基于压电厚膜的MEMS振动能量采集器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机械加工、微电子以及无线传感等技术发展迅速,使得射频识别系统、嵌入式系统、无线传感器以及它们形成的无线传感网络广泛地应用于日常生活中。这类微器件的功耗越来越低,能够低至微瓦量级。但要求相应的供电部件体积小、集成度高、寿命长甚至无人看管、无需更换等。传统的化学电池供电方式由于存在体积和质量较大、供能时间有限等缺点,已经无法满足这些微器件的供能要求。借助于能量采集技术将自然界广泛存在的各种振动能量转换为电能,从而为微电子器件持久供电是一种有效的解决方案。基于MEMS技术制备的能量采集器能够与各种微器件集成加工在一起,可以实现微器件的集成化和自供能,因此,正受到国内外许多研究小组的关注和重视。
     本文主要围绕基于压电厚膜的MEMS能量采集器展开研究。在分析总结国内外相关研究工作的基础上,提出一种基于压电厚膜的MEMS振动能量采集器设计方案,建立了压电式振动能量采集器的机电耦合模型,优化了器件的结构参数,在基于键合和减薄技术制备性能优异的压电厚膜基础上,采用成本较低的体硅微加工技术等MEMS工艺制作了高性能的压电能量采集器实验样机,最后对所制备的实验样机进行了测试,并对实验结果进行了详细分析和讨论。论文的主要研究工作包括:
     1、提出了基于压电厚膜的MEMS压电振动能量采集器设计方案。针对MEMS压电能量采集器,从结构类型、材料选用、工作模式等方面进行分析,在此基础上结合实际制备工艺,设计了以PZT和PMNT单晶材料作为压电功能层,压电悬臂梁作为能量采集器的主体结构,并在梁自由端部添加镍金属质量块的两种压电能量采集器结构共三类器件,即铜梯形结构PZT压电能量采集器、硅矩形结构PZT和PMNT压电能量采集器。
     2、建立了压电式振动能量采集器的机电耦合模型,分析了压电能量采集器的结构参数(主要有压电悬臂梁和质量块长度、支撑层和压电材料厚度、悬臂梁宽度和质量块高度)对器件谐振频率和负载输出功率密度的影响,讨论了各参数之间的相互耦合关系;此外,分析了环氧树脂键合层厚度对器件输出性能的影响以及器件结构稳定性问题,最后给出了合理的压电能量采集器的结构参数。
     3、研究了一种基于键合和减薄技术的高性能压电厚膜制备及其图形化方法。论文采用导电环氧树脂作为中间粘接层实现PZT(PMNT)和Si基片的结合,在键合压力为0.1Mpa、固化温度175℃的优化键合参数条件下,可获得15Mpa以上的键合强度;采用机械研磨与湿法刻蚀相结合方法实现压电体材的减薄,成功制备出了厚度可控(PZT:10~100μm,PMNT:5~100μm)、结构致密以及性能优异的压电厚膜。采用湿法刻蚀或机械微切割方法实现压电厚膜微图形化问题,其中,湿法化学刻蚀方法刻蚀压电厚膜后图形边缘过刻蚀严重,适用于对压电厚膜图形化要求不高的场所,而机械微切割方法具有简单、快速、准确等优点,适用于矩形结构悬臂梁的图形化。
     4、研究了微压电能量采集器的MEMS加工方法及其实现过程,包括金属质量块、铜梯形压电悬臂梁和硅矩形压电悬臂梁的加工制备。所涉及的MEMS工艺主要包括光刻、溅射、刻蚀、基于UV-LIGA的SU8胶工艺、微电镀等,探讨了具体的工艺参数及其测控方法。最后根据设计的工艺方案,制备了三种MEMS压电能量采集器样机。
     5、采用由激振系统、振动监测系统和电学测试系统构成的能量采集器测试系统对实验样机性能进行测试研究,包括谐振频率、电压输出、功率输出、整流与电容存储等相关参量和特性,研究了振源加速度和频率等因素对器件输出性能的影响规律,并就有关数据与理论计算结果进行了对比,结果表明理论和实验值所得规律一致,数值比较吻合。根据测试,铜梯形结构的实验样机的最佳输出:在1.0g加速度、1010Hz的振动激励下,最大负载输出功率为1.43μW,相应的功率密度为7889.7μW/cm~3;硅矩形结构PZT实验样机最佳性能:1.0g加速度、514.1Hz的振动激励下,输出交流开路电压5.04VP-P,最大负载输出功率11.56μW,功率密度约28856.7μW/cm~3;硅矩形结构PMNT实验样机最佳性能:1.0g加速度、237.4Hz的振动激励下,器件的最大负载输出功率为2.704μW,功率密度达5352.3μW/cm~3。
     6、研究了压电能量采集器样机在液体(硅油)环境中的输出特性。对比分析了器件在硅油和空气两种环境中的输出性能。测试表明,在1g振源加速度条件下,器件在硅油液体环境中的阻尼比约为其在空气环境中2倍,这使得器件在硅油环境中的谐振频率和输出功率更低,分别较空气环境中减少了28.16%和85.89%,但有效频带宽度提高了52.98%。因此,可以利用改变器件的运行环境来增加能量采集器的工作带宽,从而为实现能量采集器的宽频带工作提供了一种可能的解决方案。
With the rapid development of microelectronics, micro-machining technology andwireless sensing technology, the embedded systems, radio frequency identification systemsand wireless sensor network have been widely used in daily life. The power consumptionof these devices is very low and even with the level of microwatts. However, their powersupply should be featured with small/micro volume, long life, replacing needless andself-service. Traditional battery can’t satisfy all the demands apparently for its largevolume, high weight, the limited energy supply time and other shortcomings. Energyharvester can convert vibrational energy from environment into electrical energy andreplace the conventional power source for micro devices. On the other hand, the vibrationenergy harvester based on MEMS technology can be well integrated with manymicro-electronic chips, micro-sensors and micro-actuators, and supply micro-devices withlasting, stable and clean electric energy. At present, the MEMS piezoelectric energyharvester has become the research hotspot of many international research groups due to itsbroad application.
