硬质合金刀具TiN-TiCN-Al_2O_3-TiN多层复合涂层制备与组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涂层刀具结合了基体高强度、高韧性和涂层高硬度、高耐磨性的优点,适用于高速度、高精度的自动化加工。涂层刀具在高速切削领域有巨大的发展潜力和广阔的应用前景,使用涂层刀具可以获得明显的经济效益。本文以TiN-TiCN-Al2O3-TiN系列多层复合涂层硬质合金刀具为研究对象,对涂层的沉积热力学、流体力学以及沉积动力学,多层复合涂层的微观结构,元素在多层复合涂层中的扩散行为,残余应力分布,界面结合力以及抗氧化行为进行了详细深入的研究,得到以下几方面的结论:
     1)以硬质合金基体材料表面TiN-TiCN-Al2O3-TiN多层复合涂层为研究对象,计算了各子涂层的吉布斯自由能与温度的关系,计算了料盘内流体力学特征参数值如扩散长度、Peclet系数、Thiele长度和Thiele模量、雷诺数、Damkohler数以及Knudsen数,探讨了MT-TiCN及Al2O3涂层的沉积动力学;研究发现,在860℃-890℃温度范围内MT-TiCN沉积过程受表面反应动力学控制,其活化能为254kJ/mol, A12O3涂层的沉积过程主要受水蒸汽的生成反应所控制。热力学、流体力学及动力学研究为涂层制备的工艺参数设计提供了指导。
     2)设计和制备了iN/MT-TiCN/Al2O3/TiN多层复合涂层,利用扫描电镜、透射电镜、能谱仪以及二次离子质谱仪详细研究了多层复合涂层中各子涂层的微观结构;研究结果表明,TiN过渡层在WC晶粒上主要以外延生长为主,而在Co晶粒上主要以形核生长为主;设计与制备了C、N含量呈梯度分布的MT-TiCN涂层,不同生长阶段MT-TiCN涂层的微观结构明显不同;在MT-TiCN和Al2O3涂层间设计与制备了TiCO涂层,Al2O3在TiCO层上重新形核,Al2O3涂层呈柱状多晶体结构生长。
     3)探讨了基体和涂层组成元素在基体/多层复合涂层界面处的扩散行为。基体中的Co在涂层中主要沿晶界扩散,而W在涂层中的扩散由沿晶界扩散和体扩散两种方式组成,其在涂层中的扩散距离更大;探讨了Ti、Al元素在TiCO/Al2O3界面的扩散行为;研究发现,Ti、Al原子在TiCO/Al2O3界面处的扩散距离均很短或不扩散。
     4)计算了TiN/MT-TiCN/Al2O3/TiN多层复合涂层中的残余应力分布、涂层的断裂能、涂层产生裂纹的临界厚度、临界开裂应力和临界温度;利用X射线应力仪测试了样品中的残余应力;研究结果表明,基体和涂层间细小的热膨胀率差别会在涂层中形成较大的热应力;提高基体的韧性以及提高涂层的断裂能是提高涂层开裂临界厚度、临界开裂应力、临界开裂温度的主要途径;探讨了涂层开裂时残余应力的释放,研究发现,喷砂和喷丸可有效增加涂层中的裂纹密度、释放涂层中残余应力。
     5)利用划痕试验研究了多层复合涂层的结合强度,并对划痕形貌进行了深入分析;结果表明所设计的多层复合涂层与硬质合金基体之间均具有良好的结合强度。探讨了基体成份及涂层组合方式对涂层/基体界面结合强度的影响;研究发现,基体中WC的粒度、Co含量、立方碳化物相的加入以及表面是否形成富钴层均会对结合强度产生明显影响;多层复合涂层厚度的增加以及Al2O3涂层的加入使界面结合强度明显下降;用TiC代替TiCN形成TiN/TiC/Al2O3/TiN多层复合涂层并与不同的基体组合后,其在压痕试验中可承受的载荷要增加。多层复合涂层中存在多种破损形式,破损不仅发生在涂层与基体之间,也发生在各子涂层之间。
     6)研究了四类典型多层涂层试样在600℃-950℃和30min-120min条件下的抗氧化性能;与硬质合金材料的氧化相比,涂层试样在氧化过程中的活化能较低,更易受扩散动力学控制,涂层试样的抗氧化性能明显好于硬质合金基体试样;没有Al2O3的多层复合涂层由外及内均匀氧化,含有Al2O3子涂层样品的氧化过程主要是通过表面的热裂纹进行;致密完整的Al2O3子涂层能有效的保护多层复合涂层和硬质合金基体,并使其抗氧化性能远高于无Al2O3涂层的试样。
Combining high strength and ductility of matrix with high hardness and abradability of coating, coated cutting tools are widely used for high rate and accuracy automatic process. Due to their great potential and broad prospect in high-speed cutting field, coated cutting tools have great economic benefits. In this paper, TiN-TiCN-Al2O3-TiN multi-layer coated carbide tools were studied. Deposition thermodynamics, fluid mechanics, deposition dynamics of coating, the microstructure of multi-layer coating, diffusion of elements in multi-layer coating, residual stress distribution, interface cohesion and oxidation resistant were investigated in details. The conclusions were as followings:
     1)TiN-TiCN-Al2O3-TiN multi-layer composite coated carbide tools were investigated, relation between Gibbs free energy and temperature of sub-coating as well as fluid mechanics characteristic parameters of tray, such as:diffusion length, Peclet, Thiele length, Thiele modulus, Reynolds, Damkohler and Knudsen were calculated, deposition thermodynamics of MT-TiCN and Al2O3coatings was discussed. The results showed that the deposition of MT-TiCN coating was controlled by surface reaction kinetics in860℃-890℃, activation energy was calculated to be254KJ/mol. The deposition of Al2O3coating was mainly controlled by formation of water-vapor. A guide for design of processing parameters was supplied by calculating thermodynamics, fluid mechanics and dynamics.
