大高宽比纳米光学元件制作工艺及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展,我们已经生活在纳米热的社会中。纳米科技涉及领域众多,包括纳米材料、纳米电子学、纳米光学(纳米光子学)、纳米生物、纳米机械及相关的纳米加工技术等。纳米光学是近些年研究的热点,其包括物质的纳米级限制、辐射的纳米级限制及纳米加工技术和纳米器件。纳米加工技术是实现纳米科技发展的重要手段。自X射线被发现后,由于X射线具有衍射小和穿透性强的显著特点,与X射线相关的技术成为人们研究的重要工具。20世纪70年代,美国麻省理工学院Henry Smith等开发了X射线曝光技术,突破传统光学曝光的分辨率极限。本文主要对利用X射线曝光技术制作大高宽比纳米光学元件的工艺进行研究,并利用X射线曝光技术制作了大高宽比聚合物光子晶体激光器。基于X射线曝光技术和国家同步辐射实验室软X射线光刻实验站,本文主要开展了以下几个方面的工作:
     1.基于等厚干涉原理的X射线曝光技术的间隙控制方法的提出及实验研究
     介绍了X射线曝光技术原理及组成部分:X射线曝光源、高精度X射线掩模及X射线抗蚀剂。基于国家同步辐射实验室光刻站,发展了一种基于基于等厚干涉原理的掩模与样品之间间隙大小及均匀性的测量方法,实现掩模与样品的间隙控制。该方法主要分为两步,其一是利用微纳加工的方法实现在氮化硅薄膜均匀而且厚度较小的台阶的制作;然后利用等厚干涉原理来实现大面积均匀间隙的调整。搭建了掩模与样品之间装夹后所产生的等厚干涉条纹的观测光路,其不仅可以用来判断掩模与样品的装夹好坏及它们之间的不平行度,而且可以应用于曝光过程中热应力导致变形的实时监测。该方法不仅有效的保护了掩模,提高了其寿命,降低了工艺成本,而且实现小且均匀的间隙控制,提高了X射线曝光中图形复制精度。
     2.针对大高宽比纳米结构的干燥过程中产生的问题,提出了一种辅助干燥方法,并对该方法进行了理论分析和实验研究。
     本部分的论文主要工作是对大高宽比纳米结构图形的变形或坍塌进行了理论分析和实验研究。分析了大高宽比纳米结构在定影液干燥过程中发生变形或者坍塌的原因,及影响其变形量大小或者坍塌的相关图形结构参数。基于有限元分析软件ANSYS及经典梁摆动模型,计算了大高宽比纳米结构受表面张力作用下不同高宽比和占空比的变形量,给出了其临界高宽比值。提出了一种辅助干燥方法,建立了物理模型,对其作了分析和理论推导,并利用有限元软件ANSYS计算了使用辅助干燥方法情况下不同结构参数图形的变形量。通过对经典梁摆动模型和辅助干燥方法物理模型进行了比较,使用辅助干燥方法可制作的高宽比是原来未使用该方法的2.6倍。基于对图形结构变形或者坍塌的充分理论分析,还实施实验进行了验证,实现了高宽比为16.7的150纳米光栅的制作。实验有效的验证辅助干燥方法可行性,减小了图形的变形量,提高了图形的高宽比。此外,还对该方法进行了拓展,分析了封闭结构的变形,优化了辅助干燥方法的辅助结构,并利用有限元法计算了使用辅助干燥方法情况下封闭结构的变形量。
     3.基于平面波展开法,二维聚合物光子晶体激光器的设计。
     介绍了光子晶体的理论研究方法及应用领域。聚合物光子晶体以其具有易于加工、激射波长选择范围宽等特点备受研究者的关注。罗丹明6G是最为常用的荧光材料,研究了其发光特性,并对其荧光谱线进行了实验研究。但是由于聚合物光子晶体材料本身具有较小的折射率差,无法形成能带,群速度异常是聚合物光子晶体器件工作的主要原理。此外,还介绍了光子晶体的理论研究方法及其应用领域,并对平面波展开法进行了详细说明。基于能带理论中群速度反常现象和罗丹明6G的荧光特性,利用平面波展开法计算了三角晶格、蜂窝晶格和正方晶格二维光子晶体结构能带曲线。基于平面波展开法,研究了介质填充率和有效折射率差对能带及能带走势的影响作用。
     4.大高宽比二维聚合物纳米光子晶体激光器的制作、初步测试及设计优化
     首先提出了电子束曝光技术与X射线曝光技术相结合制作大高宽比二维聚合物纳米光子晶体激光器。该方法利用电子束曝光技术具有高分辨率的特点和X射线曝光技术具有高效率及大高宽比等特点。介绍了电子束曝光工艺及电子束曝光工艺中的邻近效应和图形拼接问题,并图形邻近效应的校正技术。研究了在制作同步辐射X射线掩模时电子束曝光技术的邻近效应。
     利用电子束曝光技术和电镀金工艺制作出周期为300nm,占空比为1:1的X射线光栅掩模及周期为800nm及填充率为0.25的光子晶体X射线掩模,并利用制作的光子晶体X射线曝光成果复制了不同晶格二维聚合物光子晶体结构。在二维聚合物光子晶体激光器中,罗丹明6G是激光工作物质,聚合物光子晶体结构是谐振腔。罗丹明6G被激发后,其谱线会被光子晶体结构调制,并在结构来回震荡,最后激射。搭建了聚合物光子晶体激光器测试平台,研究了不同烘烤温度对PMMA掺杂罗丹明6G荧光谱线的影响。通过对不同晶格的二维聚合物光子晶体激光器的性能表征,发现激射的点与设计基本保持一致。但是由于设计可能的激射点复杂且较多,激射不明显。重新设计并制作了周期为400nm,填充约为0.25的三角晶格及蜂窝晶格光子晶体掩模及大高宽比纳米结构。