     This dissertation mainly focuses on piezoelectric MEMS energy harvester based onpiezoelectric thick film. On the basis of domestic and international research work, a designscheme of MEMS vibration energy harvester based on piezoelectric thick film is presentedin this work. The electromechanical coupling model of piezoelectric vibration energyharvester is established and the structural parameters of the device are optimized. Inaddition, piezoelectric thick film with superior performance is prepared by using bondingand thinning techniques and then the energy harvester prototype is fabricated by MEMSprocess. Finally, the performance of the fabricated prototype is characterized and analyzedtotally. The detailed work and the conclusion of this dissertation are as following:
     1. A design scheme of MEMS vibration energy harvester based on piezoelectric thick film is presented. Based on the design requirement of MEMS piezoelectric energyharvester, the structural type, material selection and operating mode are analyzed. On thisbasis, three types of the piezoelectric energy harvester with cantilever/mass compositestructure are proposed, namely, copper-based trapezoidal PZT cantilever, silicon-basedPZT and PMNT cantilevers.
     2. The electromechanical coupling model of the piezoelectric vibration energyharvester is created. The effect of the structural parameters on the natural frequency andpower density output is analyzed. These main parameters include the length ofpiezoelectric cantilever beam and proof mass, the thickness of supporting layer andpiezoelectric layer and the width of cantilever beam and proof mass. In addition, the effectof epoxy resin as the bonding layer is also discussed and structural stability of the device isanalyzed. Finally, the energy harvester structure dimensions are determined based on theanalytical results and the feasibility of fabrication techniques.
     3. The piezoelectric thick film with excellent piezoelectric properties is developedbased on bonding and thinning technique and its patterning technique is proposed.Conductive epoxy resin is used as the intermediate adhesive layer for a low temperaturePZT (PMNT)-Si bonding. A bonding strength of more than15Mpa has been obtainedunder the optimum bonding parameters with0.1Mpa bonding pressure and175°C bondedcuring temperature. The mechanical lapping and wet-etching combined method isproposed to thin bulk PZT and the thickness of PZT and PMNT film can be controlled atthe range of10~100μm and5~100μm, respectively. The fabricated piezoelectric thickfilms are characterized and the testing results show that the ferroelectric and dielectricproperties of the PZT thick films obtained here is close to that of bulk materials. Inaddition, wet etching and mechanical dicing methods are deployed to pattern the preparedpiezoelectric thick film.
     4. The piezoelectric vibration energy harvester prototypes are fabricated by MEMSmicromachining technique. The involved technologies include piezoelectric thick filmpreparation, electrode deposition, optical lithography, and etching process, UV-LIGA basedSU8process, micro-electroforming, etc. The detail process parameters are studied, andrelated process control and improvement issues are discussed.
     5. The output performance of the energy harvester prototype is measured by the testing platform including excitation system, vibration monitoring system and electricaltest system. The natural frequency, output voltage, maximum output power andrectification and capacitance storage experiment are measured or carried out. Goodagreement between theory analysis and testing results is obtained. The maximal outputpower and power density for the prototype with Cu trapezoidal beam structure are1.43μWand7889.7μW/cm~3under1.0g acceleration and1010Hz resonant frequency, respectively.The output voltage, power and power density of the silicon-based PZT cantilever prototypeare5.04VP-P,11.56μW and28856.7μW/cm~3under1.0g acceleration and514.1Hz resonantfrequency, respectively. The output voltage, power and power density of silicon-basedPMNT cantilever prototype are2.08VP-P,2.704μW and5352.3μW/cm~3under the vibrationexcitation of1.0g acceleration and237.4Hz, respectively.
     6. The output performance of piezoelectric energy harvester prototype in liquidenvironment (silicone oil) is studied. The testing results show that the damping ratio of thedevice in the silicone oil environment is about two times larger than that in the airenvironment at the vibration excitation of1.0g acceleration, which results in lower outputvoltage, resonant frequency and broad bandwidth. The resonant frequency and outputpower of the device in the liquid environment is decreased by28.16%and85.89%respectively, while the effective bandwidth is increased by52.98%, compared with that ofthe device in the air environment. So the liquid environment can be used to realize thewideband operation of energy harvester.
引文
[1] Huan Xue, HongPing Hu, YuanTai Hu and XueDong Chen. An improved piezoelectric harvesteravailable in scavenging-energy from the operating environment with either weaker or stronger vibrationlevels[J]. Science in China Series G: Physics Mechanics and Astronomy,2009,52(2):218-225.
    [2] Jia Wen Xu, et al. Optimization of a right-angle piezoelectric cantilever using auxiliary beams withdifferent stiffness levels for vibration energy harvesting[J].2012, doi:10.1088/0964-1726/21/6/065017.
