基于学习算法的无线传感器网络定位问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信、集成电路、传感器以及微电子机械系统等技术的飞速发展和日益成熟,使得低成本、低功耗、大规模的无线传感器网络的产生与发展成为可能。在传感器网络中,节点位置信息对整个网络的监测活动至关重要,在其诸多应用中扮演着不可或缺的重要角色。如何设计高效率、高精度、低能耗的定位算法一直都是传感器网络研究中的热点问题。
     本文针对节点定位问题,以核方法和流形学习为研究手段,以减少定位过程中使用的信标节点的数目和降低测量误差对定位精度的影响为目标,对节点定位技术进行了深入的研究。本文的主要研究内容和创新点包括以下几个方面:
     1.本文综述了无线传感器网络中节点定位技术的相关研究,并以算法复杂度、信标节点比例、定位误差等作为综合指标对现有的定位算法进行了综合分析,并归纳出现有定位算法的不足以及尚待解决的问题。
     2.考虑基于邻近节点间信号强度的定位问题,为了降低测量误差对定位精度的影响,本文通过研究邻近节点间的拓扑结构,将定位问题转换成无向图上的非线性降维问题,并提出了基于核函数局部保持映射(KLPP)的定位算法。该算法的基本思想是利用高斯核函数度量节点间的相似性,并在定位过程中尽可能地保持邻近节点间的相似性。仿真结果表明,基于KLPP的定位算法受信标节点数目的影响较小,当信标节点的比例较低时,依然可以获得较高的定位精度。而且,与基于核函数主成份分析(KPCA)的定位算法、MDS-MAP定位算法等同类方法相比,该算法受测量误差的影响也较小。
     3.考虑基于邻近节点间信号强度的定位问题,本文以降低算法复杂度为目标,在基于KLPP的定位算法的基础上,提出了基于核函数谱回归(KSR)的定位算法。该算法的基本思想是通过非线性逼近的方法,将图上的非线性降维问题转换成正则化核函数最小二乘回归问题。理论分析和仿真结果表明,基于KSR的定位算法很好地保留了基于KLPP的定位算法的优点,在保证定位精度的同时,极大地降低了算法的复杂度。
     4.考虑基于邻近节点间信号强度或测量距离的定位问题,为了降低信标节点数目对定位精度的影响,本文通过观测节点分布的流形,将定位问题放在半监督框架下进行研究,并提出了基于半监督拉普拉斯最小二乘的定位算法。该算法在训练预测模型阶段,通过引入非信标节点的测量信息来提高预测模型的泛化能力,进而降低信标节点数目对定位精度的影响。另外,本文还给出了定位问题中基于Alignment准则的核函数学习算法。仿真结果表明,与基于正则化核函数最小二乘(RKLS)的定位算法、基于核函数矩阵回归(KMR)的定位算法等同类方法相比,该算法能够获得较高的定位精度,并且适当地减小节点的通信半径能够降低平均定位误差。
     5.考虑基于邻近节点间测距的定位问题,为了解决基于Ⅰsomap的定位算法对参数敏感和坐标变换矩阵依赖信标节点的问题,本文提出了一种改进的基于Ⅰsomap的定位算法(Ⅱsomap)。该算法主要包括三个部分:基于信标节点的Ⅰsomap参数选择、基于Ⅰsomap的相对坐标估计和基于最小二乘或流形回归的绝对坐标估计。其中,流形回归法能够获得较高的定位精度,但算法复杂度较大。仿真结果表明,无论网络的拓扑结构如何,在测距误差较大、信标节点数目较少时,与同类的基于欧式距离的定位算法相比,Ⅱsomap定位算法都能获得较高的定位精度。而且,节点的平均定位误差基本上随着通信半径的增大而逐渐增加。因此,在基于测距的定位机制设计中,Ⅱsomap定位算法使得减小节点的发射功率和提高节点的定位精度同时满足成为可能。
     本文将核方法和流形学习的思想引入到无线传感器网络定位问题中,为该领域的研究拓展了新的思路,并提出了四种节点定位算法。在本文的最后,还分析了本文提出的算法中有待改进的地方,并对进一步的研究工作进行了展望。
Recent advances in wireless communication, integrated circuit, sensor technology and MEMS have made it possible to deploy large scale wireless sensor networks (WSNs) by using low-cost and low-power sensor nodes. In emerging WSNs applications, it is necessary to accurately position the nodes where their reported data are geographically meaningful. In WSNs, how to design a fast converging and low-cost method to accurately estimate the locations of the nodes, is always an active area.
     The dissertation targets at the localization problem in WSNs and focuses on decreasing the number of anchors and alleviating the influence of the measurement error. It presents indepth study in the localization problem by using kernel-based and manifold learning methods. The main contributions of the dissertation are as follows:
     1. We survey the localization problem, and analyze the existing localization methods in terms of computing complexity, number of anchors and localization accuracy. Furthermore, we also summarize the drawbacks and disadvantages of the existing localization methods, and point out the unsolved problems.
     2. We consider the location estimation problem using signal strength in WSNs. In order to alleviate the influence of measurement errors between nodes, by analyzing the neighborhood topological structure, we formulate the localization problem as a nonlinear graph embedding problem, and propose a KLPP-based localization method. The main idea is to measure the similarities between nodes by a Gaussian kernel function and optimally preserving the neighborhood similarities in the localization procedure. The simulation results show that the KLPP-based localization method is not significantly sensitive to the number of anchors, i.e., when the number of anchors is small, the localization accuracy is still high. Compared with the related localization methods, e.g., KPCA-based localization method, MDS-MAP, our KLPP-based localization method is less sensitive to the measurement error.
     3. To reduce the complexity of KLPP-based localization method, we formulate the nonlinear graph embedding problem as regularized kernel least-squares regression problem, and propose a KSR-based localization method. Both theoretical analysis and simulation results show that KSR-based localization method optimally preserves the advantages of the KLPP-based localization method. Besides, the former achieves lower computing complexity with a little decrease of the localization accuracy than the latter.