With the development of nanometer science and technology, we have been living in the society with the hot topic of nanometer. Nanometer science and technology includes a number of areas, such as nano-material, nano-electronics, nano-optics (nano-photonics), nanotechnology, nanometer machinery and nanofabrication technologies. Nano-optics is a hotspot in recent years, which includes nanometer level limitation of materials, nanometer restrictions of the radiation, nano-processing technology and nano-devices. Nanofabrication technology is an important approach to carry out the development of nanometer science and technology. Since the discovery of X-ray, technologies related to X-ray have become one of the important tools for the study and research. In the1970, Smith of MIT developed X-ray lithography, which broke the resolution limitation of the traditional optical lithography. In this paper, fabrication processes of nano-optical devices with high aspect ratio were studied. Based on the fabrication processes, high aspect ratio polymer photonic crystal laser was fabricated.
     Based on X-ray lithography and soft X-ray lithography station of National Synchrotron Radiation Laboratory (NSRL), the main contents of this thesis are summarized as follows:
     1. A method of gap control for X-ray lithography has been proposed based on the principle of equal thickness interference. Experimental research has also been applied to verify it in the soft X-ray lithography station of NSRL.
     Principle and component of X-ray lithography has been introduced. Application of X-ray lithography need three parts, which are X-ray source, high precision X-ray mask and high resolution X-ray resist. Based on the technique parameters of soft X-ray lithography of NSRL, a method of controlling the gap between the mask and the sample has been proposed in this paper. This method can be divided in two steps. Firstly, an accessorial structure with the height of the gap is fabricated on the mask support to achieve a small gap. Then the principle of equal-thickness interference is applied to adjust the parallelism to ensure a uniform gap between the mask and the wafer. A detection light path was also established in the paper. It not only can be used to just the parallelism between the mask and the sample, but also can be used to detect stress of the mask caused by the heat during the lithography. This method is not only simple and low cost, but also can control a small and uniform gap accurately, so that the quality of pattern replication during X-ray lithography can be improved and the mask can also be protected. Based on this method, a small and uniform gap is realized and high aspect ratio nanostructures (HARNS) are fabricated.