    [3] K.A.Cook-Chennault, N.Thambi, A.M.Sastry. Powering MEMS portable devices—a review ofnon-regenerative and regenerative power supply systems with special emphasis on piezoelectric energyharvesting systems[J]. Smart Materials and Structures,2008, doi:10.1088/0964-1726/17/4/043001.
    [4] Robert Andosca, et al. Experimental and theoretical studies on MEMS piezoelectric vibraionalenergy harvesters with mass loading[J]. Sensors and Actuators A,2012,178:76-87.
    [5] Henry A. Sodano, Daniel J. Inman and Gyuhae Park. A review of power harvesting from vibrationusing piezoelectric materials[J]. Shock and Vibration Digest,2004,36(3):197-205.
    [6] Huicong Liu, Chengkuo Lee, Takeshi Kobayashi, Cho Jui Tay, Chenggen Quan. PiezoelectricMEMS-based wideband energy harvesting systems using a frequency-up-conversion cantileverstopper[J].2012,186:242-248.
    [7]孔凡天.无线传感器网络节点定位与数据融合技术研究及实现[博士论文].武汉:华中科技大学.2006.
    [8]方华斌.基于MEMS技术的压电能量采集器研究[博士论文].上海:上海交通大学.2007.
    [9] http://news.cntv.cn/20110216/101013.shtml
    [10] Nirupama Bulusu et al. Wireless sensor networks. American: Artech House Boston,2005.
    [11] King R R, Law D C, Edmondson K M, et al.40%efficient metamorphic GaInP/GaInAs/Gemultijunction solar cells [J]. Applied Physics Letters,2007,90(183515).
    [12] Jeong B. Lee, Zhizhang Chen, Mark G. Allen. A miniaturized high-voltage solar cell array as anelectrostatic MEMS power supply [J]. Journal of Microelectromechanical systems,1995,4(3):102-108.
    [13] Mina Danesh, John R. Long. An autonomous wireless sensor node using a solar cell antenna forsolar energy harvesting [J]. Microwave Symposium Digest (MTT),2011:1-4.
    [14] http://www.enocean.com/en/enocean_modules/
    [15] Stordeur, M., and Stark, I. Low power thermoelectric generator-self-sufficient energy supply formicro systems. Proceedings of the16th International Conference on Thermoelectrics,1997:575-577.
    [16] Leonov V, Torfs T, Fiorini P and Van Hoof C. Thermoelectric converters of human warmth forself-powered wireless sensor nodes[J]. IEEE Sensors Journal,2007(5):650-657.
    [17] http://www.hi-z.com/products.php
    [18] Shantane A. Bhalerao, Abhishek V. Chaudhary, Raghavendra B. Deshmukh, Rajendra M. Patrikar.Powering wireless sensor nodes using ambient RF energy [C]. IEEE International conference onsystems, man, and cybernetics. Taipei, Taiwan, October8-11,2006:2695-2700.
    [19] Smith A A. Radio frequency principles and applications: the generation, propagation, and receptionof signals and noise. New York: IEEE press,1998.
    [20] Shadrach Joseph Roundy. Energy scavenging for wireless sensor nodes with a focus on vibration toelectricity conversion [PhD Dissertation]. U.S.A: University of California, Berkeley.2003.
    [21] Roundy S. On the effectiveness of vibration-based energy harvesting [J]. Intelligent materialsystems and structure,2005,16:809-823.
    [22] Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics[J]. Smartmaterial and structure,2004,13:1131–1142.
    [23] H.Bottner, J.Nurnus, A. Gavrikov, et al. New thermoelectric compinents using Microsystemstechnologies [J]. Journal of Microelectromechanical systems,2004,13:414-420.
    [24] Ikeda K, Ishizuka H, Sawada A, et al. Vibration acceleration magnitudes of hand-held tools andworkpieces [J]. Industrial Health,1998,36:197-208.
    [25] M.M.Frechin, S.B. Arino and J. Fontaine. Actiseat: Active vehicle seat for accelerationcompensation [C]. Proceedings of the Institution of Mechanical Engineers,2004,218:925-933.
    [26] Hussam Kloub, Daniel Hoffmann, et al. A micro capacitive vibration energy harvester for lowpower electronics[C]. PowerMEMS2009:165-168.
    [27] Daigo Miki, Makoto Honzumi, et al. MEMS electret generator with electrostatic levitaion[C].PowerMEMS2009:169-172.
    [28] Chiu Y, Tseng V F G. A capacitive vibration-to-electricity energy converter with integratedmechanical switches [J]. Journal of Micromechanics and Microengineering,2008,18(104004):1-8.
    [29] Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for lowfrequency operation [J]. Sensors and Actuators A,2004,115:523–529.
    [30] Daniel Hoffmann, Bernd Folkmer, el al. Fabrication, characterization and modelling of electrostaticmicro-generators [J]. Journal of Micromechanics and Microengineering,2009,19(094001):1-11.
    [31] Williams C B, Shearwood C, Harradine M A, Mellor P H, Birch T S and Yates R B. Developmentof an electromagnetic micro-generator [J]. IEE Proc-circuits devices system,2001,148(6):337-342.
    [32] Williams C B, Yates R B. Analysis of a micro-electric generator for Microsystems [J]. Sensors andActuators A,1996,52(1-3):8-11
    [33] Shearwood C., Yates R. B. Development of an electromagnetic micro-generator [J]. ElectronicsLetters,1997,33(22):1883-1884
    [34] Steve C. L. Yuen, Johnny M. H. Lee, Wen J Li, Philip H. W. Leong. An AA-sized vibration-basedmicrogenerator for wireless sensors [J]. IEEE Pervasive computing,2007,6(1):64-72
    [35] Pan C. T., Hwang Y. M., Hu H. L., Liu H.C. Fabrication and analysis of a magnetic self-powermicrogenerator [J]. Journal of magnetism and magnetic materials.2006,304(1):394-396.