     4. When the measurements are signal strengths or pair-wise distances, in order to reduce the influence of the number of anchors, we propose a semi-supervised Laplacian regularized least squares (S~2LapRLS) method for the localization problem. The main idea is that when nodes are close in their location space, their localization feature vectors will be similar. We first propose a solution to choose an appropriate kernel function based upon alignment criterion. Then, we construct a mapping between the measurement space and the location space under semi-supervised framework. The location of non-anchors can be estimated based upon the mapping. Compared with the related methods, e.g., RKLS-based localization method, KMR-based localization method, the simulation results show that S~2LapRLS method can obtain a higher localization accuracy. By relatively reducing the maximum communication range of nodes, the localization accuracy can be further improved.
     5. When the measurements are pair-wise distances, in the purpose of reducing parameter influence of the Isomap and the transformation matrix dependence on the anchors, we propose improved Isomap-based localization approach(IIsomap), which is composed of three factors: Isomap parameter selection based upon the locations of the anchors, relative location estimation with Isomap, and absolute location estimation by using the least squares (LS) method and the manifold regression (MR) method. Simulations show that MR can achieve relatively higher localization accuracy, but at the expense of spending more time than LS. For any topological sensor network, when the number of anchors is small and the measurements are error-prone, IIsomap method achieves higher localization accuracy than the Euclidean-based localization methods. Especially, the average location error increases with the increase of the communication range, Thus, IIsomap method makes it possible to simultaneously reduce the transmitting power and improve the localization accuracy.
     In this dissertation, we introduce the kernel-based approach and the manifold learning method into the localization problem, which bring new ideas into this area, and propose four location estimation methods. In the end of this dissertation, we point out several aspects waiting for improvement in our localization methods, and introduce our future work.
引文
[1]Li Y,Thai M T,Wu W.Wireless Sensor Networks and Applications.Springer Science & Business Media,LLC,2007.
    [2]Stojmenovic I.Handbook of Sensor Networks:Algorithms and Architectures.Wiley-Interscience,2005.
    [3]Byrne J.21 Ideas for the 21st Century.Business Week,August,1999,30:87-167.
    [4]Innovator Y.10 Emerging Technologies That Will Change the World.Technology Review,February,2003,106:22-49.
    [5]Green H.Tech Wave 2:The Sensor Revolution.Business Week,August,2003,34:112-113.
    [6]Chong C,Kumar S,Hamilton B.Sensor Networks:Evolution,Opportunities,and Challenges.Proceedings of the IEEE,2003,91(8):1247-1256.
    [7]Akyildiz I,Su W,Sankarasubramaniam Y,et al.Wireless Sensor Networks:A Survey.Computer networks,2002,38(4):393-422.
    [8]Khemapech I,Duncan I,Miller A.A Survey of Wireless Sensor Networks Technology.Proceedings of the 6th Annual Post Graduate Symposium on the Convergence of Telecommunications,Networking and Broadcasting,2005.
    [9]Levis P,Lee N,Welsh M,et al.TOSSIM:Accurate and Scalable Simulation of Entire TinyOS Applications.Proceedings of the 1st International Conference on Embedded Networked Sensor Systems.ACM New York,NY,USA,2003.126-137.
    [10]Du X,Xiao Y,Chen H,et al.Secure Cell Relay Routing Protocol for Sensor Networks.Wireless Communications and Mobile Computing,2006,6(3):375-380.
    [11]姚燕.面向定位与跟踪应用的新型无线传感网络节点研究.北京邮电大学硕士学位论文,2008.
    [12]王殊,阎毓杰,胡富平等.无线传感器网络的理论及应用.北京航空航天大学出版社,2007.
    [13]陈积明.无线传感器/执行器网络及其应用研究.浙江大学博士后出站报告,七月,2007.
    [14]Estrin D,Girod L,Pottle G,et al.Instrumenting the World with Wireless Sensor Networks.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,2001.
    [15]Romer K,Mattern F.The Design Space of Wireless Sensor Networks.IEEE Wireless Communications,2004,11(6):54-61.
    [16]Vieira M,Coelho Jr C,Silva Jr D,et al.Survey on Wireless Sensor Network Devices.Proceedings of IEEE Conference Emerging Technologies and Factory Automation,2003.203-209.
    [17]Howden E,Brendley K.Networked Sensors for the Objective Force.Proceedings of International Conference on Space Information Technology.SPIE,2002.260-265.
    [18] Biagioni E, Bridges K. The Application of Remote Sensor Technology to Assist the Recovery of Rare and Endangered Species. International Journal of High Performance Computing Applica- tions, 2002, 16(3):315-327.
    
