超声波油量测量仪的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液位仪广泛应用于石油、化工领域。实现无接触测量、智能化管理是现代工业、商业的发展方向。利用超声波检测液位、料位、厚度和探测水下地形是一种准确、经济的方法。
     本课题针对加油站储油罐中油量的测量问题,深入讨论了用超声波作为信号源进行液位测量的可行性及优越性,讨论了产生误差的各种原因,提出了相应的解决办法。
     超声波油量测量仪以单片机AT89C52最小系统为核心,以超声波测距原理为理论依据,利用超声波作为控制信号对油量进行自动检测和数据处理,减少了测量过程中的人工干预,提供了一个带有显示、键盘的人机对话界面,方便了操作人员对油量的实时监控,通过微型打印机或与PC机进行通信等方式打印、保存有关数据,能够更好地对油量的存储情况进行管理。
     确定了总体方案后,在对超声波测距的可行性进行了理论分析的基础上,利用计算机技术、电子技术、以及超声波在介质中的传播特性等,研制出了超声波油量测量仪的硬件部分,编写了相应的软件程序,并进行了调试和试运行。在硬件电路的设计中,由于需要测的距离较长(几米到十几米),针对超声波振幅在传播时呈指数衰减的特性,最大限度地提高驱动能力,对回波进行多级放大,达到了设计要求。在软件设计中,我们采用模块化程序设计思想,将软件分为超声波驱动与数据处理模块,功能模块两大类,每个模块又由若干小模块组成。对软件的这种处理能使软件的结构清晰,有利于软件的调试和修改。由于本设计对计算的精度要求比较高,所以采用C51编程,借助C语言的浮点计算能力提高计算精度。另外,为了保证超声波油量测量仪工作的可靠性和稳定性,在软、硬件两个方面都采取了相应的抗干扰措施。
     利用计算机技术和超声波测距原理研制出来的超声波油量测量仪,成本低,操作简便,功能强大,与传统的液位测量方法相比,具有非接触、速度快、精度高、自动控制、可靠性强、价格低廉等优点,有广泛的应用前景和使用价值。
Level measurement instrument is widely used in the fields of oil industry and chemical industry. It is a direction of development of modern industry and commerce to realize no contact measurement and intelligent management. It is an accurate and economic way to use ultrasonic to measure liquid level, material level and thickness and topography under water.
    This theme deals with measuring oil in the oil tank at the gas station. In this theme, there is further discussion about the feasibility and advantage of using ultrasonic as the signal source to measure distance. This oil measurement ultrasonic instrument takes the smallest system of the chip computer AT89C52 as the core and takes the theory of ultrasonic measurement as the basis .It uses ultrasonic to measure the oil automatically and also deals with data in order to decrease artificial interfere and provides a person-computer screen with a show and a keyboard, which is convenient for the operators carrying out the measurement control. The operators can print and keep some data using micro-printers or communicating with PC in order to manage the store of oil amount very well.
    On the base of a determined general plan, by using computer and electronic technology and the theory of ultrasonic measurement, we have designed and made the part of hard ware of the oil measurement
    
    
    ultrasonic instrument and write some software process and make debugging and do some running-in experiments. During designing hardware circuit, we have used the supreme limitation to raise driving-ability and raise the distance of measurement to returning ware by taking some measurements just like multi-polar enlarging, according to the ultrasonic characteristic of index attenuation when it's spreading because we need to measure longer distance (from several meters to dozens of meters). During the process of making software, we apply the thought of process design of mould plate and mainly divide software into types just like the ultrasonic driving and data disposal mould plate and the functional mould plate. Each mould is made up of several small mould plates. Dealing with the software like that not only makes the structure of the software clearer, but also is good for adjustments and amendments of the software. Because this design demands more accurate calculation, this process C51 is used in it. And we use floating calculation to improve calculation precision. Besides, anti-disruption measure is used in both hardware and software in order to check the reliability and stability of oil measurement ultrasonic instrument.
    By using this oil measurement ultrasonic instrument that is made according to computer skills and the theory of level measurement, although it has low cost and is easy to operate, its function is powerful. Compared with the traditional measurement, it has some advantages such
    