    [36] Rajeevan Amirtharajah, Anantha P. Chandrakasan. Self-powered signal processing usingvibration-based power generation [J]. IEEE Journal of Solid-State Circuits.1998,33(5):687-695
    [37] P. Glynne-Jones, M. J. Tudor, S. P. Beeby, N. M. White. An electromagnetic vibration-poweredgenerator for intelligent sensor systems [J]. Sensors and Actuators A,2004,110:344-349
    [38] E. P. James, M. J. Tudor, S. P. Beeby, et al. An investigation of self-powered systems for conditionmonitoring applications [J]. Sensors and Actuators A.2004,110(1-3):171-176
    [39] H. Kulah, K. Najafi. An electromagnetic micro power generator for low-frequency environmentalvibrations [C]. The17thIEEE International Conference on Micro Electro Mechanical Systems,Maastricht, Netherlands.2004:237-240
    [40] H. Kulah, K. Najafi, Energy scavenging from low-frequency vibrations by using frequencyup-conversion for wireless sensor applications [J]. IEEE Sensors Journal,2008,8(3):261-268
    [41] Staley, M. E., Flatau, A. B. Characterization of energy harvesting potential of Terfenol-D andGalfenol[C]. Proceedings of SPIE,2005, pp:630-640.
    [42] Huang J, O’Handley, R C and Bono, D. New high-sensitivity hybrid magnetostrictive/electroactivemagnetic field sensors[C]. Proceedings of SPIE,2003:229-237.
    [43] Bayrashev A, Robbins W P, and Ziaie, B. Low frequency wireless powering of microsystems usingpiezoelectric-magnetostrictive laminate composites [J]. Sensors and Actuators A: Physical,2004,114(2-3):244-249.
    [44]代显智,文玉梅,李平,杨进,江小芳.采用磁电换能器的振动能量采集器[J].物理学报,2010,59(3):2137-2146.
    [45] Lei Wang, F G Yuan. Vibration energy harvesting by magnetostrictive material [J]. Smart MaterialStructure,2008,17(045009).
    [46]董璐.基于MEMS的压电型微能量采集器的研究[硕士论文].上海:上海交通大学.2007
    [47] Wen.H.Ko. Piezoelectric Energy Converter for Electronic Implants. US Patent3,456,134, Patentand Trademark Office,1969.
    [48] M. Umeda, et al. Analysis of the transformation of mechanical impact energy to electric energyusing piezoelectric vibrator [J]. Japanese Journal of Applied Physics,1996,35:3267-3273.
    [49] M. Umeda, K. Nakamura, S. Ueha. Energy storage characteristics of a piezogenerator using impactinduced vibration [J]. Japanese Journal of Applied Physics.1997,36:3146-3151.
    [50] T. Funasaka, M. Furuhata, Y. Hashimoto, K. Nakamura. Piezoelectric generator using a LiNbO3plate with an inverted domain[C]. Proceedings of the IEEE Ultrasonics Symposium,1998,1:959-962.
    [51] J. F. Antaki, G. E. Bertocci, et al. Gait-powered autologous battery charging system for artificialorgans [J]. ASAIO Journal,1995,41:588-595.
    [52] N. S. Shenck, J. A. Paradiso. Energy Scavenging with shoe-mounted piezoelectrics, IEEE Micro.2001,21(3):30-42.
    [53] Nathan S Shenck. A demonstration of useful electric energy generation from piezocermics in a shoe.
    [Dissertation], American: MIT,1999.
    [54] H. W. Kim, A. Batra, S. Priya, et al. Energy harvesting using a piezoelectric "cymbal" transducer indynamic environment[J]. Japanese Journal of Applied Physics,2004,43:6178-6183.
    [55] H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham. Piezoelectric energy harvesting under highpre-stressed cyclic vibrations [J]. Journal of Electroceramics,2005,15:27-34.
    [56] H. Kim, S. Priya, and K. Uchino. Modeling of piezoelectric energy harvesting using cymbaltransducers[J]. Japanese Journal of Applied Physics,2006,45:5836-5840.
    [57] Sunghwan Kim. Low power energy harvesting with piezoelectric generators [PhD Dissertation].U.S.A: University of Pittsburgh,2002.
    [58] Cho J, et al.Optimization of electromechanical coupling for a thin-film PZT membrane: II.Experiment [J]. Journal of Micromechanics and Microengineering,2005,15(10):1804-1809.
    [59] S. Roundy, P. K. Wright, and J. Rabaey. A study of low level vibrations as a power source forwireless sensor nodes [J]. Computer Communications,2003,26:1131-1144.
    [60] S. Roundy and P. K. Wright. A piezoelectric vibration based generator for wireless electronics [J].Smart Materials and Structures,2004,13:1131-1142.
    [61] S. Roundy, E. S. Leland, J. Baker, et al. Improving power output for vibration-based energyscavengers[J]. IEEE Pervasive Computing,2005,4:28-36.
    [62] Henry A. Sodano, Gyuhae Park, et al. Model of piezoelectronic power harvesting beam [C].Proceedings of IMECE’03,2003:1-10.