    [19] Mainwaring A, Culler D, Polastre J, et al. Wireless Sensor Networks for Habitat Monitoring. Proceedings of the 1 st ACM International Workshop on Wireless Sensor Networks and Applications, 2002. 88-97.
    
    [20] Szewczyk R, Osterweil E, Polastre J, et al. Habitat Monitoring with Sensor Networks. Communications of the ACM, 2004, 47(6):34-40.
    
    [21] Wang H, Elson J, Girod L, et al. Target Classification and Localization in Habitat Monitoring. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, 4:1204-1209.
    
    [22] Cerpa A, Elson J, Hamilton M, et al. Habitat Monitoring: Application Driver for Wireless Communications Technology. Workshop on Data Communication in Latin America and the Caribbean Table of Contents, 2001. 20-41.
    
    [23] Lorincz K, Malan D, Fulford-Jones T, et al. Sensor Networks for Emergency Response: Challenges and Opportunities. Proceedings of IEEE Pervasive Computing. IEEE Computer Society, 2004. 16-23.
    
    [24] Steere D, Baptista A, McNamee D, et al. Research Challenges in Environmental Observation and Forecasting Systems. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, 2000. 292-299.
    
    [25] Steed A, Milton R. Using Tracked Mobile Sensors to Make Maps of Environmental Effects. Personal and Ubiquitous Computing, 2008, 12:331-342.
    
    [26] Martinez K, Hart J, Ong R. Environmental Sensor Networks. Computer, 2004, 37(8):50-56.
    