     2) TiN/MT-TiCN/Al2O3/TiN multilayer composite coating were designed and prepared, and the microstructure of every sub-coating in multilayer system were studied in detail by SEM, TEM, EDS and SIMS. The results indicated that the growth pattern of TiN transition layer in WC grain was primarily epitaxial growth, whereas that in Co grain was primarily nucleation growth. MT-TiCN coating which the content of C and N was gradient distributed were designed and prepared, and the microstructure of MT-TiCN coating in different growth stage was obviously different. TiCO coating was designed and prepared inside MT-TiCN coating and Al2O3coating. Al2O3was nucleated renewedly, and the growth pattern of Al2O3coating was cylindrical polycrystalline growth.
     3) The diffusion behavior of elements in matrix/multilayer interface was discussed. The results showed that Co in matrix diffused along grain boundary inside the coating, whereas the diffusion pattern of W was grain boundary diffusion and volume diffusion, and the diffusion distance of W inside the coating was larger than other elements. The diffusion behavior of Ti and Al in TiCO/Al2O3interface indicated that the diffusion distances of Ti and Al in TiCO/Al2O3interface were both short, and they even did not diffuse.
     4) The residual stress distribution, fracture energy, critical thickness of crack in the coating, critical crack stress and critical temperature of TiN/MT-TiCN/Al2O3/TiN multilayer composite coating were calculated. The residual stress was measured by XRD analysis. The results demonstrated that small difference of thermal expansion rate between matrix and coating can form relatively large thermal stress. It is the primary methods that the improvement of critical thickness, critical crack stress and critical temperature of crack in the coating can be improved by enhancing the ductility of the matrix and fracture energy of the coating. The relaxing of residual stress was studied when the crack of coating happened. The results pointed out that sand blasting and shot peening can effectively increase the crack density, and release the residual stress of the coating.
     5) The bond strength of mutil-layer coating was investigated by scratch test, and the morphology of sample scratched was also analyzed. The results indicated that good combination between mutil-layer composite coating and cemented carbide matrix was formed. The influence of component of matrix and combination modes of coating on the bond strength was discussed. The bond strength was affected obviously by particle size of WC, contents of Co, addition of cubic carbide and the formation of cobalt-rich layer. The bond strength decreased clearly with the increasing of coating thickness and the formation of Al2O3coating. The strength increased in indentation test caused by the substitution of TiC in TiN/TiC/Al2O3/TiN multilayer with different matrix. There are various kinds of fracture form exist in multi-layer composite coating, and fracture was not only formed between coating and matrix but also exist in each sub-coating.
     6) The oxidation resistance of four kinds of multilayer coating sample was studied under the condition of600℃-950℃and30min-120min. Compared with the oxidation of cemented carbide, the activation energy of coating sample is lower and was controlled by diffusion dynamics more easily. Hence, coating sample exhibiting much better oxidation resistance compared with cemented carbide matrix. Both internal and external of multilayer coating without Al2O3were oxidized, and furthermore, the oxidation of Al2O3sub-coating was processed along with the heating crack in surface. Dense and integrated Al2O3sub-coating can protect the multilayer coating and matrix effectively, which also improved the oxidation resistance obviously.
引文
[1]于启勋,朱正芳.刀具材料的历史、进展与展望[J].机械工程学报.2003,39(12):62-66.
    [2]上海市金属切削技术协会主编.金属切削手册[M].上海:上海科学技术出版社,2000.
    [3]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [4]I.Y. Konyashin. Improvement in reliability and service ability of cemented carbide with wear-resistant coatings[J]. Materials Science and Engineering A.1997,23(1-2):213-220.
    [5]I.Y. Konyashin. PVD/CVD technology for coating cemented carbides [J]. Surface and Coating Technology.1995,71 (3):277-283.
    [6]B.Mills. Recent devdlopments in cutting tool materials[J]. Journal of Materials Processing Technology.1996,56:16-23.
    [7]李学芳.国外刀具材料的发展近况[J].工具技术.1999,33(3)3-7.
    [8]赵海波,高见,周彤.欧洲铣刀涂层最新进展及发展模式[J].工具技术.2005,39(4):3-9.
    [9]徐帮学.最新铣刀设计制造与质量检验标准实用手册[M].吉林音像出版社,2003:320-321.
    [10]戚正风,任瑞.国内外刀具材料发展现状.金属热处理,2008年,33(1):15-20.
    [11]刘志峰,张崇高,任家隆.干切削加工技术及运用[M].机械工业出版社,2005:141-147.
    [12]韩铧,许晓静,刘延山.硬质合金刀具材料的研究现状与发展思路[J].工具技术,1999,36(10):3-7.
    [13]邓建新,艾兴.陶瓷刀具切削加工时的磨损与润滑及其与加工对象的匹配研究[J].机械工程学报.2002,38(4):40-50.