    [63] Yaowen Yang, Lihua Tang, Hongyun Li. Vibration energy harvesting using Macro-fiber composites[J]. Smart Material structure,2009,18:5025-5033.
    [64] Jessy Baker, Shad Roundy, Paul Wright. Alternative geometries for increasing power density invibration energy scavenging for wireless sensor networks[C]. The3rd International Energy ConversionEngineering Conference,2005,5617:1-12.
    [65] David F. Berdy, P. Srisungsitthisunti, X.Xu, et al. Compact low frequency meandred piezoelectricenergy harvester[C]. PowerMEMS2009:71-74.
    [66] Jeon Y, Sood R, et al. Energy Harvesting MEMS Devices Based on d33Mode Piezoelectric Pb(Zr,Ti)O3Thin Film Cantilever [C]. CIRP Seminar on Micro and Nano Technology, Denmark,2003.
    [67] JeonY, Sood R, et al. MEMS power generator with transverse mode thin film PZT [J]. Sensors&Actuators: A. Physical,2005,122(1):16-22.
    [68] Renaud M. et al. Piezoelectric harvesters and MEMS technology: fabrication, modeling andmeasurements solid-state sensors, Actuators and microsystems conference,2007:891-894.
    [69] Kok SL, White NM, Harris NR. A free standing thick film piezoelectric energy harvester. IEEESens2008Conference.2008:589-592.
    [70] Shen D N, Park J H, Ajitsaria J, Choe S Y, Wikle III H C and Kim D J. The design, fabrication andevaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting[J]. Journal of Micromechanics and Microengineering.2008,18(5): doi:10.1088/0960-1317/18/5/055017
    [71] Shen D N, Park J H, Noh J H, et al. Micromachined PZT cantilever based on SOI structure for lowfrequency vibration energy harvesting. Sensors Actuators A: Physical.2009,155(1):103-108.
    [72] B S Lee, S C Lin, W J Wu, et al. Piezoelectric MEMS generators fabricated with an aerosoldeposition PZT thin film[J]. Journal of Micromechanics and Microenoineering.2009,19:065014-21.
    [73] Marcin Marzencki, Skandar Basrour, Benoit Charlot, et al. A MEMS Piezoelectric VibrationEnergy Harvesting Device[C]. The fifth international workshop on Micro and Nanotechnology forPower Generation and Energy Conversion Applications, PowerMEMS2005:45-48.
    [74] M. Marzencki, Y. Ammar, and S. Basrour. Integrated Power Harvesting System Including a MEMSGenerator and a Power Management Circuit [C]. Transducers International Conference in Solid-StateSensors, Actuators and Microsystems,2007:887-890.
    [75] Yen T T, Hirasawa T, et al. Corrugated aluminum nitride energy harvesters for high energyconverstion effectiveness [J]. Journal of Micromechanics and Microenoineering.2011,21(8):085037
    [76] Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array for vibrationenergy harvesting [J]. Microelectronics Journal.2008,39(5):802-806.
    [1]张福学,王丽坤.现代压电学中册[M].北京:科学出版社,2002
    [2] S.Anton, H.Sodano. A review of power harvesting using piezoelectric materials (2003-2006)[J].Smart Materials and Structures,2007,16(3): doi:10.1088/0964-1726/16/3/R01
    [3]万加桔.压电式振动能量采集器研究[硕士论文].南昌:南昌大学,2010.
    [4] Li-hua Tang. Vibration energy harvesting using piezoelectric materials [PhD dissertation].Singapore: Nanyang Technological University,2012.
    [5]李邓化等著.新型压电复合换能器及其应用[M].科学出版社,2007:45-52.
    [6]孙健.基于共晶键合技术的压电能量采集器的研究[硕士论文].上海:上海交通大学,2011.
    [7] Chengliang Sun, Lifeng Qin, Fang Li, Qing-ming Wang. Piezoelectric Energy Harvesting usingSingle Crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT) Device [J]. Journal of intelligent material systemsand structures,2009,20:559-568.
    [8] Ioan Alexandru Ivan, Micky Rakotondrabe, Joel Agnus, Roger Bourquin, et al. Comparativematerial study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials forcomposite bimorph actuators [J]. Review on Advanced Materials Science (RAMS),2010,24:1-9.
    [9] J.F. Antaki, G. E. Bertocci, E. C. Green, A. Nadeem, et al. Gait-powered autologous batterycharging system for artificial organs [J]. ASAIO Journal,1995,41:588-595
    [10] http://www.piezo.com
    [11] http://www.smart-material.com/MFC-product-main.html
    [12] http://www.meas-spc.com/myMeas/default/index.asp
    [13] K. Tsuchiya, T. Kitagawa, Y. Uetsuji, E. Nakamachi. Fabrication of smart material PZT thin filmsby RF magnetron sputtering, method in micro actuators, Nihon Kikai Gakkai Ronbunshu, AHen/Transactions of the Japan Society of Mechanical Engineerings:Part A,2005,71:66-72.
    [14] W. Tljhen, T. Tamagawa, C. P. Ye, C. C. Hsueh, P. Schiller, D. L. Polla. Properties of piezoelectricthin films for micromechanical devices and systems [C]. IEEE MEMS '91Proceedings,1991:114-119
    [15] Robert Andosca, T. Gus McDonald, Vincent Genova, Steven Rosenberg, Joseph Keating, ColeBenedixen, Junru Wu. Experimental and theoretical studies on MEMS piezoelectric vibrational energyharvesters with mass loading [J]. Sensors and Actuators A: Physical,2012,178:76-87.