    [27] Heidemann J, Li Y, Syed A, et al. Underwater Sensor Networking: Research Challenges and Potential Applications. Technical report, USC/ISI Technical Report ISI-TR-2005, 2005.
    
    [28] Schwiebert L, Gupta S, Weinmann J. Research Challenges in Wireless Networks of Biomedical Sensors. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, 2001. 151-165.
    
    [29] Hu F, Jiang M, Xiao Y. Low-cost Wireless Sensor Networks for Remote Cardiac Patients Monitoring Applications. Wireless Communications & Mobile Computing, 2008, 8(4):513-529.
    
    [30] Hande A, Polk T, Walker W, et al Self-Powered Wireless Sensor Networks for Remote Patient Monitoring in Hospitals. Sensors, 2006, 6:1102-1117.
    
    [31] Lubrin E, Lawrence E, Navarro K. Wireless Remote Healthcare Monitoring with Motes. Proceedings of IEEE International Conference on Mobile Business, 2005. 235-241.
    
    [32] Franceschini F. A Review of Localization Algorithms for Distributed Wireless Sensor Networks in Manufacturing. International Journal of Computer Integrated Manufacturing, 2007, 1(1):1-19.
    [33]Xu W,Chen J,Zhang Y,et al.Optimal Rate Routing in Wireless Sensor Networks with Guaranteed Lifetime.Proceedings of IEEE Global Telecommunications Conference,2008.1-5.
    [34]Cao X,Chen J,Xiao Y,et al.Control Systems Designed for Wireless Sensor and Actuator Networks.Proceedings of IEEE International Conference on Communications,2008.4968-4972.
    [35]Slijepcevic S,Potkonjak M.Power Efficient Organization of Wireless Sensor Networks.Proceedings of IEEE International Conference on Communications,2001.
    [36]Sinha A,Chandrakasan A,MIT C.Dynamic Power Management in Wireless Sensor Networks.IEEE Design & Test of Computers,2001,18(2):62-74.
    [37]Seidel S,Rappaport T.914 MHz Path Loss Prediction Models for Indoor Wireless Communications in Multifloored Buildings.IEEE Transactions on Antennas and Propagation,1992,40(2):207-217.
    [38]孙利明,李建中,陈渝等.无线传感器网络.清华大学出版社,2005.
    [39]Hac A,Yurish S Y.Wireless Sensor Network Design.John Wiley & Sons,Ltd.,2004.
    [40]Chen J,Cao X,YangXiao,et al.Simulated Annealing for Optimizations with Wireless Sensor and Actuator Networks.Electronics Letters,2008,44(20):947-962.
    [41]刘丽萍.无线传感器网络节能覆盖.浙江大学博士学位论文,2006.
    [42]Cao X,Chen J,Sun Y.An Interface Designed for Networked Monitoring and Control in Wireless Sensor Networks.Computer Standards and Interfaces,2009,31(3):579-585.
    [43]Shi Z,Hong S,Chen J,et al.Particle Filter Based Synchronization of Chaotic Colpitts Circuits Combating AWGN Channel Distortion.Circuits,Systems and Signal-Processing,2009,27(6):833-845.
    [44]Liu K,Wang S,Hu F,et al.Wireless Sensor Networks Solution for Space Environmental Monitoring.Proceedings of International Conference on Space Information Technology.SPIE,2005.
    [45]Cao X,Chen J,Zhang Y,et al.Development of an Integrated Wireless Sensor Network Micro-Environment Monitoring System.ISA Transactions,2008,47(3):247-255.
    [46]Capkun S,Hamdi M,Hubaux J.GPS-Free Positioning in Mobile Ad-hoc Networks.Cluster Computing,2002,5(2):157-167.
    [47]Valdastri P,Rossi S,Menciassi A,et al.An implantable ZigBee Ready Telemetric Platform for in Vivo Monitoring of Physiological Parameters.Sensors & Actuators:A.Physical,2008,142(1):369-378.
    [48]张建辉.无线传感器网络拓扑控制研究.浙江大学博士学位论文,2008.
    [49]Niculescu D,Nath B.Trajectory Based Forwarding and Its Applications.Proceedings of the 9th Annual International Conference on Mobile Computing and Networking.ACM New York,NY,USA,2003.260-272.
    [50]于继明,卢先领,杨余旺等.无线传感器网络多路径路由协议研究进展.计算机应用研究,2007,24(6):1-4.
    [51] Ko Y, Vaidya N. Location-Aided Routing (LAR) in Mobile ad hoc Networks. Wireless Networks, 2000,6(4):307-321.
    