    [14]艾兴,萧红.陶瓷刀具切削加工[M].北京:机械工业出版社,1988.
    [15]邓建新,艾兴Al2O3/TiB2/SiCw陶瓷刀具加工镍基合金时的磨损机理[J].硅酸盐学报.1997,25(2):192-196.
    [16]文鹏.新型陶瓷刀具材料的发展趋势[J],佛山陶瓷.2004,14(2):36-37
    [17]贾成厂,李文霞,郭志猛等.陶瓷基复合材料导论[M].北京:冶金工业出版社,1998.
    [18]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,2002
    [19]徐强,张幸强,曲伟等.金属陶瓷研究进展[J].硬质合金,2002,19(4):221-225.
    [20]F. Monteverde, V. Medri, A. Bellosi. Microstructure of hot-Perssed Ti(C,N)-based cermets[J], Journal of the EuroPean Ceamic Society.2002,22:2587-2593.
    [21]丰平,熊惟皓,余立新.Ti(C,N)基金属陶瓷烧结过程的冶金基础及显微组织特征:Ⅰ烧结过程的冶金基础[J].材料导报.2004,18(2):9-11.
    [22]刘献礼.聚晶立方氮化硼刀具及其应用[M].哈尔滨:黑龙江科学技术出版社,1999.
    [23]艾兴.高速切削技术和刀具材料现状与展望[J].世界制造技术与装备市场,2001,(3):31-36.
    [24]姚学祥,张桂香.超硬材料刀具研究现状和趋势[J].硬质合金,2001,18(3):182-186.
    [25]J. S. Yoon, H. S. Myung, J. G. Han, J. Musil. A study on the synthesis and microstructure of WC/TiN superlattice coating[J].Surface and Coatings Technology,2000,131:372-377.
    [26]安德斯·强森.切削刀具刀片.中国专利.200510082479.9[P].2006.01.18.
    [27]R. Sakari, K. Lennart. Coated body with nanocrystalline CVD coating for enhanced edge toughness and reduced friction. US6620498[P].2003,09,16.
    [28]K. D. Bouzakis, S. Hadjiyiannis, G. Skordaris. The effect of thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts [J]. Surface and Coatings Technology, 2004,177-178:657-664.
    [29]K. D. Bouzakis, N. Michailidis, N. Vidakis. Failure mechanisms of physically vapour depostited coated hardmetal cutting inserts in turning[J]. Wear,2001, 248(1-2):29-37.
    [30]K. D. Bouzakis, S. Hadjiyiannis, G. Skordaris. The influence of the coating thickness on its srtength properties and on the milling performance of PVD coated inserts[J]. Surface and Coatings Technology,2003,174-175;393-401.
    [31]张俊彦.薄膜/涂层的摩擦学设计及其研究进展[J].摩擦学学报.2006,26(4):387-396.
    [32]李振军,徐洮,李红轩.类金刚石薄膜的摩擦学特性及磨损机制研究进展[J].材料科学与工程学报.2004,22(5):774-777.
    [33]H.E. Cheng,Y. W. Wen. Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition[J]. Surface and Coatings Technology,2004,179(1-2):103-109.
    [34]B.朗伯格.具有氧化物涂层的切削刀具[P].中国专利95191221.6.1996.12.25.
    [35]佘建芳.山特维克可乐满公司切削刀具涂层技术的发展[J].稀有金属与硬质合金.2003,131(3):51-55.
    [36]王瑚,赵炳桢.第十届中国国际机床展览会刀具展品述评[J],工具技术,2007,41(6):3-16.
    [37]章宗城,车削可转位刀片的选择(上)[J].机械工人(冷加工),2003,5:21-23.
    [38]章宗城,车削可转位刀片的选择(中)[J].机械工人(冷加工),2003,6:62-63.
    [39]雷斌.TiA1N涂层摩擦学行为及其铣削性能研究[M].西南交通大学,工程硕士论文,2006,P4.
    [40]P. E. Hovsepian, D. B. Lewis, W. D. Munz. Recent progress in large scale manufacturing of multilayerrsuperlattice hard coatings [J]. Surface and Coatings Technology,2000,133-134:166-175.
    [41]H. G. Prengel, W. R. Pfouts, A. T. Santhanam. State of the art in hard coatings for carbide cutting tools[J]. Suface and Coating Technology.1998,102:183-190.
    [42]赵海波.国内外切削刀具涂层技术发展综述[J].工具技术,2002,36(2):3-7.
    [43]吴希让,余光丽.涂层刀具的性能和应用[J].汽车工艺与材料,2003,1:1-5.
    [44]傅小明,吴晓东.硬质合金刀具涂层技术的研究进展[J].江西冶金,2004,24,(2):32-37.
    [45]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,200229(4):63-65.
    [46]胡传烯,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000.
    [47]黄金昌,徐秀茹.表面处理和涂层技术的新进展及新用途[J].稀有金属与硬质合金,1997,130:60-62.
    [48]吴大维,刘传胜,傅德君.刀具涂层技术的新进展[J].中国机械工业,2000,11(5):574-577.
    [49]S. Hogmark, S. Jacobson, M. Larsson. Design and evaluation of tribological coatings [J]. Wear,2000,246:20-33.
    [50]Y. Y. Guu, J. F. Lin. Analysis of wear behaviour of titanium carbonitride comings [J]. Wear,1997,210:245-254.
