基于提升小波的数据处理及过程监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业具有规模大、结构复杂,以及现场环境恶劣等特点,如何提取感兴趣的工业数据信息以及对生产过程的监测成为具有挑战性的热点课题之一。小波分析是傅立叶分析之后一种新兴的信号处理技术,在时频分析上具有独特优势,提升小波则为小波的构造引入了更多的灵活性。本文结合小波分析工具对工业数据的滤波、压缩,以及过程监测几个问题进行了研究。
     1. 鲁棒滤波问题。数据去噪是数据预处理的重要组成,传统的数据滤波方法有维纳滤波和卡尔曼滤波,由于在线的工业数据去噪过程中强调滤波算法的在线完成以及工业数据本身具有的不确定性,以上两种方法在工程实际应用中很难胜任。小波去噪近年来被广泛研究和应用,但存在几个问题要解决:传统小波变换作为一种线性变换不具备抗差性,对恶劣环境下受粗差干扰以及加性噪声干扰的数据滤波效果很差;区间小波在解决边界效应的同时会带来额外的计算复杂性。为了解决上述问题,本文结合截尾中值滤波器和提升格式提出了一种鲁棒提升小波框架。这种新的方法通过在各级的提升环节中加入截尾中值滤波器来消除短时粗差和加性噪声的干扰,同时利用提升格式下的插值小波来解决边界效应的问题。同时由于提升小波有原位计算的特点和更少的计算量,使其在工程实施中更具优势。
     2.一种避免滤波器穿越信号突变边缘的自适应提升小波的设计问题。数据压缩也是数据处理中的一个重要部分,提升小波在构造小波上具有独特优势,可以方便的根据信号的空间特性以及数据处理的要求来设计特定的小波。我们首先研究了空间自适应提升小波完全重构的充分条件,然后利用小波系数不重复进入多尺度分解的这一特点,设计出了将自适应信息无冗余的存储于小波系数的均值插值小波变换,对于一维工业数据的阈值压缩以及二维图像数据的有损编码压缩可以保证其逆变换的稳定性。仿真结果表明,这种方法在保留工业数据重要突变信息的同时能提高压缩比,对于图像则能更好的突出边缘信息。
     3.如何评价压缩对工业过程监测影响的问题。首先分析了均方误差以及单点误差作为传统的压缩评价标准的不足,指出它们并不适合评价压缩对后续处理过程的影响;然后结合主元分析(PCA)的过程监测方法提出了一种新的压缩评价
The large scale and complex structure of industrial process, as well as the uncertainty of real environment, make the acquisition of interesting data and implementation of process monitoring system as one of challenges in the fields of control. Wavelet analysis is a powerful tool in the field of signal processing after Fourier analysis;lifting scheme brings the flexibility into the construction of wavelet. In this thesis, we discuss the problems of data denoising, data compression and process monitoring with the tool of wavelet.1. The problem of robust data denoising. Data denoising is an important part of data preprocessing. The traditional data denoising approaches include Winner filter and Kalman filter, but the two methods are inadequate to be applied at the on-line denosing, due to the uncertainty of the process data and the need of computation in time. The wavelet method has been widely used to deal with data denosing in recent years for it's characteristic in time-frequency domain. But there exist two problems should to be solved for on-line process data denosing. Firstly, the wavelet transform is a linearity transform, so it can not resist the disturbance of gross error and combined distribution;secondly, wavelet filters are noncausal in nature and require future measured data for calculating the current wavelet coefficients. Although the interval-wavelet can eliminate the boundary errors and overcome the time delay, it also introduce the additional complexity of calculation. To deal with the problems mentioned above, a generalized robust lifting wavelet filter is proposed in this thesis which includes an Alpha-trimmed means filter during each cascade steps and can solves the boundary effects by the boundary average-interpolating lifting wavelet.2. The design problem of an edge-avoided adaptive wavelet of lifting scheme. Data compression is also an important part of data processing. Lifting scheme brings the flexibility into the construction of wavelet, we can design appropriate wavelet filter according to the local space characteristic of the signal or the special objective of data processing. At first, we give the sufficient condition of perfectly reconstruction
    of space-adaptive lifting wavelet, and then we design the adaptive average interpolating wavelet, which store the sign of adaptive information in the wavelet coefficients. No matter the shrinkage compression of process data or the lossy coding compression of image, the method can guarantee the stability of inverse transform. The simulation example demonstrates that the method can improve the compression ratio when preserving the important information in process data, and emphatically preserve the edge information of image under lossy coding compression.3. The problem of how to evaluate the impact of compression on process analyses. We first give an analysis of the two classic criterions: root mean-square error (RMSE) and local point error (LPE), and indicate that the two are unsuitable to describe the impact on data-driven analysis using the compression data. A new impact assessment criterion, detection delay, is suggested. Then the criterion is used in the usual statistical monitoring method principle component analysis (PCA). The theory analysis approves that the infection of the statistic characteristic of process data, likely mean value and variance, will affect the performance of PCA;the simulation on the Tennessee Eastman process also improves that compression will bring remarkable infection on the monitoring of some faults.4. The on-line classification problem of process trend analysis. The hidden Markov tree (HMT) model makes the trend representation, trend feature extraction and the model training all together. It is hard to give a clear classification during the transitions of process state if we use only the scale coefficients to model the process signal, although it works at the classification of stable state of operation. Considering the wavelet coefficients are sparse and characterize the transient information of the process signal, we introduce a novel method of HMT construction, which uses the selective large wavelet coefficients and all the scale coefficients. As the introducing of large wavelet coefficients, we can get the more accurate description of the transitions of process. We also offer the training algorithm, which is an amelioration of the classic EM algorithm, and give an analysis of computation complexity of on-line classification.