     2. In order to solve the problem of deformation or collapse during the drying of high aspect ratio nanostructures, the method named auxiliary drying has been proposed. Theoretical analysis and experimental research has been carried out in the paper to explain and verify this method.
     This part of the paper focused on theoretical analysis and experimental research on the deformation or collapse of high aspect ratio nanostructures. Theoretical analysis was carried out to achieve the reason of the deformation or collapse during the drying high aspect ratio nanostructures. Parameters related to nanostructures which influenced the deformation or pattern collapse have been also discussed. Then, based on the model of beam sway and ANSYS, deformations of high aspect ratio nanostructures caused by surface tension were calculated in condition of patterns with different high aspect ratios and pitches. A method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased2.6times without pattern collapse. Nanostructures with line width of150nm and aspect ratio of16.7were fabricated after fully studying the theory of pattern collapse or deformation. The experiment validated the feasibility of auxiliary drying method, which reduces the pattern deformation and increases the aspect ratio of nanostructures. In addition, the method of auxiliary drying was enlarged to be suitable for closed structures. Auxiliary structure was also optimized. Deformation of closed structures is calculated under the condition of using auxiliary drying by finite element method.
     3. Based on the plane wave expansion method, two dimensional polymer photonic crystal laser was designed.
     Theoretical methods and applications of photonic crystal were introduced. Polymer photonic crystal has been paid much attention because it has merits such as ease fabrication and a wide range of the lasing wavelength. Rhodamine6G is the most commonly used gain material. Its properties and fluorescence spectrum have been experimentally studied. Band gap cannot be formed due to small refractive index difference. Principle of group velocity anomalies was used to explain how polymer photonic crystal devices work. Energy bands of the triangle lattice, the honeycomb lattice and the square lattice were calculated by using the plane wave expansion method. Compared with the other energy bands, energy band of the triangle lattice is relatively simple. Types of lattices and refractive index difference are the main factors which influence energy band of photonic crystal structures. Therefore, they were carefully studied.
     4. Fabrication and preliminary test of two dimensional polymer high aspect ratio photonic crystal laser. Based on results of test and analyze the spectrum of photonic crystal laser, polymer photonic crystal laser was optimized by redesigning the structure parameters.
     Firstly, electron beam lithography combined with X-ray lithography was applied to fabricate two dimensional polymer high aspect ratio photonic crystal laser. The method has utilized high resolution of electron beam lithography and X-ray lithography with high efficiency and the merit of fabricating high aspect ratio structures. Processes of electron beam lithography, proximity effect and pattern stitching of electron beam lithography have been introduced. Correction technology of proximity effect was also studied in this paper to achieve patterns with high quality.
     X-ray photonic crystal mask with the period of800nm and filling rate of0.25was fabricated by electron beam lithography combined with gold plating. After high resolution masks were fabricated, X-ray lithography was applied to achieve high aspect ratio photonic crystal structures. Rhodamine6G was used as the gain material in the polymer photonic crystal laser. Rhodamine6G is activated by the laser. The spectrum of rhodamine6G is modulated by photonic crystal structures. The platform was established to test the performance of two dimensional high aspect ratio polymer photonic crystal laser. Different baking temperatures for PMMA doped with rhodamine6G were studied, which influenced the fluorescence spectrum of rhodamine6G. After testing the spectrum of two dimensional polymer photonic crystal laser with different lattices, it found that the property is consistent with the design. Because the emission points in the design are complicated, the emission is not clear. Therefore, photonic crystals with the period of400nm and filling rate of0.25were redesigned. High aspect ratio photonic crystal structures were also fabricated by X-ray lithography.
引文
Ahn, S. H. and L. J. Guo.2009. Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography:A Step toward High-Throughput Application of Continuous Nanoimprinting[J]. Acs Nano,3(8):2304-2310.
    Aizaki, N.1979. Proximity Effect Dependence on Substrate Material[J]. Journal of Vacuum Science & Technology,16(6):1726-1733.
    Altissimo, M., F. Romanato, et al.2002. X-ray lithography fabrication of a zone plate for X-rays in the range from 15 to 30 keV[J]. Microelectronic Engineering,61-2: 173-177.