    [51]唐华生.各种表面超硬薄膜涂层的技术发展和应用[J].材料科学与工程,1989,(4):37.
    [52]王刚.氮化铝钛涂层刀具研究,长春理工大学硕士学位论文,2006,P4.
    [53]陈维喜.刀具涂层技术的现状与展望[J].工具技术,2000,34(3):3.
    [54]C. Bisch, M. Nadal, F. Teyssandier, M. Bancel, B. Vallon. Chemical vapour deposition of titanium carbide on WC-Co cemented carbides[J]. Materials Science and Engincering A,1995,202:238-248.
    [55]A. J. Perry. The surface topography of titanium nitride made by chemical vapor deposition[J]. Surface and Coatings Technology,2000,132:21-25.
    [56]M. Scholl. Abrasive wear of titanium nitride coatings[J]. Wear,1997,203-204: 57-64.
    [57]V. Richter, A. Beger, J. Drobniewski, I. Endler, E. Wolf. Characterisation and wear behaviour of TiN and TiCN-coatde cermets[J]. Materials Science and Engineering A,1996,209:353-357.
    [58]Y. J. Mei, T. C. Chang, J. C. Hu, L. J. Chen, Y. L. Yang, F. M. Pan, W. F. Wu, A. Ting, C. Y. Chang. Characterization of TiN film grown by low-pressure-chemical vapor-deposition [J]. Thin Solid Films.1997,308-309:594-598.
    [59]Y. L. Su, S. H. Yao, C. S. Wei, C. T. Wu. Analyses and desingn of a WC milling cutter with TiCN coating [J].Wear.1998,215:59-66.
    [60]S. Kudapa, K. Narasimhan, P. Boppana, W. C. Russell. Characterization and properties of MTCVD TiCN and MTCVD ZrCN coatings [J]. Surface and Coatings Technology.1999,120-12:259-264.
    [61]Y. Y. Guu, J. F. Lin. Comparison of the tribological characteristics of titanium nitride and titanium carbonitride coating films [J]. Surface and Coatings Technology.1996,85:146-155.
    [62]H. E. Cheng, Y. W. Wen. Correlation between process parameters, micro structure and hardness of titanium nitride films by chemical vapor deposition [J]. Surface and Coatings Technology.2004,179:103-109.
    [63]Y. Y. Guu, J. F. Lin, C. F. Ai. Correlation between three-body wear and tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings [J]. Wear.1997,208:147-154. [64]K. N. Andersen, E. J. Bienk, K. O. Schweitza, H. Reitz, J. Chevallier, P. Kringhoj, J. Bottiger. Deposition, micro structure and mechanical and tribological properties of magnetron sputtered TiN/TiAIN multilayers[J]. Surface and Coatings Technology.2000,123:219-226.
    [65]刘强.涂层硬质合金刀具切削性能研究[J].大连理工大学硕士学位,2007,P4.
    [66]李荣久,茹红强,孙旭东.陶瓷-金属复合材料[M].北京:冶金工业出版社,2002.
    [67]刘沙,易丹青,余志明.金刚石涂层硬质合金的研究动态(I)[J].稀有金属与硬 质合金,2000,141(6):53-57.
    [68]A. T. Santhanam, D. T. Quinto, G. P. Grab. Comparison of the Steel-Milling Performance of Carbide Inserts with MTCVD and PVD TiCN Coatings[J]. Int.J.of Refnctery Metals & llard Marerials.1996,14:31-40.
    [69]李建平,高见,曾祥才.中温化学气相沉积(MT-CVD)工艺技术及超级涂层材料的研究[J].工具技术.2004,38(9):72-75.
    [70]陈旭.MT-CVD氮碳化钛涂层新工艺[J].工具技术.1998,32(1):20-22.
    [71]A. Larsson, S. Ruppi. Micro structure and properties of TiCN coatings produced by moderate temperature chemical vapour deposition [J]. Thin Solid Films. 2002,402:03-210.
    [72]A. Forn, J. A. Picas, G. G. Fuentes, E. Elizalde. Mechanical and tribological properties of TiCxN1-x Wear resistant coatings[J]. International Journal of Refractory Metals & Hard Materials.2001,19:507-513.
    [73]E. Fredriksson, J. O. Carlsson. Chemical vapour deposition of Al2O3 on TiO[J]. Thin Solid Films.1995,263:28-36.
    [74]S. Ruppi. Kappa-alumina oxide coated carbide body and method of producing the same[P].US5162147.1992,11,10.
    [75]S. Ruppi. Multi-oxide coated carbide body and method of producing the same [P]. EP0408535.1991,01,16.
    [76]A.Larsson, S. Ruppi. Micro structure and properties of CVD γ-Al2O3 coatings [J]. International Jorunal of Refractory Metals & Hard Materials,2001,19:515-522.
    [77]M. Fallqvist, M. Olsson, S. Ruppi. Abrasive wear of multilayer k-Al2O3-TiCN CVD coatings on cemented carbide[J]. Wear.2007,263:74-80.
    [78]S. Ruppi, A. Larsson. Chemical vapour deposition of k-Al2O3 [J]. Thin Solid Films.2001,388:50-61.
    [79]比约恩·永贝里,莱夫·奥克索恩.涂敷的车削刀片[P].中国专利96196542.8.1998.09.23.