引文
Abramovich F.Wavelet Thresholding via a Bayesian Approach.J.R.Statist.Soc.B. 1998,60:725~749
    Aexandre A, Marie F, Kai S, Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold, Appl. Comput. Harmon. Anal., 2005, 18, 177~185
    Akbaryan F, Bishnoi P.R, Fault diagnosis of multivariate systems using pattern recognition and multisensor data analysis technique. Computers & Chemical Engineering, 2001, 25, 1313~1339.
    Akbaryan F., Bishnoi P.R., Smooth representation of trends by a wavelet-based technique, Compurers and chemical engineering, 2000, 24, 1913~1943.
    Alin Achim, Panagiotis Tsakalides, Anastasios.SAR Imge Denoising via Bayesian Wavelet Shrinkage based on Heavy-Tailed Modeling.IEEE Transactions on G Geoscience and Remote Sensing.2003, 41(8): 1773~1784
    Altmann J., Mathew J., Multiple band-pass autoregressive demodulation for rolling-element bearing fault diagnosis, Mechanical Systems and Signal Processing, 2001, 15(5), 963~977.
    Anandakrishnan S, Rajagopalan S, Monitoring transitions in chemical plants using enhanced trend analysis, Computers and chemical engineering, 2003, 27,1455~1472.
    Antoniou I., Gustafson K., Wavelets and stochastic processes, Mathematics and Computers in Simulation, 1999, 49, 81~104.
    Aradhye H.B., Bakshi B.R., Multiscale SPC using wavelets: theoretical analysis and properties, AIChE Journal, 2003, 49(4), 939~958.
    AspenTech, Analysis of data storage technologies for the management of real-time process manufacturing data, from http://www.advanced-energy.com/upload/ symphony_wp_infoplus.pdf
    Averbuch A., Zheludev V.A., Lifting scheme for biorthogonal multiwavelets originated from hermite splines, IEEE Transcactions on signal processing, 2002,50(3), 487-500.
    Babiner L.R, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 1989, 77(2), 257-286.
    Bakhtazad A, Palazoglu A, Romagnoli J.A, Detection and classification of abnormal process situations using multidimensional wavelet domain hidden Markov trees, Computers and Chiemical Engineering, 2000, 24, 769-775.
    Bakshi B.R., Stephanopulos G., Compression of chemical process data by functional approximation and feature extraction, American Institute of Chemical Engineering Journal, 1996, 42(2), 477-492.
    Bakshi B.R., Stephanopulos G., Representation of process trends III, Multiscale extraction of trends from process data, Computer Chemical Engineering, 1994, 18(4), 267-302
    Bakshi B.R., Multiscale PCA with application to mulitivariate statistical process monitoring, AIChE Journal, 1998,44(7), 1596-1610.
    Bakshi B.R., Multiscale Analysis and Modeling Using Wavelets, Journal of Chemometrics, 1999, 13,415-434.
    Balchen J.G., How have we arrived at the present state of knowledge in process control? Is there a lesson to learned? Journal of Process Control, 1999, 9,101-108.
    Barrios F.A., Favila G.R., Rojas R., Adaptive robust filters in MRI, Medical imaging, 2002, Proceedins of SPIE, vol.4684
    Basseville M, Benveniste A, Kenneth C, et al, Modeling and estimation of multiresolution stochastic processes, IEEE Transaction on information theory,1992, 38(2). 766-784.
    Beatrice P.P., Piella G, Heijmans H., Adaptive update lifting with gradient criteria modeling high-order differences, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002,1417-1420.
    Brillinger D.R., Morettin P.A., Irizarry R.A., et al, Some wavelet based analyses of Markov chain data, Signal Processing, 80, 1607-1627
    Bristol E.H., Swing door trending: adaptive trending recording, Journal of Instrument Society of America: Research Triangle Park, 1990, 45(3), 749-754.
    Bruce A.G., Donoho D.L., Hong-Ye Gao, et al, Denoising and robust non-linear wavelet analysis, 1994, SPIE Wavelet Application, 2242, 325-336.
    Bui, T.D., Chen G, Translation-invariant denoising using multiwavelets, IEEE Transaction on Signal Processing, 1998, 46(12), 3414-3420.
    Burt P.J., Adelson.The Laplacian Pyramid as a Compact Image Code.IEEE Trans.Comm. 1983,31:532~540.