    Atoda, N., H. Kawakatsu, et al.1983. Diffraction Effects on Pattern Replication with Synchrotron Radiation[J]. Journal of Vacuum Science & Technology B,1(4): 1267-1270.
    Bendickson, J. M., J. P. Dowling, et al.1996. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures[J]. Physical Review E,53(4):4107-4121.
    Bernacki, S. E. and H. I. Smith.1974. X-Ray Lithography Applied to Silicon Device Fabrication[J]. Journal of the Electrochemical Society,121(3):C106-C106.
    Bernacki, S. E. and H. I. Smith.1975. Fabrication of Silicon Mos Devices Using X-Ray Lithography [J]. Ieee Transactions on Electron Devices, Ed22(7): 421-428.
    Bose, R., D. Sridharan, et al.2011. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide [J]. Optics Express,19(6):5398-5409.
    Chang, T. H. P.1975. Proximity Effect in Electron-Beam Lithography[J]. Journal of Vacuum Science & Technology,12(6):1271-1275.
    Chen, Y. T., T. N. Lo, et al.2008. Full-field hard x-ray microscopy below 30nm:a challenging nanofabrication achievement[J]. Nanotechnology,19(39).
    Cho, C. O., J. Jeong, et al.2005. Photonic crystal band edge laser array with a holographically generated square-lattice pattern[J]. Applied Physics Letters, 87(16).
    Chou, S. Y., P. R. Krauss, et al.1995. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters,67(21):3114.
    Christiansen, M. B., T. Buss, et al.2010. Single mode dye-doped polymer photonic crystal lasers[J]. Journal of Micromechanics and Microengineering,20(11).
    Colburn, M., S. Johnson, et al.1999. Step and flash imprint lithography:A new approach to high-resolution patterning[J]. Emerging Lithographic Technologies Iii, Pts 1 and 2,3676:379-389.
    Dalichaouch, R., J. P. Armstrong, et al.1991. Microwave Localization by 2-Dimensional Random Scattering [J]. Nature,354(6348):53-55.
    Divliansky, I. B., A. Shishido, et al.2001. Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe[J]. Applied Physics Letters,79(21):3392-3394.
    Everhart, T. E.1977. Electron-Beam Lithography [J]. Bulletin of the American Physical Society,22(3):276-276.
    Feiertag, G., W. Ehrfeld, et al.1997. Fabrication of photonic crystals by deep x-ray lithography [J]. Applied Physics Letters,71(11):1441-1443.
    Feng, Y., M. Feser, et al.2007. Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications[J]. Journal of Vacuum Science & Technology B,25(6):2004-2007.
    Gu, Z. Z., Q. B. Meng, et al.2001. Self-assembly of submicron particles between electrodes[J]. Journal of Applied Physics,90(4):2042-2044.
    Guo, J. Z. Y. and F. Cerrina.1993. Modeling X-Ray Proximity Lithography [J]. Ibm Journal of Research and Development,37(3):331-349.
    Guo, S. P. and S. Albin.2003. Simple plane wave implementation for photonic crystal calculations [J]. Optics Express,11(2):167-175.
    Gwyn, C. W., R. Stulen, et al.1998. Extreme ultraviolet lithography [J]. Journal of Vacuum Science & Technology B,16(6):3142-3149.
    Hawryluk, A. M. and L. G. Seppala.1988. Soft-X-Ray Projection Lithography Using an X-Ray Reduction Camera[J]. Journal of Vacuum Science & Technology B, 6(6):2162-2166.
    Hessel, C. M., E. J. Henderson, et al.2006. Hydrogen silsesquioxane:A molecular precursor for nanocrystalline Si-SiO(2) composites and freestanding hydride-surface-terminated silicon nanoparticles[J]. Chemistry of Materials, 18(26):6139-6146.
    Heuberger, A.1985. X-Ray-Lithography with Synchrotron Radiation[J]. Zeitschrift Fur Physik B-Condensed Matter,61(4):473-476.