    [52] Mao G, Fidan B, Anderson B. Wireless Sensor Network Localization Techniques. Computer Networks, 2007, 51(10):2529-2553.
    
    [53] Sayed A, Tarighat A, Khajehnouri N. Network-Based Wireless Location: Challenges Faced in Developing Techniques for Accurate Wireless Location Information. IEEE Signal Processing Magazine, 2005, 22(4):24-40.
    
    [54] Chen J, Lin R, Li Y, et al. LQER: A Link Quality Estimation based Routing for Wireless Sensor Networks. Sensors, 2007, 7(11):2907-2919.
    
    [55] Pan R, Zhao J, Zheng V, et al. Domain-Constrained Semi-Supervised Mining of Tracking Models in Sensor Networks. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM New York, NY, USA, 2007. 1023-1027.
    
    [56] 申兴发.基于无线传感器网络的分布式定位跟踪系统.浙江大学博士学位论文,2007.
    
    [57] Pan J J, Yang Q. Co-Localization from Labeled and Unlabeled Data Using Graph Laplacian. Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007. 2166-2171.
    
    [58] Olfati-Saber R. Distributed Kalman Filtering for Sensor Networks. Proceedings of the 46th IEEE Conference on Decision and Control, 2007.
    
    [59] Haykin S. Kalman Filtering and Neural Networks. Wiley-Interscience, 2004.
    
    [60] Fox V, Hightower J, Liao L, et al. Bayesian Filtering for Location Estimation. IEEE Pervasive Computing, 2003, 2(3):24-33.
    
    [61] Hu L, Evans D. Localization for Mobile Sensor Networks. Proceedings of the 10th Annual International Conference on Mobile Computing and Networking. ACM New York, NY, USA, 2004. 45-57.
    
    [62] Rudafshani M, Datta S. Localization in Wireless Sensor Networks. Proceedings of The 6th International Conference on Information Processing in Sensor Networks, 2007. 51-60.
    
    [63] Honeine P, Richard C, Essoloh M, et al. Localization in Sensor Networks - A Matrix Regression Approach. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2008. 284-287.
    
    [64] Picard J, Weiss A. Localization of Networks Using Various Ranging Bias Models. Wireless Communications & Mobile Computing, 2008, 8(5):553-562.
    
    [65] Liu C, Wu K, He T. Sensor Localization with Ring Overlapping Based on Comparison of Received Signal Strength Indicator. Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems, 2004. 516-518.
    