    [80]S. Ruppi. Deposition, microstructure and properties of texture-controlled CVD α-Al2O3 coatings[J]. International Journal of Refractory Metals & Hard Materials. 2005,23:306.
    [81]V. S. Kumar, G. Kelekanjeri, W. B. Carter, J. M. Hampikian. Deposition of a-alumina via combustion chemical vapor deposition [J]. Thin Solid Films.2006, 515:1905-1910.
    [82]J. Z. Sun, T. Stirner, A. Matthews. Calculation of native defect energies in α-Al2O3 and α-Cr2O3 using a modified Matsui potential [J]. Surface & Coatings Technology.2006,201:678-682.
    [83]M. Fallqvist, M. Olsson, S. Ruppi. Abrasive wear of texture-controlled CVD a-Al2O3 coatings [J]. Surface & Coatings Technology.2007,202:837-841.
    [84]X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, A. Matthews. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis [J]. Surface and Coatings Technology. 2002,149:245-251.
    [85]P. H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens. Microstructural design of hard coatings [J]. Progress in Materials Science.2006,51:1032-1114.
    [86]S. Anna, L. Edward, S. Ruppi. Coated cemented carbide body and method for use[P]. US2003143384.2003,07,31.
    [87]M. Kobayashi, Y. Doi. TiN and TiC coating on cemented carbides by ion plating. Thin Solid Films,1978,54(1,2):67-74. [88]Y. Iwai, T. Miyajima, A. Mizuno, T. Honda, T. Itou, S. Hogmark. Micro-Slurry-jet Erosion (MSE) testing of CVD TiC/TiN and TiC coatings. Wear, 2009,267(1-4):264-269.
    [89]I. L. Sebire, M. Lahaye, R. Colmet, R. Naslain, M. Chevrier. Microanalysis of the Al2O3-TiC interface in aluminacoated cemented carbides by Auger electron and glow discharge emission spectroscopies.Thin Solid Films,1986,138(2): 209-220.
    [90]K. T. Rie, A. Gebauer, J. Wohle, H. K. Tonshoff, C. Blawit. Synthesis of TiN/TiCN/TiC layer systems on steel and cermet substrates by PACVD. Surface and Coatings Technology,1995,74-75(1):375-381.
    [91]E. Vancoille, J. P. Celis, J. R. Roos. Tribological and structural characterization of a physical vapour deposited TiC/Ti(C,N)/TiN multilayer.Tribology International, 1993,26(2):115-119.
    [92]S. Ruppi, B. Hogrelius, M. Huhtiranta. Wear characteristics of TiC, Ti(C,N), TiN and Al2O3 coatings in the turning of conventional and Ca-treated steels.International [J]. Journal of Refractory Metals and Hard Materials,1998, 16(4-6):353-368.
    [93]H. Holzschuh. Deposition of Ti-B-N (single and multilayer) and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools. Thin Solid Films,2004,469-470:92-98.
    [94]M. H. Staia, D. G. Bhat, E. S. Puchi-Cabrera, J. Bost. Characterization of chemical vapor deposited HfN multilayer coatings on cemented carbide cutting tools. Wear,2006,261:540-548.
    [95]肖代红.TiN/Ti(C,N)涂层的显微组织与力学性能[J].材料热处理学报,2009,30(1):89-92.
    [96]陈利,吴恩熙,尹飞等.(Ti,Al)N涂层的微观组织和性能[J].中国有色金属学报,2006,16(2):568-563.
    [97]高见,李建平,马文存TiC-TiN-TiC-Al2O3涂层CP3型硬质合金抗弯强度及其分散性的研究[J].工具技术,2002,36(11):683-685.
    [98]廖先富译.最新涂层材料及其涂覆技术[J].工具技术.1996,(7):36-38.
    [99]韦奇,王大伟,等.溶胶一凝胶法制备Al2O3-SiC复合膜的微观结构分析[J].硅酸盐学报.2001,29(4):392-396.
    [100]刘建华.ZrN涂层刀具的设计开发及其切削性能研究[D].山东大学博士学位论文,2007,P4.
    [101]牛敏.ZrN涂层刀具材料摩擦磨损特征的研究[D],山东大学硕士学位论文,2007,P2.
    [102]曹鼎.添加超细Ti(C,N)制备具有脱p相梯度结构硬质合金的研究.四川大学硕士学位论文.2006,P4.
    [103]H. Holleck.Multilayer PVD coatings for wear protection[J]. Surface and Coatings Techhology.1995,76-77(Part 1):328-336.
    [104]王福贞,马文存.气象沉积应用技术[M],北京:机械工业出版社,2006,10.
    [105]王福贞.表面沉积技术[M],北京:机械工业出版社,1989.
    [106]F. Sanchette, T. Czerwiec. Sputtering of Al-Cr and Al-Ti composite Targets in pure Ar and in Reactive Ar-N2 plasmas [J]. Surface and Coatings Technology,1997,96 (2-3):184-190.
    [107]Y. K. Wang, X. Y. Cheng. Microstruchure and Properties of (Ti,Al) N Coating on High Speed Steel[J]. Surface and Coatings Technology.1995,72(1-2):71-77.
    [108]J. V. Ramana, S. Kumar, C. David.Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering [J]. Materials Letters.2000,43(1-2):73-76.
    [109]M. Del Re, R. Gouttebaron, J. P. Dauchor. Study of ZrN layers deposited by rective magnetron sputtering [J]. Surface and coatings technology.2003,174-175: 240-245.