    Hirayama, H., T. Hamano, et al.1996. Novel surface emitting laser diode using photonic band-gap crystal cavity[J]. Applied Physics Letters,69(6):791-793.
    Hirayama, H., T. Hamano, et al.1998. Novel spontaneous emission control using 3-dimensional photonic bandgap crystal cavity[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,51(1-3):99-102.
    Ho, K. M., C. T. Chan, et al.1990. Existence of a Photonic Gap in Periodic Dielectric Structures[J]. Physical Review Letters,65(25):3152-3155.
    Holgado, M., F. Garcia-Santamaria, et al.1999. Electrophoretic deposition to control artificial opal growth[J]. Langmuir,15(14):4701-4704.
    Hoole, A. C. F., M. E. Welland, et al.1997. Negative PMMA as a high-resolution resist-the limits and possibilities[J]. Semiconductor Science and Technology, 12(9):1166-1170.
    Hubner, H.1992. Strategy for the Correction of the Proximity Effect in Electron-Beam Lithography [J]. Microelectronic Engineering,18(4):275-293.
    Hull, R., T. Chraska, et al.2002. Microcontact printing:new mastering and transfer techniques for high throughput, resolution and depth of focus[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,19(1-2): 383-392.
    Initiative, N. R. C. C. f. t. R. o. t. N. N.2002. Small wonders, endless frontiers:A review of the national nanotechnology initiative[M]. City:National Academies Press.
    J.M. Carter, R. C. F., T.A. Savas, M.E. Walsh, and T.B. O'Reilly.2003. Interference Lithography [J].
    Jager, R. and M. C. Riedl.2011. MBE growth of VCSELs for high volume applications[J]. Journal of Crystal Growth,323(1):434-437.
    Jin, F., C. F. Li, et al.2006. Laser emission from dye-doped polymer film in opal photonic crystal cavity[J]. Applied Physics Letters,89(24).
    John, S.1987. Strong Localization of Photons in Certain Disordered Dielectric Superlattices[J]. Physical Review Letters,58(23):2486-2489.
    Junarsa, I., M. P. Stoykovich, et al.2004. The use of surfactant in the rinse to improve collapse behavior of chemically amplified photoresists [J].842-849.
    Kim, D. U., S. Kim, et al.2011. Free-Standing GaN-Based Photonic Crystal Band-Edge Laser[J]. Ieee Photonics Technology Letters,23(20):1454-1456.
    Koshelev, K., M. A. Mohammad, et al.2011. Comparison between ZEP and PMMA resists for nanoscale electron beam lithography experimentally and by numerical modeling[J]. Journal of Vacuum Science & Technology B,29(6).
    Krauss, T. F., B. Vogele, et al.1997. Waveguide microcavity based on photonic microstructures[J]. Ieee Photonics Technology Letters,9(2):176-178.
    Kupper, D., D. Kupper, et al.2004. Megasonic-assisted development of nanostructures:Investigations on high aspect ratio nanoholes[J]. Applied Physics Letters,85(21):5055-5057.
    Kupper, D., D. Kupper, et al.2006. Megasonic-assisted development of nanostructures[J]. Journal of Vacuum Science & Technology B,24(4): 1827-1832.
    Kyser, D. F. and C. H. Ting.1979. Voltage Dependence of Proximity Effects in Electron-Beam Lithography[J]. Journal of Vacuum Science & Technology,16(6): 1759-1763.
    Leung, K. M. and Y. F. Liu.1990. Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media[J]. Physical Review Letters, 65(21):2646-2649.
    Leung, K. M. and Y. Qiu.1993. Multiple-Scattering Calculation of the 2-Dimensional Photonic Band-Structure[J]. Physical Review B,48(11):7767-7771.
    Li, M. T., J. A. Wang, et al.2000. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography[J]. Applied Physics Letters,76(6):673-675.
    Liu, L. H., G. Liu, et al.2008. Fabrication of Fresnel zone plates with high aspect ratio by soft X-ray lithography[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,14(9-11): 1251-1255.
    Loncar, M., T. Yoshie, et al.2002. Low-threshold photonic crystal laser[J]. Applied Physics Letters,81(15):2680-2682.