    166] Bahl P, Padmanabhan V. RADAR: an In-building RF-based User Location and Tracking System. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies., 2000, 2:775-784.
    [67]Bulusu N,Bychkovskiy V,Estrin D,et al.Scalable,ad hoc Deployable,RF-based Localization.Proceedings of the Grace Hopper Conference on Celebration of Women in Computing,2002.
    [68]吴绍华,张乃通.基于UWB的无线传感器网络中的两步TOA估计法.软件学报,2007,18(5):1164-1172.
    [69]Falsi C,Dardari D,Mucchi L,et al.Time of Arrival Estimation for UWB Localizers in Realistic Environments.EURASIP Journal on Applied Signal Processing,2006,2006:1-13.
    [70]Chen J,Shen X,Ren H,et al.Frequency-Detected Acoustic Ranging Solutions in Wireless Sensor Networks:an Experimental Study.Asia-Pacific Journal of Chemical Engineering,Special Issue on Large-Scale Systems and Networked Control,2009,3(6):589-596.
    [71]Priyantha N.The Cricket Indoor Location System.Massachusetts Institute of Technology PhD Thesis,2005.
    [72]罗飞,杜明辉.基于改进圆模型的到达角度和时间估计.电波科学学报,2007,22(5):799-803.
    [73]Rong P,Sichitiu M.Angle of Arrival Localization for Wireless Sensor Networks.Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks,2006.
    [74]Girod L,Estrin D.Robust Range Estimation Using Acoustic and Multimodal Sensing.Proceedings of the IEEE Conference on Intelligent Robots and Systems,2001.
    [75]Balakrishnan H,Baliga R,Curtis D,et al.Lessons from Developing and Deploying the Cricket Indoor Location System.2003.81-85.
    [76]Savvides A,Han C,Strivastava M.Dynamic Fine-Grained Localization in Ad-hoc Networks of Sensors.Proceedings of the 7th Annual International Conference on Mobile Computing and Networking.ACM New York,NY,USA,2001.166-179.
    [77]Bruck J,Gao J,Jiang A.Localization and Routing in Sensor Networks by Local Angle Information.ACM Publisher,New York,NY,USA,2009.
    [78]Niculescu D,Nath B.Ad hoc Positioning System(APS) using AOA.Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies,2003.
    [79]Mao G,Fidan B.Localization Algorithms and Strategies for Wireless Sensor Networks.IGI Global,2008.
    [80]He T,Huang C,Blum B,et al.Range-Free Localization Schemes for Large Scale Sensor Networks.Technical Report CS-2003-06,Department of Computer Science,University of Virginia,2003.
    [81]Kuh A,Zhu C,Mandic D.Sensor Network Localization Using Least Squares Kernel Regression.Lectoure Notes in Computer Science,2006,4253:1280-1288.
    [82]De Oliveira H,Nakamura E,Loureiro A,et al.Directed Position Estimation:A Recursive Localization Approach for Wireless Sensor Networks.Proceedings of the 14th International Conference on Computer Communications and Networks,2005.557-562.
    [83] Doherty L, Pister K, El Ghaoui L. Convex Position Estimation in Wireless Sensor Networks. Proceedings of Joint Conference of the IEEE Computer and Communications Societies, 2001.
    
    [84] Bulusu N, Heidemann J, Estrin D. GPS-less Low-cost Outdoor Localization for Very Small Devices. IEEE Wireless Communications, 2000, 7(5):28-34.
    
    [85] Niculescu D, Nath B. DV Based Positioning in Ad Hoc Networks. Telecommunication Systems, 2003, 22(1):267-280.
    
    [86] Shang Y, Ruml W, Zhang Y, et al. Localization from Mere Connectivity. Proceedings of the 4th ACM International Symposium on Mobile ad hoc Networking & Computing, 2003. 201-212.
    
    [87] Shang Y, Ruml W. Improved MDS-based Localization. Proceedings of Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, 2004.
    
    [88] Tran D, Nguyen T. Support Vector Classification Strategies for Localization in Sensor Networks. First International Conference on Communications and Electronics, 2006. 29-34.
    
    [89] Tran D, Nguyen T. Localization In Wireless Sensor Networks Based on Support Vector Machines. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(7):981-994.
    
    [90]刘明,王婷婷,黄小燕等.基于SVM分类区域的传感器网络节点自定位算法.计算机应用,2009, 29(4): 1064-1067.
    
    [91] Brunato M, Battiti R. Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Computer Networks, 2005, 47(6):825-845.
    
    [92] Patwari N, Hero A, Perkins M, et al. Relative Location Estimation in Wireless Sensor Networks. IEEE Transactions on Signal Processing, 2003, 51(8):2137-2148.
    
    [93] Priyantha N, Balakrishnan H, Demaine E, et al. Anchor-Free Distributed Localization in Sensor Networks. Technical report, Technical Report TR-892, MIT LCS, 2003.
    
    [94] Jenkins O. Localization from Pairwise Distance Relationships using Kernel PCA. Technical Report CRES-03-010, Center for Robotics and Embedded Systems, University of Southern California, 2004.
    
