社,2007.
    [50]张杭,张邦宁.数字通信技术[M].北京:人民邮电出版社出版社,2008.
    [51]李兆红.移动通信中电磁干扰分析[J].移动通信,2004,28(6):105-106.
    [52]华云,龚耀寰,陈巧玲等.直扩信号多窄带干扰的自适应抑制系统设计[J].系统工程与电子技术,2002,24(6):32-35.
    [53]刘庆云,李志舜.高斯白噪声序列谱的统计特性及应用研究[J].声学与电子工程,2003(1):9-11.
    [54]John G Proakis, Masoud Salehi. Digital Communications[M]. Beijing: Publishing House of Electronics Industry,2011.
    [55]刘顺兰,吴杰.数字信号处理[M].西安:西安电子科技大学出版社,2003.
    [56]Andreas F Molisch. Wideband Wireless Digital Communications[M]. Beijing: Publishing House of Electronics Industry,2002.
    [57]胡玲玲,陈忠辉,徐艺文等.改进型数字匹配滤波器在直扩系统中的应用[J].数字技术与应用,2010(9):46-47.
    [58]Stueber Gordon. Principles of Mobile Communications[M]. Beijing:Publishing House of Electronics Industry,2004.
    [59]Theodore S Rappaport. Wireless Communications Principles and Practice[M]. Beijing:Publishing House of Electronics Industry,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700