    M. L. Schattenburg, R. J. A., R. C. Fleming, I. Plotnik, J. Porter, and H. I. Smith.1994. Fabrication of high energy x-ray transmission gratings for AXAF[J]. SPIE,2280: 10.
    Maboudian, R. and R. T. Howe.1997. Critical review:Adhesion in surface micromechanical structures [J]. Journal of Vacuum Science & Technology B, 15(1):1-20.
    Maldonado, J. R.1990. X-Ray-Lithography, Where It Is Now, and Where It Is Going[J]. Journal of Electronic Materials,19(7):699-709.
    McNamara, S.2011. Development rate of PMMA exposed to synchrotron x-ray radiation for LIGA applications[J]. Journal of Micromechanics and Microengineering,21(1).
    Mekis, A., J. C. Chen, et al.1996. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters,77(18):3787-3790.
    Meseguer, F., A. Blanco, et al.2002. Synthesis of inverse opals[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,202(2-3):281-290.
    Namatsu, H.2002. Supercritical drying for nanostructure fabrication [J]. Journal of Photopolymer Science and Technology,15(3):381-388.
    Namatsu, H., K. Kurihara, et al.1995. Dimensional Limitations of Silicon Nanolines Resulting from Pattern Distortion Due to Surface-Tension of Rinse Water [J]. Applied Physics Letters,66(20):2655-2657.
    Ohki, S. and S. Ishihara.1996. An overview of x-ray lithography [J]. Microelectronic Engineering,30(1-4):171-178.
    Ouano, A. C.1983. Dependence of Dissolution Rate on Processing and Molecular-Parameters of Resist[J]. Abstracts of Papers of the American Chemical Society,185(Mar):9-Orpl.
    Parikh, M.1978. Proximity Effect Corrections in Electron-Beam Lithography [J]. Journal of the Electrochemical Society,125(3):C157-C157.
    Parikh, M. and D. F. Kyser.1979. Energy Deposition Functions in Electron Resist Films on Substrates[J]. Journal of Applied Physics,50(2):1104-1111.
    Pendry, J. B.1996. Calculating photonic band structure[J]. Journal of Physics-Condensed Matter,8(9):1085-1108.
    Pendry, J. B. and A. Mackinnon.1992. Calculation of Photon Dispersion-Relations [J]. Physical Review Letters,69(19):2772-2775.
    Purcell, E. M.1946. Spontaneous Emission Probabilities at Radio Frequencies [J]. Physical Review,69(11-1):681-681.
    Raccurt, O., F. Tardif, et al.2004. Influence of liquid surface tension on stiction of SOI MEMS[J]. Journal of Micromechanics and Microengineering,14(7): 1083-1090.
    Reboud, V., P. Lovera, et al.2007. Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography[J]. Applied Physics Letters,91(15).
    Resnick, D. J., W. J. Dauksher, et al.2003. Imprint lithography:Lab curiosity or the real NGL?[J]. Emerging Lithographic Technologies Vii, Pts 1 and 2,5037: 12-23.
    Rooks, M. J., E. Kratschmer, et al.2002. Low stress development of poly(methylmethacrylate) for high aspect ratio structures [J]. Journal of Vacuum Science & Technology B,20(6):2937-2941.
    Seal, S. and J. N. Das.1994. Multiple-Scattering Calculation for Ionization of Helium-Atoms by Electrons at Intermediate Energies[J]. Australian Journal of Physics,47(1):49-57.
    Seo, E. and O. Kim.2000. Dose and shape modification proximity effect correction for forward-scattering range scale features in electron beam lithography[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,39(12B):6827-6830.
    Sewell, H.1978. Control of Pattern Dimensions in Electron Lithography[J]. Journal of Vacuum Science & Technology,15(3):927-930.
    Shen, H. J., H. P. Tian, et al.2010. A novel photonic crystal slab waveguide with dispersion less slow light[J]. Acta Physica Sinica,59(4):2820-2826.