    as faster speeds, more accuracy and good reliability and has wide application, bright future and great value.
引文
[1] 李华,孙晓民等.MCS-51系列单片机实用接口技术.北京:北京航空航天大学出版社.1993.
    [2] 张云生.实时控制系统软件设计原理及应用.北京:国防工业出版社.1998.
    [3] 何立民.单片机应用系统设计系统配置与接口技术.北京:北京航空航天大学出版社.1990.
    [4] 马忠梅等.单片机的C语言应用程序设计.北京:北京航空航天大学出版社.1997.
    [5] 王幸之,王雷等.单片机应用系统抗干扰技术.北京:北京航空航天大学出版社.1999.12.
    [6] 张凯等.MCS-51单片机综合系统及其设计开发.北京:科学出版社.1996.
    [7] 何立民.单片机应用文集.北京:北京航空航天大学出版社,1991.
    [8] 路锦正,王建勤,扬绍国,赵珂,赵太飞.超声波测距仪的设计.传感器技术.2002.(8).29—31.
    [9] 肖绍杰,赵航.测距式超声波防盗报警器.锦州师范学院学报(自然科学版).2002.(9).46—48.
    [10] 李贻斌,刘明等.移动机器人多超声波传感器信息融合方法.系统工程与电子技术.1999.(9).
    [11] 华克强,高淑玲,朱齐丹.小功率超声波测距传感器.仪表技术与传感器.1991.(2).26—28.
    [12] 刘茂恺,周国顺.超声波水位检测中的温度差引起的误差.应用声学.1989.(1).17—24.
    [13] 李建华.超声波传感器的特性及应用.电子世界.1990.(4).12—14.
    [14] 庄庆德.超声波传感器.电子器件.1991.(2).76—82.
    [15] 李冬梅.国外储罐计量仪表的发展动态.石油化工自动化.2001.(5).65—67.
    [16] 李冬梅.国内外液位计量仪表技术发展动向.仪器仪表用户.2002.(3)5—7.
    [17] 许天增,许克平等.超声传输特性和超声传感系统研究.厦门大学学报(自然科学版).2001.(2)303—310.
    
    
    [18] 吴玉玉.超声测量的温度补偿设计.自动化与仪.1995.(4).9—11.
    [19] 瞿桂荣.T/R40系列超声波传感器及应用.无线电.2001.(8).46.
    [20] 纪良文.机器人超声测距数据的采集与处理.工业控制计算.2001.(4).20—23.
    [21] 黄卉,肖定国等.磁致伸缩式扭转超声波位移传感器的研究与设计.传感器技术.2002.(6).4—6.
    [22] 中国机械工程学会无损检测分会.超声波检测(第二版).北京:机械工业出版社.2002.4.
    [23] 蒋危平.超声波检测学.武汉:武汉测绘科技大学出版社.1991.
    [24] 同济大学声学教研室.超声波工业检测技术.上海:上海人民出版社.1976.
    [25] Birks A.S. and Green R.E. Nondestructive Testing Handbook 2nd.ed. Vol.Ⅰ Ultrasonic Testing.ASNT. 1991
    [26] 时德钢,刘晔等.超声波测距仪的研究.计算机测量与控制.2002.(7).480—482
    [27] 马志敏.超声检测中干扰信号的识别与抑制.应用声学.1992(6).22—26.
    [28] 刘彬.液体计量仪的设计.自动化与仪表.1995.6).9—10.
    [29] 汪明建,汪明武.加油站计算机监控系统串口通讯设计.自动化与仪表.1999.(3).57—59.
    [30] 王玉武.成品油库微机监测管理系统.自动化与仪表.1995.(6).30—32.
    [31] 李正军,李传信,张钢.单片机在电脑记数加油机中的应用.自动化与仪表.1995.(6).41—44.
    [32] 程启明.加油站主从微机控制系统.自动化与仪表.1995.(4).42—44.
    [33] 陈至坤.智能超声料位仪.自动化与仪表.1994.(2).11—13.
    [34] 李跃华,赵惠昌.基于单片机的输出可调锯齿波发生器.自动化与仪表.1994.4.14—16
    [35] 徐巍,王桂珠.用超声测距法配PR技术实现交通流特征参数的自动测量.自动化与仪表.2000.(6).56—59.
    [36] 李广峰等.超声波流量计的高精度测量技术.仪器仪表学报.2001.(6).644—647.
    [37] 任开春,涂亚庆.大罐液位仪的现状和发展趋势.自动化与仪器仪表.2002.(4).4—7
    [38] Wayne Labs. Level measurement: Pressure methods Dominate. 1&CS.1990.(2).
    
    37—38.
    [39] Frank J. Hydrostatic tank gauges accurately measure mass, volume, and level.Oil & Gas Journal, 1990.5.57—59.
    [40] David L Carlberg. Lateral-assays:Designing for Automation. IVD Technology,1999.3.49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700