    Chang et al. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising. IEEE trans. Image Processing.2000, 9(9): 1522-1531
    Chang S G, Yu Bin, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Comopression. IEEE Trans. Image P rocessing.2000, 9 (9): 1532-1546
    Chang, S.L, Chang, K.L, Kyung, Y.Y, New lifting based structure for undecimated wavelet transform, IEEE Electronics letters, 2000, 36(22): 1894-1895.
    ChangTing Wang. Embedded sensing for on-line bearing condition monitoring and diagnosis. 2001 Phd thesis. University of Massachusetts.
    Chengjiang Lin, Bo Zhang, Yuan F. Zheng, Packed integer wavelet transform constructed by lifting scheme, IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(8), 1496-1501.
    Chen G.Y., Bui T.D., Krzyzak A., Image denoising with neighbour dependency and customized wavelet and threshold, Pattern Recognition, 38, 115-124.
    Cheng Li, Ping Li, Zhi-huan Song, Bearing fault detection via wavelet packet transform and rough set theory, IEEE Proceedings of the 5th World Congress on Intelligent Control and Automation 2004.
    Cheng Li, Ping Li, Zhi-huan Song, Process trends analysis via wavelet-domain hidden Markov models, IEEE Proceedings of the International Conference on Machine Learning and Cybernetics 2004
    Cheung J, Stephanopulous G, Representation of process trends Part I. A formal representation framework Computers & Chemical Engineering, 1990, 14(4):495-510.
    Cheung J, Stephanopulous G, Representation of process trends Part II. The problem of scale and qualitative scaling, Computers & Chemical Engineering, 1990, 14(4): 511-539.
    Ching P C, So H C, Wu S Q. On Wavelet Denoising and its Applications to Time Delay Estimation. IEEE Transaction on Signal Processing. 1999, 47(10):2879-2882
    Claypoole R., Baraniuk R., Nowak R., Adaptive wavelet transform vial lifting, Dept. El. Comput. Eng., Rice Univ., 1999
    Claypoole R, Baraniuk R, Nowak R, Nonlinear wavelet transforms for image coding via lifting IEEE Transactions on Image Processing, 2003, 12(12): 1449-1458
    Cohen A., Daubechies I., Feauveau J.C., Biothogonal bases of compactly supported wavelet, Commun. On Pure and Appl. Math, 1992, 45, 485-560.
    Coifman R.R., Wickerhauser M.V., Entropy-based algorithms for best basis selection. IEEE Transaction on Information Theory, 1992, 38(2), 713-718.
    Crouse M.S, Nowak R.D, Baraniuk R.G, Wavelet-based statistical signal processing using hidden Markov models, IEEE Transaction on signal processing, 1998,46(4), 886-902.
    Crouse M.S., Baraniuk R.G., Contextual hidden Markov models for wavelet-domain signal processing, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, 95 - 100.
    Dash S, Raghunathan R, Venkat V, Fuzzy-logic based trend classification for fault diagnosis of chemical process, Computers and chemical engineering, 2003, 27,347-362.
    Daubechies I, Orthogonal Bases of Compactly Supported Wavelets.Commu.Pure Appl. Math.. 1988,XL1:909-996
    Daubechies I, The Wavelet Transform, Time-frequency Localization and Signal Analysis.IEEE Trans. Infor.Theoty.1990, 36:961-1005
    Daubechies I, Ten lectures on wavelets. Philadephia: SIAM.1992
    Daubechies I, and Swelens W, Factoring wavelet transform into lifting steps. J. Fourier Anal. Appl., 1998, 4(3): 245-267
    Dasugpta N, Runkle P, Couchman L, et al, Dual hidden Markov model for characterizing wavelet coefficients from multi-aspect scattering data, Signal Processing, 2001, 81, 1303-1316.
    Depczynski, U., Sturm-liouville wavelets, Appl. Cpmput. Harm. Anal., 1998, 5,216-247.
    Depczynski, U., K. Jetter, K Molt, and A. niemoler, The fast wavelet transform on compact intervals as a tool in chemonetrics: II boundary effects, denoising and compression, Chem. Intell.Lab. Syst, 49, 151-161.
    Djuric P.M., Yufei Huang, Ghirmai T., Perfect sampling: a review and applications to signal processing, IEEE Transactions on Signal Processing, 2002, 50(2),337-344.
    Do, M.N, Vetterli, M., Contourlets: a new directional multiresolution image representation, 36th Asilomar conference on signals, systems and computers,2002
    Do, M.N.;Vetterli, M.;Pyramidal directional filter banks and curvelets, Proceedings.of International Conference on Image Processing, 158 - 161
    Donoho D.L, Johnstone I.M, Ideal Spatial Adaption by Wavelet Shrinkage. Biometrika.1994, 81(3): 425-455
    Donoho D.L, De-noising by Soft-thresholding. IEEE Trans. Inform. Theory. 1995, 41(3), 613-627.
    Donoho D., Interpolating wavelet transform, Journal of Appl. And Comput. Harmonic Analysis, 1996, 3, 388-392.