    [16]方华斌.基于MEMS技术的压电能量采集器研究[博士论文].上海:上海交通大学博士学位论文,2007.
    [17] Shad Roundy, Eli S Leland, Jessy Baker. Improving power output for vibration-based energyscavengers [J]. IEEE Pervasive Computing,2005,1536:28-36.
    [18] Jeon Y B, Sood R, Jeong J H, Kim S G. MEMS power generator with transverse mode thin filmPZT, Sensors and Actuators A,2005,122:16-22
    [19] Dongna Shen. Piezoelectric energy harvesting devices for low frequency vibration applications[PhD dissertation]. U.S.A: Auburn University,2009.
    [20] Britton C L, Jons L, Oden P I, et al. Multi-input microcantilever sensors [J]. Ultrascopy,2000,82(14):17-21.
    [21] Lee C, Itoh T, Suga T. Self-excited piezoelectronic PZT microcantilever for dynamic SFM-withinherent sensing and actuating capabilities [J]. Sensors and Actuators A,1999,72(2):179-188
    [22] Jessy Baker, Shad Roundy, Paul Wright. Alternative geometries for increasing power density invibration energy scavenging for wireless sensor networks [C].3rdInternational Energy ConversionEngineerging Conference,2005,2:959-970
    [23] duTuit N. E., Wardle B. L., Kim S. G. Design considerations for MEMS-scale piezoelectricmechanical vibration energy harvesters[J]. Integrated Ferroelectrics.2005,71:121-160
    [24] E Lefeuvre, A Badel, C Ricard, L Petit. A comparison between several vibration-poweredpiezoelectric generators for standalone system [J]. Sensors and Actuators,2006,126(2):405-416
    [25] Rajendra K. sood. Piezoelectric micro power generator (PMPG): A MEMS-Based energy scavenger,[PhD Dissertation], Massachusetts Institute of Technol,2003:23-31
    [26] http://www.ndttech.net/support/pzt_support/fuji_pztmaterial_4-3.html
    [27] Alex Mathers, Kee S. Moon, Jingang Yi. A Vibration-Based PMN-PT Energy Harvester[J]. IEEESensors Journal,2009,9(7):731-739
    [28] J. W. Yi, W. Y. Shih, W. H. Shih. Effect of length, width, and mode on the mass detectionsensitivity of piezoelectric unimorph cantilevers [J]. Journal of Applied Physics,2002,91:1680-86
    [1] H. Sang, C.N. Hoon, L. Yong, et al.Characteristics of P tSrTiO3/Pb (Zr,Ti)O3/SrTiO3ferroelectricgate oxide structure [J]. Thin Solid Films,1999,354:251-255.
    [2] M.Koch, N. Harris, G.R. Evans, et al. A novel micromachined pump-based on thick filmpiezoelectric actuation [J]. Sensors and actuators,1998,70:98-103.
    [3] K.Shimomura, T.Tsurumi, Y.Ohba and M.Daimon. Preparation of lead zirconate titanate thin filmby hydrothermal method [J]. Jpn. J. Appl. Phys,1991,30(9):2174-2177.
    [4] W.G. Liu, J.S.Ko and W.G. Zhu, Preparation and properties of multilayer Pb(Zr,Ti)O3/PbTzO3thinfilms [J]. Thin Solid Films,2000,371:254-2581.
    [5] X. J. Meng. Dependence of texture development on thickness of single annealed1ayer in Sol-gelderived PZT thin films [J]. Thin Solid Film,2000,368:22-251.
    [6]张海波.钛酸铋纳钾压电厚膜的制备与性能研究[博士学位论文].武汉:华中科技大学,2008.
    [7] E. S.Thielek, D. Damjanovic, N. Setter. Processing and properties of screen-printed lead zirconatetitanate piezoelectric thick films on electroded silicon [J]. Journal of the American Ceramic Society,2001,84(12):2863-2868.
    [8] Whatmore, R. W., Zhang, Q., Huang, Z., et al. Ferroelectric thin and thick films for microsystems.Materials Science in Semiconductor Processing,2002,5(2-3):65-67.
    [9] B S Lee, S C Lin, W J Wu, etc. Piezoelectric MEMS generators fabricated with an aerosoldeposition PZT thin film [J]. Journal of Micromechanics and Microenoineering,2009,19:065014-21.
    [10]刘红梅.用于MEMS的PZT压电厚膜及硅基压电悬臂梁的制备研究[博士论文].黑龙江:哈尔滨工程大学,2008.
    [11]郑慈航. PZT薄膜的溶胶凝胶法制备及其在MEMS中的应用研究[硕士论文].上海:上海交通大学,2011.
    [12] K. Tanaka, T. Konishi, M. Ide and S. Sugiyama. Wafer bonding of lead ziroconate titanate to Siusing an intermediate gold layer for microdevice application[J]. Journal of Micromechanics andMicroengineering,2006,16(4): doi:10.1088/0960-1317/16/4/019.
    [13] Aktakka E E, Peterson R L, Najafi K. Thinned-PZT on SOI process and design optimization forpiezoelectric inertial energy harvesting [C]. The16th International Conference on Solid-State Sensors,Actuators and Microsystems (TRANSDUCERS’2011),2011:1649-1652
    [14] Xu X H and Chu J R. Preparation of a high-quality PZT thick film with performance comparable tothose of bulk materials for applications in MEMS [J]. Journal of Micromechanics and Microengineering,2008,18(6):doi:10.1088/0960-1317/18/6/065001.