    Shen, Y. Z., C. S. Friend, et al.2000. Nanophotonics:Interactions, materials, and applications (vol 104B, pg 7583,2000)[J]. Journal of Physical Chemistry B, 104(47):11440-11440.
    Smith, H. I.1995.100 years of x rays:Impact on micro- and nanofabrication[J]. Journal of Vacuum Science & Technology B,13(6):2323-2328.
    Smith, J. R. and J. G. Gay.1974. Surface Electronic-Structure Via Generalized Wannier Functions[J]. Journal of Vacuum Science & Technology,11(1): 272-272.
    Sun, X., S. F. You, et al.2006. Simulation of the proximity effect of electron beam lithography [J]. Acta Physica Sinica,55(1):148-154.
    Tanaka, T., M. Morigami, et al.1993. Mechanism of Resist Pattern Collapse[J]. Journal of the Electrochemical Society,140(7):L115-L116.
    Tanaka, T., M. Morigami, et al.1993. Mechanism of Resist Pattern Collapse during Development Process[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,32(12B):6059-6064.
    Tanaka, T., M. Morigami, et al.1994. Prevention of Resist Pattern Collapse by Resist Heating during Rinsing[J]. Journal of the Electrochemical Society,141(12): L169-L171.
    Vladimirsky, Y., A. Bourdillon, et al.1999. Demagnification in proximity x-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction[J]. Journal of Physics D-Applied Physics,32(22):L114-L118.
    Vora, K. D., A. G. Peele, et al.2007. Fabrication of support structures to prevent SU-8 stiction in high aspect ratio structures[J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,13(5-6):487-493.
    Vukusic, P. and I. Hooper.2005. Directionally controlled fluorescence emission in butterflies[J]. Science,310(5751):1151-1151.
    Wang, D. Q., L. F. Cao, et al.2006. Microzone plates with high-aspect ratio fabricated by e-beam and x-ray lithography [J]. Journal of Microlithography Microfabrication and Microsystems,5(1).
    Ward, A. J. and J. B. Pendry.1998. Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method[J]. Physical Review B, 58(11):7252-7259.
    Welch, V. L. and J. P. Vigneron.2007. Beyond butterflies-the diversity of biological photonic crystals[J]. Optical and Quantum Electronics,39(4-6):295-303.
    Wu, W., E. Kim, et al.2007. Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography [J]. Applied Physics a-Materials Science & Processing,87(2):143-150.
    Xu, X.2007. Photon localization in amorphous photonic crystal[J]. Applied Physics B-Lasers and Optics,86(3):467-471.
    Xu, Z. C., S. Q. Xie, et al.2010. Fabrication and characterization of high extinction ratio transmission polarizers [J]. Microelectronic Engineering,87(5-8): 1005-1007.
    Xu., Y., H.-B. Sun., et al.2001. Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips[J]. J. Opt. Soc.Am. B,18:1084-1090.
    Yablonovitch, E.1987. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Physical Review Letters,58(20):2059-2062.
    Yokoo, A., H. Suzuki, et al.2004. Organic photonic crystal band edge laser fabricated by direct nanoprinting[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,43(6B):4009-4011.
    Zhang, P., J. M. Jaramillo, et al.2004. Surface conditioning solutions for pattern collapse reduction[J].807-812.
    Zhang, W. Y., C. T. Chan, et al.2001. Multiple scattering theory and its application to photonic band gap systems consisting of coated spheres[J]. Optics Express,8(3): 203-208.
    Zhu, X., C. Xie, et al.2007. Fabrication of 200 nm period x-ray transmission gratings using electron beam lithography [J].6832:68320V-68320V-68327.
    Ziler, I., J. E. F. Frost, et al.1996. Crosslinked PMMA as a high-resolution negative resist for electron beam lithography and applications for physics of low-dimensional structures [J]. Semiconductor Science and Technology,11(8): 1235-1238.
    柳龙华.2009.X射线显微成像纳米光学元件制作与应用研究[D].合肥: 中国科学技术大学.
    段辉高.2010.10纳米以下图形电子束曝光的研究[D].兰州:兰州大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700