    Donoho D., Wedgelets: nearly minimax estimation of edges, Tech. Report. Statist. Depart. Stanford University, 1997.
    Doymaz F, Bakhtazad A, Romagnoli J.A, et al, Wavelet-based robust filtering of process data, Computers and chemical engineering, 2001, 25, 1549-1559.
    Dragotti P.L, Vetterli M, Wavelet footprints theory algorithms and applications, IEEE Transactions on signal processing, 2003, 51(5), 1306-1323.
    Emily K.L, Jye-Chyi L., James R.W., A wavelet-based procedure for process fault detection, IEEE Transaction on Semiconductor Manufactureing, 2002, 15(1),79-90.
    Ercelebi E., Electrocardiogram signals de-noising using lifting-based discrete wavelet transform, 2004, Computers in Biology and Medicine, 34, 479-493.
    Fan Guoliang;Xia Xiang Gen, Improved hidden Markov models in the wavelet-domain, IEEE Transactions on signal processing, 2001, 49(1), 115-120.
    Felix A, Yoav B, Adaptive thresholding of wavelet coefficients, Computational statistics & data analysis, 1996, 22, 351-361
    Fernandez G., Periaswamy S., LIFTPACK: A software package for wavelet transforms using wavelet, Tech. Rep. 1998,(ftp://ftp.math.sc./pub/imi_86/LIFTPACK.ps)
    Fumihiko Y, Takushi N, Appliction of the intelligent alarm system for the plant operation, Computers chem. Engng. 1997, 21, 625-630.
    Florencio and R. W. Schafer, Nonexpansive pyramid for image coding using a nonlinear filterbank, IEEE Transactions on Image Processing, 1998, 7, 246-252.
    Fujiwara, T., Koyama, M., and Koyama, M., and Nishitani, H.,Extraction of operating signatures by episodic representation. Advanced Control of Chemical Process. IFAC symposium, Kyoto, Japan, 1994, 333-338.
    Fujun He, Wengang Shi, WPT-SVMs Based Approach for fault detection of valves in reciprocating pumps, Proceeding of the American Control Conference, 2002, 4566-4570.
    Fu-xong Sun, Ji-dong Xiang, Tao Sun, et al, Algorithm of lifting wavelet package in real-time fault diagnosis system, Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003, 340 -344.
    Gopinath R.A., Odegard J.E., Burrus C.S., Optimal wavelet representation of signals and the wavelet sampling theorem, IEEE Transaction on Circuits and Systems, 1994,41(4), 262-277.
    Grace Chang, Bin Yu, Martin Vetterli.Wavelet Thresholding for Multiple Noisy Image Copies.IEEE Transactions on Image Processing.2000, 9(9): 1631-1635
    Heijmans H. J. A. M, and Goutsias J, Nonlinear nultiresolution signal decomposition schemes. Part I: Morphological pyramids, IEEE Transactions on Image Processing , 2000, 9(12), 1862-1876
    Heijmans H. J. A. M, and Goutsias J, Nonlinear nultiresolution signal decomposition schemes. Part II: Morphological wavelet, IEEE Transactions on Image Processing , 2000, 9(12), 1897-1913
    Heijmans H., Piella G, Pesquet P.B., Building adaptive 2D wavelet decomposition by update lifting, Proceedings of International Conference on Image Processing, 2002, 397-400.
    Heijmans H., Pesquet P.B., Piella G, Building nonredundant adaptive wavelets by update lifting, Appl. Comput. Harmon. Anal. 2005, 18, 252-281.
    Holmes C, Denison D.G.T., Perfect sampling for the wavelet reconstruction of signals, IEEE Transactions on Signal Processing, 2002, 50(2), 337-344.
    Hoon Yoo, Jechang Jeong, A unified framework for wavelet transforms based on the lifting scheme, 2001, 792-795.
    Huber P.J., Robust statistics, 1981, Wiley New York.
    Hyvarinen A., Oja E., Independent component analysis: algorithms and applications, Neural Networks, 2002, 13, 411-430.
    Jansen M., MalfaitM, Bultheel A. Generalized cross Validation for Wavelet Thresholding. Signal Processing. 1997,56:33-44
    Jean-Luc Starck;Candes, E.J.;Donoho, D.L.;The curvelet transform for image denoising, IEEE Transactions on Image Processing, 2002, 11 (6), 670-684.
    Jiang Z H, Gou X L.Wavelet of Vanishing Moments and Minimal Filter Norms and the Application to Image Compression. Sixth International, Symposium on Signal Processing and its Applications.2001: 108-111
    Johnstone I M, Silverman B W. Wavelet Threshold Estimators for data with Correlated Noise. J.R.Statist. Soc.Series B.1997, 59:319-351
    Jonghoon C, Joohwan C, Nonlinear filtering using the wavelet transform, Signal Processing, 2000, 80, 441-450.