    [110]M. I. Lembke, D. B. Lewis, W. D. Munz. Localised oxidation defects in TiAIN/CrN superlattice structured hard coatings grown by cathodic arc/unbalancde magnetron deposition on various substrate materials [J]. Surface and Coatings Technology,2000,125(1-3):263-268.
    [111]王少刚,刘德浚,姚正军,等.离子镀氮化铝钛(TIAIN)的微观组织结构及特性研究[J].金属热处理,2000,(3):25-28.
    [112]宋贵宏,郑静地,刘越.TiAl过渡层对电弧离子镀沉积TiAIN膜层的影响[J].人工晶体学报.2004,33(3):422-427.
    [113]熊仁章,夏立芳,雷廷权.工艺因素对TiAIN多元涂层成分的影响[J].兵器材料科学与工程.2000,23(5):55-59.
    [114]张德元,邓鸣,彭文屹.离子镀TiAIN超硬膜耐磨性研究[J].金属热处理学报.1997,18(2):40-44.
    [114]J. Vetter. Vacuun arc coatings for tools:potential and application[J]. Surface and Coatings Technology.1995,76-77(Part 2):719-724.
    [115]P. Sathrun, B. F. Coll. Plasna and deposition enhancement by modified arc evaporation source[J]. Surface and Coatings Technology.1992,50(2):103-109.
    [116]吴一平,乔学亮,陈建国.多弧离子沉积(Ti,Al)N薄膜的制备工艺[J].兵器材料科学与工艺.1995,18(5):25-29.
    [117]傅永庆,朱晓东,徐可为,何家文.离子束辅助沉积技术及进展[J].材料科学与工程.1998,14(3):22-32.
    [118]江海,武庆兰,陶琨,李恒德.离子束辅助沉积Fe-N薄膜的相形成[J].金属学报.1994,30(18):273-276.
    [119]齐军,雏建斌,王静,李文治,温诗铸.离子辅助轰击能量对类金刚石薄膜性能的影响[J].材料工程.2000(2):35-38.
    [120]C. Mitterer, P. H. Maythofer, W. Waldhauser. The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings [J]. Surface and coatings technology.1998,108-109(1-3):230-235.
    [121]曾晓燕,等.表面工程学[M],北京:机械工业出版社,2001.
    [122]毛延发.Ti-Al-N纳米复合薄膜的技术进展及思考[A].深圳市科协2005年学术年会.深圳.2005.
    [123]A. Quiten, W. Arnold. Observation of stable crack growth in Al2O3 ceramics using a scanning acoustic microscope [J]. Materials Science and Engineering. 1989,122:15-19.
    [124]王大巍,陈华辉,赵会友.热喷涂A1203-TiO2复合陶瓷涂层滑动磨损特性研究[J].润滑与密封.1999(2):28-30.
    [125]J. E. Femandez, Y.1. Wang, R.Vingande. Sliding wear of a plasma aprayed Al2O3 coating[J].Wear.1996,82(1):218-225.
    [126]徐滨士,李长久,刘世修.表面工程与热喷涂技术及其发展[J].中国表面工程,1998(1):3.
    [127]Y. Y. Yang, Y. S. Jin, S. Y. Luo. SAM Study on plasm sprayed ceramic coatings [J]. Surface and Coatings Technology,1997,91(1-2):95-100.
    [128]彭志坚,苗赫濯,齐龙浩,龚江宏.高能量密度脉冲等离子体制备高硬耐磨TiN涂层[J].金属学报.2003,39(6):561-564.
    [129]苗赫濯,彭志坚,杨思泽.高能量密度脉冲等离子枪在硬质合金刀具上沉积高硬耐磨涂层研究[J].陶瓷科学与艺术.2003,37(5):4-9.
    [130]陈元春,艾兴,黄传真.溶胶-凝胶法制作陶瓷涂层硬质合金刀具.硅酸盐学报,2000(4):89-93.
    [131]L. F. Senna, C. A. Achete, T. Hirsch, F. L. Freire Jr. Structural, chemical, mechanical and corrosion resistance characterization of TiCN coatings prepared by magnetron sputtering [[J]. Surface and Coatings Technology,1997, 94-95:390-397.
    [132]F. L. Freire Jr., L. F. Senna, C. A. Achete, T. Hirsch. Characterization of TiCN coatings deposited by magnetron sputter-ion plating process:RBS and GDOS complementary analyses [J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1998, 136-138(2):788-792.
    [133]胡爱萍,孔德军,朱伟;TiN涂层残余应力对其界面结合强度的影响[J].工具技术,2008,(11):285-287.
    [134]武从海.硬质合金TiN涂层的残余热应力数值分析[J].河南科技大学学报(自然科学版,2008,29(2):79-83.
    [135]谈峰,黄自谦,饶秋华.基于有限元方法的硬质合金TiCN梯度涂层的热应力分析[J].中国钨业,2008,23(2):235-238.[136]耿东生,张贵锋,李兴无,郑修麟.金刚石薄膜与WC-Co硬质合金的附着性研究.机械科学与技术,1997,16(6):1050-1054.
    [137]王四根,盖世英,蒋政,唐伟忠,吕反修.硬质合金工具金刚石涂层渗硼预处理[J].北京科技大学学报,2000,22(01):31-33.