    [95] Essoloh M, C. R, Snoussi H, et al. Distributed Localization in Wireless Sensor Networka as A Pre-image Problem in a Reproducing Kernel Hibert Space. Proceedings of 16th European Signal Processing Conference, 2008.
    
    [96] Li S, Zhang D. A Novel Manifold Learning Algorithm for Localization Estimation in Wireless Sensor Networks. IEICE Transactions on Communications, 2007, 90(12):3496-3505.
    
    [97] Wang C, Chen J, Sun Y, et al. Wireless Sensor Networks Localization with Isomap. Proceedings of IEEE International Conference on Communications, 2009.
    
    [98] Savarese C, Rabaey J, Beutel J. Locationing in Distributed ad-hoc Wireless Sensor Networks. Proceedings of IEEE International Conference on Acustics Speech and Signal Procedding, 2001.
    
    [99] Nguyen X, Jordan M, Sinopoli B. A Kernel-Based Learning Approach to Ad hoc Sensor Network Localization. ACM Transactions on Sensor Networks (TOSN), 2005, 1(1): 134-152.
    [100] Nagpal R. Organizing a Global Coordinate System from Local Information on An Amorphous Computer. AI Memo 1666, MIT AI Laboratory, 1999.
    
    [101] Nagpal R, Shrobe H, Bachrach J. Organizing a Global Coordinate System from Local Informationon an Ad hoc Sensor Network. Lecture Notes in Computer Science, 2003. 333-348.
    
    [102] Tseng P. Second-Order Cone Programming Relaxation of Sensor Network Localization. SIAM Journal on Optimization, 2007, 18:156-184.
    
    [103] Nie J. Sum of Squares Method for Sensor Network Localization. Computational Optimization and Applications, 2007. 1-29.
    
    [104] Ji X, Zha H. Sensor Positioning in Wireless Ad-hoc Sensor Networks Using Multidimensional Scaling. Proceedings of Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, 2004.
    
    [105] Costa J, Patwari N, Hero III A. Distributed Weighted-Multidimensional Scaling for Node Localization in Sensor Networks. ACM Transactions on Sensor Networks (TOSN), 2006, 2(1):39-64.
    
    [106] Patwari N, Hero III A. Manifold Learning Algorithms for Localization in Wireless Sensor Networks. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. 857-860.
    
    [107] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,2000, 290(5500):2323-2326.
    
    [108] Tenenbaum J, Silva V, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500):2319-2323.
    
    [109] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge University Press,2004.
    
    [110] Scholkopf B, Smola A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press Cambridge, MA, USA, 2001.
    
    [111] Wu H, Chen J, Wang C, et al. A Kernel-based Localization Approach in Wireless Sensor Networks,. Proceedings of the 2nd International Conference on Future Generation Communication and Networking, 2008.
    
    [112] Chen J, Lin R, Li Y, et al. LQER: A Link Quality Estimation based Routing for Wireless Sensor Networks. Sensors, 2008, 8:1025-1038.
    
    [113] Steinwart I. On the Influence of the Kernel on the Consistency of Support Vector Machines. The Journal of Machine Learning Research, 2002, 2:67-93.
    
    [114] Bouttier J, Di Francesco P, Guitter E. Geodesic Distance in Planar Graphs. Nuclear Physics, Section B, 2003, 663(3):535-567.
    