    Jung.R.Wavelet Transform Approach to Adaptive Image Denoising and Enhancement. Journal of Electronic Imageing.2004, 13(2): 278-285
    Kano M, Nagao K, Hasebe S, et al, Comparison of statistical process monitoring methods application to the Eastman challenge problem, Computers and chemical engineering, 2000, 24, 175-181.
    Konstantinove, K.B., and Yoshida, T., Real-time quanlitative analysis of the temporal shapes of (bio)process variables. AIChE Journal, 1992, 38, 1703-1715.
    Kovacevic J., Sweldens W, Wavelet families of increasing order in arbitrary dimensions, IEEE Transactions on Image Processing, 2000, 9(3), 480-496.
    Krim H, Pesquet J C. On the Statistics of Best Bases Criteria. In: Antoniadis A. Oppenheim G edis Wavelet in Statistics of Lecture Notes in Statistics. New York.Springer-Verlag. 1995: 193-207
    Krim H, Schick I C. Minimax Description Length for Signal Denoising and Optimized representation. IEEE T rans. Info rmation Theory. 1999, 45 (3):898-908
    Lee, Jong-Min, Yoo, ChangKyoo, Lee, In-Beum, On-line monitoring of batch processes using multiway independent component analysis, Chemometrics and Intelligent Laboratory Systems, 2003, 71(2), 151-163
    Lee, Jong-Min, Yoo, ChangKyoo, Lee, In-Beum, Statistical process monitoring with independent component analysis, Journal of Process Control, 2004, 14(5),467-485
    Li Honggang, Qiao Wang and Lenan Wu, A Novel Design of Lifting Scheme from General Wavelet, IEEE Transactions on signal processing, 2001, 49(8):1714-1717
    Liao Hongyu, Mandal M.K., Bruce F.C., Efficient architectures for 1-D and 2-D lifting-based wavelet transforms, IEEE Transactions on Signal Processing, 2004, 52(5), 1315-1326.
    Li Cheng, Li Ping, Song Huan-zhi, Process trends analysis via wavelet-domain hidden Markov models. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 372-377.
    Li Cheng, Song Huan-zhi, Li Ping, Bearing fault detection via wavelet packet transform and rough set theory, Proceedings of the World Congress on Intelligent Control and Automation, 2004, 1663-1666.
    Lin, Weilu, Qian Yu, Li, Xiuxi, Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis, Computers and chemical engineering, 2000, 24(2-7), 423-429
    Liu B, Ling S.F, Gribonval R, Bearing failure detection using matching pursuit, NDT&E International, 2002, 35, 255-262.
    Lu, DY Kim, WA Pearlman, Wavelet compression of ECG signals by the setPartitioning in hierarchical trees (SPIHT) algorithm, IEEE Transactions on Biomedical Engineering, 2000,47, 849-856.
    Luettgen M.R., Karl W.C., Willsky A.S., et al, Multiscal representations of Markov random fields, IEEE Transactions on Signal Processing, 1993, 41(12), 3377-3389.
    Ma Xiaoyan, Yuan Jun quan, Xue Linguang, Signal reconstruction based on mean threshold wavelet packet de-noising. 5th International conference on signal processing proceedings, 2000.
    Maarten J., Richard B., Sridhar L., Multiscale approximation of piecewise smooth two-dimensional functions using normal triangulated meshes, Appl. Comput. Harmon. Anal. 2005, 19, 92-130.
    Mah R.S.H, Tamhane A.C, Tung S.H, et al, Process trending with piecewise linear smoothing, Computers and Chemical Engineering, 1995, 19, 129-137.
    Mallat S, A theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on PAMI.1989, 11(7): 674-693
    Mallat S, Sifen Zhong. Signal Characterization from Multiscale Edges. IEEE Proceedings of Conference on Pattern Recognition. 1990, 1:891-896
    Mallat S, Zero-crossing of a Wavelet Transform.IEEE Transaction on Infirmation Theory.l991,37(4): 1019-1033
    Mallat S, Sifen Zhong. Characterization of siganals from multiscale edges. IEEE Trans.PAMI.1992 (a), 14(7): 710-732
    Mallat S, Singularity Detection and Processing with Wavelets. IEEE Trans. Information Theory. 1992 (b), 38(2): 617-643
    Mallat S, A Wavelet Tour of Signal Processing. Boston. Academic Press. 1999
    Mcdarby G, Curran P., Heneghan C, et al, Necessary conditions on the lifting scheme for existence of wavelets in L_2(R), IEEE International Conference on Acoustics,Speech, and Signal Processing, 2000, 524-527.
    Metso Sensodec 6S Monitoring System 技术文档2002
    Misra M, Kumar, Qin S.J, et al, On-line data compression and error analysis using wavelet technology, AIChE Journal, 2000, 46, 119-132.
    Misra M, Kumar, Qin S.J, et al, Error based criterion for on-line wavelet data compression, Journal of Process Control, 2001, 11, 717-731.
    Misra M, Yue, H.H, Qin, S,J, et al, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Computers and chemical engineering, 2002, 26, 1281-1293.