    [15] Wang Z H, Miao J M, Tan C W. Acoustic transducers with a perforated damping backplate basedon PZT/silicon wafer bonding technique [J]. Sensors and Actuators A,2009,149(2):277-283.
    [16]孙健.基于共晶键合技术的压电能量采集器的研究[硕士论文].上海:上海交通大学,2011.
    [17]何洪涛.一种基于BCB键合技术的新型MEMS圆片级封装工艺[J].微纳电子技术,2010,47(10):629-651.
    [18] http://www.chem-syn.com/pdf/
    [19]张清涛. PMNT铁电薄/厚膜及其MEMS致冷器制备工艺的研究[博士论文].北京:中国科学院电工研究所,2006.
    [20] James F. Scott, Carlos A. Paz de Araujo. Ferroelectric Memories[J]. Science,1989(246):1400-1405
    [21] Yao K et al. Screen-printed piezoelectric ceramic thick films with sintering additives introducedthrough a liquid-phase approach[J]. Sensors and Actuators,2005,118:342-8.
    [22] Chen H D et al. Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thickfilms on silicon substrates [J]. Journal of Applied physical,1995,77:3349-3353.
    [23] Jacobsen H et al. Thick PZT layers deposited by gas flow sputtering [J]. Sensors and Actuators,2007,135:23-7.
    [24] R.Zeto, B.Rod, M.Dubey, et al. Dry etching of sol-gel PZT[C]. Materials Research Society Symp. Proc,1998,546:159-164.
    [25] K.Saito, J.H.Choi, T.Fukuda, et al. Reactive Ion Etching of Sputtered PbZr1-xTixO3Thin Films [J].J.Appl.Phys,1992,31:1260-1262.
    [26] K. Zheng, J. Liu, J. Chu. A novel wet etching process of Pb(Zr,Ti)O3thin films for applications inmicroelectromechanical system[J]. Journal of applied physics,2004,43(6):3934-3937.
    [27] T.Konishi, M.Ide, K. Tanak, et al. Fabrication of diaphragm actuator using bulk PZT [J]. IEEJ Trans,2006,126(7):302-305.
    [28]金浙萍,许晓慧,吴建华等. PZT铁电薄膜的雾化湿法刻蚀技术研究[J].微细加工技术,2006(4):25-28.
    [29]方华斌,刘景全,徐峥谊等. PZT厚膜拾振器微图形化工艺研究[J].微细加工技术,2005,4:48-51.
    [30]唐刚,刘景全,杨春生,柳和生,李以贵.压电微能量采集器PZT厚膜制备及其图形化研究.真空,2011,48(2):19-21
    [1] J. Liu, B. Cai, J. Zhu, G. Ding, X. Zhao, C. Yang, D. Chen. Process research of high aspect ratiomicrostructure using SU8resist [J]. Microsystem technologies,2004,10:265-268.
    [2] G. Tang, J.-Q. Liu, B. Yang, J.-B. Luo, H.-S. Liu, Y.–G. Li, C.-S. Yang, V.-D. Dao, K. Tanaka, S.Sugiyama. Piezoelectric MEMS low-level vibration energy harvester with PMN-PT single crystalcantilever [J]. Electronics Letters,2012,48(13):784–786.
    [3] Gang Tang, Jing-quan Liu, et al. Piezoelectric MEMS generator based on the bulk PZT/silicon waferbonding technique [J]. Phys. Status Solidi A,2011(12):2913-2919.
    [4] Gang Tang, Jing-quan Liu, Bin Yang, et al. Fabrication and analysis of high-performancepiezoelectric MEMS generators [J]. Journal of Micromechanics and Microengineering,2012,22(6):doi:10.1088/0960-1317/22/6/065017
    [5]格雷戈里T.A科瓦奇著,张文栋等译.微传感器与微执行器全书[M].北京:科学出版社,2003.3.
    [6]李林.基于MEMS的振动能量采集及其器件设计[硕士论文].福建:厦门大学,2008.
    [7]刘景全.基于SU-8胶的UV-LIGA技术及其应用研究[博士后论文].上海:上海交通大学,2002.
    [8] http://www.microchem.com/
    [9] Cheol-Hyun HAN, Eun-Sok KIM. Study of self-limiting etching behavior in wet isotropic etching ofsilicon [J]. Japanese Journal of Applied Physics,1998,37:6939-6941
    [10] Jorge Albero, Lukasz Nieradko, Christophe Gorechi, et al. Fabrication of spherical microlenses bya combination of isotropic wet etching of silicon and molding techniques[J]. Optics Express,2009,17(8):6283-6292.
    [11] Yan G, Chan P C H, Hsing I, et al. An improved TMAH Si-etching solution without attackingexposed aluminum [J]. Sensors and Actuators A,2001,89(1/2):135-141.
    [12] Irena Barycka, Irena Zubel. Silicon anisotropic etching in KOH-isopropanol etchant [J]. Sensorsand Actuators A,1995,48:229-238.
    [13] G Canavese, S L Marasso, M Quaglio, et al. Polymeric mask protection for alternative KOH siliconwet etching[J]. Journal of Micromechanics and Microengineering,2007,17:1387-1393
    [14]章吉良,杨春生等.微机电系统及其相关技术[M].上海:上海交通大学出版社,1999:10-31.
    [15]黄庆安,硅微机械加工技术[M].北京:科学出版社,1996:51-103.