    [115] Jing Teng H S, Richard. Variational Filtering Algorithm For Interdependent Target Tracking and Sensor Localization in Wireless Sensor Network. Proceedings of 16th European Signal Processing Conference, 2008.
    [116]Pan J J,Kwok J T,Yang Q,et al.Accurate and Low-cost Location Estimation Using Kernels.Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,Edinburgh,Scotland,2005.1366-1371.
    [117]Sheng X,Hu Y.Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks.IEEE Transactions on Signal Processing,2005,53(1):44-53.
    [118]Pan J.Learning-Based Localization in Wireless Sensor Networks.The Hong Kong University of Science and Technology PhD Thesis,2007.
    [119]Meyer D,Leisch F,Hornik K.The Support Vector Machine Under Test.Neurocomputing,2003,55(1-2):169-186.
    [120]Lanckriet G,Cristianini N,Bartlett P,et al.Learning the Kernel Matrix with Semidefinite Programming.The Journal of Machine Learning Research,2004,5:27-72.
    [121]Smola A,Gretton A,Song L,et al.A Hilbert Space Embedding for Distributions.Proceedings of the 18th International Conference on Algorithmic Learning Theory.Springer,2007.13-31.
    [122]冯浩然,袁睿翕,慕春棣.无线网络中基于信号强度的定位及算法比较.计算机工程与应用,2006,42(32):1-4.
    [123]Pan J,Kwok J,Yang Q,et al.Accurate and low-cost location estimation using kemels.Proceedings of the 19th International Joint Conference on Artificial Intelligence.LAWRENCE ERL-BAUM ASSOCIATES LTD,2005.1366-1371.
    [124]Hashemi H.The Indoor Radio Propagation Channel.Proceedings of the IEEE,1993,81(7):943-968.
    [125]D.Kaplan E,J.Hegaay C,寇艳红(译).GPS原理与应用(第2版).电子工业出版社,2007.
    [126]Kay S.Fundamentals of statistical signal processing.Prentice Hall Upper Saddle River,NJ,1998.
    [127]He X,Niyogi P.Locality Preserving Projections.Proceedings of Advances in Neural Information Processing Systems.Bradford Book,2004.
    [128]Cai D,He X,Han J,et al.Orthogonal Laplacian Faces for Face Recognition.IEEE Transactions on Image Processing,2006,15(11):3608-3640.
    [129]West D.Introduction to Graph Theory.Prentice Hall Upper Saddle River,NJ,2001.
    [130]Boyd S,Vandenberghe L.Convex Optimization.Cambridge University Press,2004.
    [131]Vassilevich D.High Energy Physics-Theory Title:Heat Kernel Expansion:User's Manual.Journal Reference:Phys.Rept,2003,388:279-360.
    [132]Stewart G,Mahajan A.Matrix Algorithms,Volume Ⅱ:Eigensystems,volume 56.ASME,2003.
    [133]Paige C,Saunders M.LSQR:An Algorithm for Sparse Linear Equations and Sparse Least Squares.ACM Transactions on Mathematical Software(TOMS),1982,8(1):43-71.
    [134]Chapelle O,Sch(o|¨)lkopf B,Zien A,editors.Semi-Supervised Learning.Cambridge,MA:MIT Press,2006.
    [135] Chung F. Spectral Graph Theory. American Mathematical Society, 1997.
    
    [136] Belkin M, Niyogi P, Sindhwani V. Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. The Journal of Machine Learning Research, 2006, 7:2399-2434.
    
    [137] Cristianini N, Shawe-Taylor J, Elisseeff A, et al. On Kernel-Target Alignment. Proceedings of the 2002 Advances in Neural Information Processing Systems. MIT Press, 2002. 367-375.
    [138] Hao E. Quadratically Constrained Quadratic Programming: Some Applications and A Method for Solution. Mathematical Methods of Operations Research (ZOR), 1982, 26(1):105-119.
    [139] Andersen E, Andersen K. The MOSEK Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm. High Performance Optimization, 2000. 197-232.
    
    [140] Kumar V, Grama A, Gupta A, et al. Introduction to parallel computing: design and analysis of algorithms. Benjamin-Cummings Publishing Co., Inc. Redwood City, CA, USA, 1994.
    
    [141] Ham J, Lee D, Saul L. Semi-supervised Alignment of Manifolds. Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence. 2005. 120-127.
    
    [142] Samko O, Marshall A, Rosin P. Selection of the Optimal Parameter Value for the Isomap Algorithm. Pattern Recognition Letters, 2006, 27(9):968-979.
    
    [143] Nicolescu D, Nath B. Ad-Hoc Positioning Systems (APS). Proceedings of IEEE International Conference on Communications, 2001. 25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700