    Mohaned N.N., Bakshi B.R., On-line multiscale filtering of random and gross errors without process models. AIChE Journal, 1999,45(5), 1041-1058.
    Montgomery, D.C., Introduction to statistical quality control, New York, John Wiley
    Mori K, Kasashima N, Yoshioka T, Ueno Y. Prediction of spalling on a ball bearing by applying discrete wavelet transform to vibration signals. Wear 1996;195:162-168
    Moulin P, Liu Juan. A nalysis of Multiresolution Image Denoising Schemes using Generalized-Gaussian and Complexity Priors. IEEE Trans. Information Theory.l999,45:909~919
    Neal C.G., Gary L.W., A theoretical analysis of the properties of median filters. IEEE Transaction on Acoustics, speech, and signal processing, 1981, 29(6), 1136-1140.
    Nimmo. I., Adequately address abnormal situation operations, Chem. Eng. Prog., 1995, 91(9), 36-45.
    Nina F.T, Shoukat M.A.A, Sirish L.S, The impact of compression on data-driven process analyses, Journal of process control, 2004, 14: 389-398.
    Nowak R.D, Multiscale Hidden Markov Models for Bayesian Image Analysis. Technical Report,.MSU-ENGR-004-98.Michigan State University. 1998
    Okechukwu C.U., Selective noise filtration of image signals using wavelet transform, Meausrement, 2004, 36, 279-287.
    OSI Software Inc., PI data storage component overview, Retrieved July 19th 2003, from http://www.osisoft.com/270.htm, 2002
    Patton R. J., Hou M., Design of fault detection and isolation observers: a matrix pencil approach. Automatica, 1999,34(9),1135-1140
    Paul P., Robust huber adaptive filter, IEEE Transaction on signal processing, 1999, 47(4), 1129-1133.
    Peng Zhang;Lin Ni;The curvelet transform based on finite ridgelet transform for image denoising, 7th International Conference on Signal Processing, 2004, 978-981
    Pesquet J.C., Krim H., Carfantan H., Time-invariant orthonormal wavelet representations, IEEE Transactions on Signal Processing, 1996, 44(8),1964-1970.
    Pesquet J.C., Krim H., Leporini D., Bayesian approach to best basis selection, Proceedings of IEEE, 1996
    Piella G, Henk J.A.M. Heijmans, Adaptive lifting schemes with perfect reconstruction. IEEE Transcations on Signal Processing.2002, 50(7): 1620-1630
    Piella G, Henk J.A.M. Heijmans, Quantization of adaptive wavelets for image compression, The 47~(th) IEEE International Midwest Symposium on circuits and systems, 2004
    Pinevro J, Klempnow A, Lescano V, Effectiveness of new spectral tools in the anomaly detection of rolling element bearings, Journal of Alloys and Compounds, 2000,310,276-279.
    Pittner S, Kamarthi S.V, Feature extraction from wavelet coefficients for pattern recognition tasks, IEEE Transactions on pattern analysis and machine intelligence, 1999, 21(1), 83-88.
    Pollak I., Nonlinear multiscale filtering, Signal Processing Magazine, 2002, 19(5), 26-36.
    Polyak N., Pearlman W.A., Wavelet decomposition and reconstruction using arbitrary kernels: A new approach, Proceedings. 1998 International Conference on Image Processing, 866-870
    Pottmann, M., and Seborg, D., Identification of non-linear processes using reciprocal multiquadric functions, Journal of Process Control, 1992, 2. 189-203.
    Prabhakar S, Mohanty A.R, Sekhar A.S, Application of discrete wavelet transform for detection of ball bearing race faults, Tribology International, 2002, 35, 793-800.
    Rabiner.L., A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE. 1989, 77, 257-285.
    Rajagopalan S, Pradeep V, Hiranmayee V, et al, A framework for managing transitions in chemical plants. Computers and chemical engineering, 2005, 29: 305-322.
    Redinbo R.G., Cung Nguye, Concurrent error detection in wavelet lifting transforms, IEEE Transactions on Computers, 2004, 53(10), 1291-1302.
    Rengaswamy, R., and Venkatasubramanian, V., A syntactic pattern-recognition approach for process monitoring and fault diagnosis. Engineering Application of Artificail Intelligence, 1995, 8, 35-51.
    Richard A.R., Homer F.W., Mixture densities, maximum likelihood and the EM algorithm,SIAM Review, 1984,26(2), 195-239.
    Rioul O., A Discrete-Time Multiresolution Theory.IEEE Transcations on Signal Processing. 1993, 41(8): 2591-2606
    Rioul O., Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on information theory, 1992, 38(2), 569-586.
    Romberg, Hyeokhp Choi, Richard G. Baraniuk. Bayesian Tree-Structured Image Modeling Using Wavelet-Domain Hidden Markov Models.IEEE Transaction on Image Processing.2001, 10(7): 1056-1067
    Romberg, J.K.;Wakin, M.;Baraniuk, R.;Multiscale wedgelet image analysis: fast decompositions and modeling, Proceedings. 2002 International Conference on Image Processing, 2002, 585 - 588
    Ronald A. DeVore, Bjorn Jawerth, and Bradley J. Lucier. Image compression through wavelet transform coding. IEEE Transactions on Information Theory, 1992, 38,719-746.