    [138]H. Ollendorf, D. Schneider. A comparative study of adhesion test methods for hard coatings [J]. Surface and Coatings Technology,1999,113(1-2):86-102.
    [139]S. J. Bull, E. G. Berasetegui, T. F. Page. Modelling of the indentation response of coatings and surface treatments [J]. Wear,2004,256(9-10):857-866.
    [140]J. Takadoum, H. H. Bennani. Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films. Surface and Coatings technology,1997,96:272-282.
    [141]高见,李建平,马文存,沈保罗,高升吉,易勇.WC基硬质合金CVD涂层的组织与性能[J].中国有色金属学报,2002,12(02):331-333.
    [142]苗赫濯,彭志坚,杨思泽,刘赤子,齐龙浩.高能量密度脉冲等离子枪在硬质合金刀具上沉积高硬耐磨涂层研究[J].陶瓷科学与艺术,2003,(05):4-8.
    [143]徐雪霞,阎殿然,何继宁.Al2O3梯度陶瓷涂层高温抗氧化性能的研究.河北科技大学学报,2002,23(60):19-23.
    [144]杨世伟,李绍海,常铁军,王君.电弧离子镀(Ti,A1)N涂层高温氧化形貌分析[J].哈尔滨工程大学学报,2004,25(03):314-317.
    [145]李佳,陈利,王社权.(Ti,Al)N涂层的组织结构及抗氧化性研究[A].2008年中国材料研讨会暨2008'中国粉末冶金新技术及难熔金属粉末冶金会议论文集[C].2008.131-146
    [146]V. Lieberman. Design of Production Chemical Equipment Vapor Deposition [J]. J. of Refractoty Metals & Hard Materials.1996,14:161-165.
    [147]王国栋.硬质合金生产原理.北京:冶金工业出版社,1988,1,5,316.
    [148]L. Chen, E. X. Wu, F. Yin, J. Li. Effects of gradient structure on the microstructures and properties of coated cemented carbides[J]. Journal of University of Science and Technology Beijing.2006,13,(4):363-367.
    [149]R. Frykholm, M. Ekroth, B. Jansson, H. O. Andren, J. Agren. Effect of cubic phase composition on gradient zone formation in cemented carbides[J]. International Journal of Refractory Metals & Hard Materials.2001,19:527-538.
    [150]A. Larsson, S. Ruppi. Microstructure and properties of TiCN coatings produced by moderatetemperature chemical vapour deposition[J]. Thin Solid Films.2002,402:203-210.
    [151]R. S. Hay, J. R. Welch, M. K. Cini. TEM specimen preparation and characterization of ceramic coatings on fiber tows[J]. Thin Solid Films.1997, 308-309:389-392.
    [152]M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley, D. Morel. Micro structural characterization of chemically vapor deposited TiN coating. Surface and Coating technology,1996,86-87:432-437.
    [153]B. D. Beake, N. Ranganathan. An investigation of the nanoindentation and nano/micro-tribological behaviour of monolayer, bilayer and trilayer coatings on cemented carbide[J].Materials Science and Engineering A.2006,42:46-51.
    [154]姚允斌,解涛,高英敏.物理化学手册,上海科学技术出版社,1985.
    [155]K. L. Choy. Chemical vapour deposition of coatings[J]. Progress in Materials Science.2003,48:57-170.
    [156]叶大伦,胡建华编著.实用无机物热力学数据手册,冶金工业出版社,2002.
    [157]D. M. Dobkin. Principlels of chemical vapor deposition[M]. Kluwer academic publishers,2003.
    [158]M. L. Auger, V. K. Sarin. A kinetic investigaiton of CVD mullite coaitngs on Si-based ceramics [J]. International Journal of Refractory Metals & Hard materials.2001,19:479-494.
    [159]M. Kathrein, W. Schintlmeister, W. Wallgram, U. Schleinkofer. Doped CVD Al2O3 coatings for high performance cutting tools [J].Surface and Coatings Technology.2003,163-164:181-188.
    [160]M. Danzinger, R. Haubner, B. Lux. Influence of Al-Acetylacetonate Addition on the CVD Deposition of Al2O3(Reaction Gas:AlCl3/CO2/H2)[J]. International Journal of Refractory Metals & Hard Materials.1996,14:69-77.
    [161]N. Krishnan. Titanium carbonitride coated stratified substrate and cutting inserts made from the same[P]. US6080477.2000,06,27.
    [162]K. Narasimhan, S. P. Boppana, D. G. Bhat. Development of a graded TiCN coating for cemented carbide cutting tools-a design approach [J]. Wear.1995,188: 123-129.
    [163]I. Dahan, U. Admon, N. Frage, J. Sariel, M. P. Dariel, J. J. Moore. The development of a functionally graded TiC/Ti multilayer hard coating [J]. Surface and Coatings Technology.2001,137:111-115.
    [164]Microstructure and properties of TiCN coatings produced by moderate temperature chemical vapour deposition.
    [165]M. Le, E. F. Koch, T. E. Hale. A Study of the Coating-Substrate Interface Layer of an Al2O3-Coated Cemented Carbide Cutting Tool[J]. International Journal of Refractory Metals & Hard Materials.1996,14:335-343.
    [166]K. H. U. Smith, J. N. Lindstroem. Method of making a coated cemented carbide body and resulting body [P]. US4619866.1986,10,28.
    [167]S. Ruppi. Multilayered alumina coated cemented carbide body. US 5700569. 1997,12,23.