    [16] Tanaka H, Yamashita S. Fast etching of silicon with a smooth surface in high temperature rangesnear the boiling point of KOH solution [J]. Sensors and Actuators A,2004,114:516-520.
    [17] Yang C R, Chen P Y. Effects of various ion-typed surfactants on silicon anisotropic etchingproperties in KOH and TMAH solutions [J]. Sensors and Actuators A,2005,119:271-281.
    [18] Nijdam A J, Veenendaal E V, Cuppen H M. Formation and stabilization of pyramidal etch hillockson silicon in anisotropic etchants: experiments and monte carlo simulation [J]. Journal of AppliedPhysics,2001,89(7):4113-4123.
    [19] Winter H F, Coburn J W. The etching of silicon with XeF2vapor [J]. Apply physical letter,1979,34(1):70-73.
    [20]尉伟,吴晓伟,吕凡,肖云峰,等. XeF2对SiO2/Si的干法刻蚀[J].中国科学技术大学学报,2009,39(6):603-607.
    [21]敬小成,黄美浅,姚若河.携带气体对二氧化硅干法刻蚀的影响[J].微电子学,2005,35(5):56-61.
    [1] Robert Andosca, T. Gus McDonald, Vincent Genova, Steven Rosenberg, Joseph Keating, ColeBenedixen, Junru Wu. Experimental and theoretical studies on MEMS piezoelectric vibrational energyharversters with mass loading [J]. Sensors and Acturators A: Physical,2012,178:76-87.
    [2] Qing-Ming Wang, Qiming Zhang, Baomin Xu, Ruibin Liu, and L. Eric Cross. Nonlinearpiezoelectric behavior of ceramic bending mode actuators under strong electric fields[J]. Journal ofApplied Physics,1999,86:3352-3360.
    [3] L. Q. Yao, J. G. Zhang, L. Lu, M. O. Lai. Nonliear dynamic characteristics of piezoelectric bendingactuators under strong applied electric field [J]. Journal of Microelectromechanical Systems,2004,13:645-652.
    [4] M. Marzencki, Y. Ammar, and S. Basrour. Integrated power harvesting system including a MEMSgenerator and a power management circuit [J]. Sensors and Actuators A,2008,145-146:363-370.
    [5] Shen D N, Park J H, Noh J H, Choe S Y, Kim S H, Wikle III H C and Kim D J. MicromachinedPZT cantilever based on SOI structure for low frequency vibration energy harvesting [J]. SensorsActuators A,2009,154(1):103-108.
    [6] Marzencki M, Ammar Y and Bastour S. Integrated power harvesting system including a MEMSgenerator and a power management circuit [C]. Proc. Int. Conf. on Solid-State Sensors, Actuators andMicrosystems (Lyon, France),2007:887-90.
    [7] Yen T T, Hirasawa T, Wright P K, Pisanao A P and Lin L W. Corrugated aluminum nitride energyharvesters for high energy converstion effectiveness. Journal of Micromechanics and Microengineering,2011,21(8): doi:10.1088/0960-1317/21/8/085037.
    [8] Fang H B, Liu J Q, Xu Z Y, Dong L, Wang L, Chen D Cai B C and Liu Y. Fabrication andperformance of MEMS-based piezoelectric power generator for vibration energy harvesting[J].Microelectronics Journal,2006,37(11):1280-1284.
    [9] Shen D N, Park J H, Ajitsaria J, Choe S Y, Wikle III H C and Kim D J. The design, fabrication andevaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting[J].Journal of Micromechanics and Microengineering.2008,18(5): doi:10.1088/0960-1317/18/5/055017.
    [10] Lei A, Xu R, Thyssen A, Stoot A C, Christiansen T L, Hansen K, Lou-Moller R, Thomesen E Vand Birkelund K. MEMS-based thick film PZT vibrational energy harvester [C]. MEMS2011(Cancun,MEXICO),2011:125-128.
    [11] Lee B S, Lin S C, Wu W J, Wang X Y, Chang P Z and Lee C K. Piezoelectric MEMS generatorsfabricated with an aerosol deposition PZT thin film [J]. Journal of Micromechanics andMicroengineering,2009,19(6):doi:10.1088/0960-1317/19/6/065014.
    [12] Aktakka E E, Peterson R L and Najafi K. Thinned-PZT on SOI process and design optimization forpiezoelectric inertial energy harvesting [C]. Transducer’s11(Beijing, China),2011:1649-52.
    [13] S. Roundy. Energy scavenging for wireless sensor nodes with a focus on vibration to electricityconverstion [PhD dissertation]. U.S.A: University of California, Berkeley,2003.
    [14] Geffrey K. Ottman, Heath F. Hofmann, Archin C. Bhatt, George A. Lesieutre. AdaptivePiezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply[J].IEEE TRANSACTIONSON POWER ELECTRONICS,2002,17(5):669-676
    [15] Lei Wang. Vibration energy harvesting by magnetostrictive material for powering wireless sensors[PhD dissertation]. U.S.A: North Carolina State University.2007.
    [16] T. Naik, E. K. Longmire, and S. C. Mantell. Dynamic response of a cantilever in liquid near a solidwall [J].Sensors and Actuators: Physical,2003,120:240-254.
    [17] R. D. Blevins, Formulas for natural frequency and mode shape [M]. Malabar, Florida: KriegerPublishing Company.2001.
    [18] Dongna Shen. Piezoelectric energy harvesting devices for low frequency vibration applications[PhD dissertation]. U.S.A: Auburn University.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700