    Ronen O, Rohlicek J.R, Ostendorf M, Parameter estimation of dependence tree models using the EM algorithm, IEEE Signal processing letters, 1995, 2(8), 157-159.
    Roy M., Kumar V.R., Kulkarni B.D., et al, Simple denoising algorithm using wavelet transform, AIChE Journal, 1999, 2461-2466.
    Said A. and WA Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Transactions on Circuits and Systems for video Technology, 1996, 6(3), 243-250.
    Sang W.C., In-Beun Lee, Nonlinear dynamic process monitoring based on dynamic kernel PCA, Chemical engineering science, 2004, 59, 5897-5908.
    Sardy S., Tseng P., Bruce A., Robust wavelet denosing, IEEE Transactions on Signal Processing, 2001, 49(6), 1146-1152.
    Schroder P, Sweldens W., Spherical wavelets: Efficiently representation functions on the sphere. Computer Graphics Proceedings, (SIGGRAPH 95), 161-172
    See-May Phoong, Yuan-Pei Lin, MINLAB: Mininmum noise structure for ladder-based biorthogonal filter banks, IEEE Transaction on Signal Processing, 2000, 48(2), 465-476.
    Sersic D., Wavelet filter banks with adaptive number of zero moments, WCCC-ICSP 2000. 5th International Conference on Signal Processing, 325-328
    Sersic D., Integer to integer mapping wavelet filter bank with adaptive number of zero moments, IEEE Transactions on signal processing, 2000, 480-483.
    Shapiro J.M, Embedded image coding using zerotrees of wavelet coefficients, IEEE Transactions on signal processing, 1993, 41(12), 3445-3462.
    Shensa M.J., The discrete wavelet transform: wedding the A Trous and Mallat algorithms, IEEE Transactions on Signal Processing, 1992, 40(10), 2464-2482.
    Shukla, R.;Dragotti, PL.;Do, M.N.;Vetterli, M.;,Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images, IEEE Transactions on Image Processing, 2005, 14(3), 343 - 359
    Staszewski W J., Structural and mechanical damage detection using wavelets. The Shock and Vibration Digest, 1998;30 (6): 457-72.
    Staszewski W J., Wavelet based compression and feature selection for vibration analysis, Journal of Sound and Vibration, 1998, 211(5), 735-760.
    Stepien J., Zielinski T.P., Signal denoising using line-adaptive lifting wavelet transform, Instrumentation and Measurement Technology Conference, 2001, 2,1386-1391.
    Sun W, Palazoglu A, Detecting abnormal process trends by wavelet-domain hidden Markov models, AIChE Journal, 2003,49(1): 140-150
    Sun Q., Tang Y., Sigularity analysis using continuous wavelet transform for bearing fault diagnosis, Mechanical systems and signal processing, 2002, 16(2), 1025-1041.
    Sweledens W, The lifting scheme: A custom-design construction of biorthogonal wavelets, J. Appl. Comput. Harmonic Analysis, 1996a, 3, 864-872
    Sweldens W, Schroder P, Building your own wavelets at home. Technical Report Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1996b.
    Sweldens W, The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 1998 29(2) 511-546
    Tan Tian-Le, Song Zhi-Huan, Li Ping, Matrix computation for data cleaning and rule extraction in knowledge System, Proceedings of 2002 International Conference on Machine Learning and Cybernetics, 2002, Vol.1: 116-120
    Thornhill N.F., Shah S.L., Huang B., et al, Spectral principal component analysis of dynamic process data, Control engineering practice, 2002, 10, 833-846.
    Thornhill N.F., Shoukat M.A.A., Shah S.L., The impact of compression on data-driven process analyses, Journal of Process Control, 2004, 14, 389-398.
    Trappe W., Liu, Adaptivity in the lifting scheme, Proc. 33th Conf. Inform. Sci. Syst. 1999,950-955.
    Trappe W., Liu, Denoising via adaptive lifting scheme, Wavelet applications in signal and image processing VIII, 2000, SPIE, vol.4119
    Tse P.W, Peng Y.H, Yam R, Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities. ASME Journal of Vibration and Acoustics, 2001, 123, 303-310.
    Vedam H, Venkatasubramanian V, A B-Spline based Method for Data Compression, Process Monitoring and Diagnosis, Computers chem.. Engng., 1998, 22,827-831.
    Venkat V, Raghunatham R, Kewen Y, et al, A review of process fault detection and diagnosis Part I: Quantitative model-based methods, Computers and chemical engineering, 2003(a), 27: 293-311.
    Venkat V, Raghunatham R, Kewen Y, et al, A review of process fault detection and diagnosis Part II: Qualitative models and search strategies, Computers and chemical engineering, 2003(b), 27: 313-326.
    Walczak B.,Massart D.L., Noise suppression and signal compression using the wavelet packet transform, Chemometrics and Intelligent Laboratory System, 1997,36,81-94.