    [168]D. Selbmann, A. Leonhardt, E. Wolf. Chemical vapour deposition of Al- containing TiC-Ti(O,C)-hard coatings[J]. Journal de physique IV Colloque C2, 1991, 11(suppl):
    [169]S. Ruppi, L. Karlsson. Method of forming a coated body having a nanocrystalline CVD coating of Ti(C,N,O)[P]. US6652913.2003,11,25.
    [170]S. Ruppi. Cemented carbide body with high wear resistance and extra tough behavior[P]. US6015614,2000,01,18.
    [171]A. Larsson, M. Halvarsson, S. Vuorinen. Microstructural investigation of heat-treated CVD k-Al2O3 multilayer coatings [J]. Intermational Jounal of Refractory Metak & Hard Materials.1998,16:369-376.
    [172]A. Larsson, M. Halvarsson, S. Ruppi. Microstructural changes in CVD k-Al2O3 coated cutting tools during turning operations [J]. Surface and Coatings Technology.1999,111:191-198.
    [173]M. Halvarsson. Microstructural Investigations of CVD TiN/k-Al2O3 Multilayer Coatings on Cemented Carbides [J]. Intermational Jounal of Refractory Metak & Hard Materials.1997,15:169-178.
    [174]M. Halvarsson, S. Vuorinen. Microstructure and performance of CVD K-Al2O3 multilayers [J].Materials Science and Engineering A.1996,209:337-344.
    [175]X. C. Zhang, B. S. Xu, H. D. Wang, Y. X. Wu. An analytical model for predicting thermal residual stresses in multilayer coating systems [J]. Thin Solid Films.2005,488:274-282.
    [176]E. Uhlmann, K. Klein. Stress design in hard coating[J]. Surface and Coatings Technology.2000.131:448-451.
    [177]M. Gelfi, E. Bontempi, R. Roberti, L. Armelao, L. E. Depero. Residual stress analysis of thin films and coatings through XRD-Experiments[J]. Thin Solid Films.2004,450:143-147.
    [178]C. Genzel, W. Reimers. Some new aspects in X-ray stress analysis of thin layers[J]. Surface and Coatings Technology.1999,116-119:404-409.
    [179]王洪纲.热弹性理论概论[M].北京:清华大学出版社,1989.
    [180]机械工程材料性能数据手册编委会.机械工程材料性能数据手册[M].北京:机械工业社,1994.
    [181]肖诗纲.刀具材料及其合理选择[M].第二版.北京:机械工业出版社,1990.
    [182]李志华,李焕喜,徐惠彬,等.热障涂层的残余应力分析[J].北京航空航天大学学报,2004.30.
    [183]杨定富,韩树,袁伟.基体预热温度对热障涂层热残余应力影响的研究[J].表 面技术.2004,33(2):253-259.
    [184]张显程,徐滨士,王海斗,吴毅雄.功能梯度涂层残余应力分析[J].机械工程式学报.2006,42(1):49-53.
    [185]张国祥,陈光南,张坤.基体界面屈服强度和残余应力失配对界面裂纹扩展的影响[J].吉林大学学报(工学版).2006,36(3):294-297.
    [186]王丹,徐滨士,董世运.涂层残余应力实用检测技术的研究进展[J].金属热处理.2006,31(5):48-53.
    [187]L.B.Freund, S. Suresh著,卢磊译,薄膜材料——应力、缺陷的形成和表面演化[M].北京:科学出版社,2007.
    [188]Z. H. Xia, W. A. Curtin, B. W. Sheldon. A new method to evaluate the fracture toughness of thin films [J]. Acta Materialia.2004,52:3507-3517.
    [189]U. Wiklund, J. Gunnarsl, S. Hogmark. Influence of residual stresses on fracture and delamination of thin hard coatings [J]. Wear.1999,232:262-269.
    [190]H. K. ToEnshoff, B. Karpuschewski, A. Mohlfeld, H. Seegers. Infuence of stress distribution on adhesion strength of sputtered hard coatings[J]. Thin Solid Films.1998,332:146-150.
    [191]S. J. Bull. Failure mode maps in the thin film scratch adhesion test[J]. Tribology Intencerional.1997,30(7):491-498.
    [192]P. Hedenqvist, S. Hogmark. Experiences from scratch testing of tribological PVD coatings[J]. Tribology Intencerional.1997,30(7):507-516.
    [193]R. Polini, F. Bravi, G. Mattei, G. Marcheselli, E. Traversa. Effect of WC grain growth inhibitors on the adhesion of chemical vapor deposition diamond films on WC-Co cemented carbide[J]. Diamond and Related Materials. 2002,11:242-248.
    [194]J. Takadoum, H. Houmid Bennani. Influence of substrate roughness and coating thickness on adhesion, fricition and wear of TiN films[J]. Surface and Coatings Technology.1997,96:272-282.
    [195]H. K. Tonshoff, B. Karpuschewski, A. Mohlfeld, H. Seegers. Influence of subsurface properties on the adhesion strength of sputtered hard coatings [J]. Surface and Coatings Technology.1999,116-119:524-529.
    [196]Attar F, Johannesson T. Adhesion evaluation of thin ceramic coatings on tool steel using the Scratch testing technique[J]. Surface and Coatings Technology, 1996,78:87-102.
    [197]Mittal K L. Adhension Measurement of Films and Coatings[R]. The Netherlands,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700