    Watson M.J., Liakopoulos A., Brzakovic D., et al, A practical assessment of process data compression techniques, Ind. Eng. Chem. Res.1998,37, 267-274.
    Weilu Lin, Yu Qian, Xiuxi Li, Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis, Computers and chemical engineering, 2000, 24, 423~429.
    Wenfu Ku, Robert H.S., Christos G., Disturbance detection and isolation by dynamic principal component analysis, Chemometrics and intelligent laboratory systems, 1995, 30, 179~196.
    Wen-Jun Ho, Wen-Thong Chang, Adaptive predictor based on maximally flat halfband filter in lifting scheme, IEEE Transactions on Signal Processing, 1999, 47(11), 2965~2977.
    Wong J.C., McDonld K.A., Palazoglu A., Classification of process trends based on fuzzified symbolic representation and hidden Markov models, Journal of Process Control, 8,395~408.
    Wong J.C, McDonald K.A, Palazoglu A, Classification of abnormal plant operation using multiple process variable trends, Journal of process control, 2001, 11:409~418.
    Xiong Z., Ramchandran K., MT Orchard, Space-frequency quantization for wavelet image coding, IEEE Transactions on Image Process. 1997, 6, 677-693.
    Zhang Y., Zeytinoglu M., Improved lifting scheme for block subband coding, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1999, 487~490.
    Zhihua Zhang.EM Algorithm for Gaussian Mixture with Split-and-merge Operation.Pattern Recogntion.2003, 36:1973~1983
    曹长修,孙颖楷等,基于粗糙集理论的内燃机故障诊断专家系统,重庆大学学报(自然科学版),2001,24(4),45~48
    陈佩,张卫东等,用提升方法设计M带LPPR-FIR滤波器组,电子学报,30(1),136~138.
    陈佩,张卫东等,用Lifting方法构造有线性相位的双正交小波,电子与信息学报,2002,24(4),486~491
    陈国金,梁军,钱积新 基于小波变换去噪的多元统计投影分析及其在化工过程监控中的应用,化工学报,2003,54(10),1478~1482
    戴宏亮,羿旭明,a尺度紧支撑双正交小波的提升格式的构造,武汉大学学报(理 学版),2003,49(1),17~20.
    冯晓东,陈长龄,劭惠鹤,记录限可调整的Box Car过程数据压缩算法,系统仿真学报,2001,13(8),102~104
    侯北平,李平,宋执环.基于计算机视觉的纸浆纤维的检测与特征提取,中国造纸学报,2005,20(1)
    蒋鹏,孙优贤,化工过程历史数据压缩方法研究,浙江大学学报(工学版),2002,36(3),286~289.
    蒋鹏,小波理论在信号去噪和数据压缩中的应用研究,浙江大学博士论文,2004
    李成,李平,宋执环,基于小波域隐马可夫树的过程趋势分析,信息与控制,2005,34(3),303~307
    李洪刚,吴乐南,基于任意小波的提升格式的设计,东南大学学报(自然科学版),2001,31(4),22~26.
    练秋生,王成儒,胡正平,基于多级树分割的小波零树ECG压缩算法,仪器仪表学报,2002,23(3),37~38
    理华,徐春广等,滚动轴承声发射检测技术,轴承,2002,7,24~27
    吕立华,复杂工业系统基于小波网络与鲁棒估计建模方法的研究,浙江大学博士论文,2001
    刘朝山,张维强等,一种改善小波变换模极大值重构信号的整体变分方法,电子学报,2004,32(10),1713~1715
    汤同奎,王豪,劭惠鹤,过程数据压缩技术综述,计算机与应用化学,2000,17(3),193~197
    唐英,孙巧,滚动轴承震动信号的小波奇异性故障检测研究,震动工程学报,2002,15(1),111~113.
    王海清,工业过程监测:基于小波和统计学的方法,浙江大学博士论文,2000
    奚定平,李雄军,基于小波变换在线检测机器运行是轴承产生的缺陷,振动、测试与诊断,2000,20(4),273~279
    徐科,杨德斌,徐金梧,小波变换在齿轮局部缺陷诊断中的应用,机械工程学报,1999,35(3),105~107
    杨福生,小波变换的工程分析与应用,科学出版社,2001
    叶昊,王桂增,方崇智.小波变换在故障检测中的应用.自动化学报,1997,23(6),736~741
    曾剑芬,马争鸣,Lifting Scheme及其在小波图像编码中的应用,中国图像图形学报,2001,6(11),1111~1117
    张长江等,基于离散平稳小波变换的红外图像去噪,光学技术,2003,29(2),250~256.
    张贤达,现代信号处理,清华大学出版社,1996
    周东华,叶银忠,现代故障诊断与容错控制,清华大学出版社,2000
    周先波,利用提升格式构造稳定的对偶小波,高等学校计算数学学报,2001,4,330~339.
    朱建新,金建祥,一类无纸记录仪的数据压缩研究,自动化学报,2000,26(5),690~693

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700