山楂种质资源的分子鉴定及创新研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山楂属(Crataegus spp.)植物是重要的果树种质资源。本研究以原产于中国的山楂种质资源为试材,探索建立并优化山楂的RAPD分析体系和ISSR分析体系,在此基础上,以在国家果树种质沈阳山楂圃保存的96份山楂属植物资源为试材,利用RAPD标记和ISSR标记对中国山楂属植物的遗传多样性进行了分析。同时进行了山楂离体再生体系建立和四倍体诱导的研究。主要结果如下:
     1.改进的CTAB法(提取缓冲液中含3%的CTAB)和QIAGEN试剂盒法是适宜的山楂总DNA提取方法。改进的CTAB法提取的山楂总DNA的产率较低,但是纯度较高,OD_(260)/OD_(280)比值在1.638~1.889之间;QIAGEN试剂盒法提取的山楂总DNA的产率和纯度均较高,供试8个样品的总DNA产率均高于100μg/g,OD_(260)/OD_(280)比值在1.758~1.850之间。以改进的CTAB法和QIAGEN试剂盒法提取的山楂总DNA为模板进行RAPD和ISSR扩增,能扩增出多条清晰的谱带,多态性、稳定性、重复性良好。以SDS法提取的山楂总DNA为模板进行RAPD和ISSR扩增,未能扩增出谱带。
     2.对循环次数、反应体系中Mg~(2+)浓度、DNA模板质量、Taq DNA聚合酶的来源和浓度等多个影响RAPD反应结果的因子进行了研究,首次建立了优化的山楂属植物RAPD分析体系,即:PCR反应体积为20μl,内含1×PCR反应缓冲液(Promega),2.0mmol/LMgCl_2,0.2 mmol/LdNTP(Promega),0.3μmol/L引物,0.5 U Taq DNA聚合酶(Tiangen),50 ng改进的CTAB法或QIAGEN试剂盒法提取的山楂总DNA;扩增程序为94℃30 s;94℃30 s,40℃2min,72℃3min,45循环,72℃7min。根据谱带的多少、多态性、清晰性,从146个RAPD引物中筛选出30个适宜于山楂属植物遗传分析的引物。
     3.对退火温度、循环次数、反应体系中Mg~(2+)浓度、DNA模板质量、Taq酶的来源和浓度等影响ISSR反应结果的因子进行了研究,首次建立了优化的山楂属植物ISSR分析体系,即:PCR反应体积为20μl,内含1×PCR反应缓冲液(Promega),3.0 mmol/LMgCl_2,0.2 mmol/L dNTP,0.3μmol/L引物,0.5 U Taq DNA聚合酶(Tiangen),50 ng改进的CTAB法或QIAGEN试剂盒法提取的总DNA;扩增程序为94℃3 min;94℃30s,退火温度(通过温度梯度PCR筛选出的适宜温度)1 min,72℃2 min,38循环,72℃7 min。根据谱带的多少、多念性、清晰性,从36个ISSR引物中筛选出13个适宜于山楂属植物遗传分析的引物,其中有8个是基于(GA/CT) n或(AG/TC) n重复序列的在3’端加锚1~2个碱基的ISSR引物。
     4.回收了1个山楂RAPD多态性谱带和16个ISSR多态性谱带,然后对回收的谱带进行克隆和测序,共获得了9个不同的山楂基因组序列。基于解析的山楂序列设计特异引物,成功地将1个RAPD标记和5个ISSR标记转化成SCAR标记。
     5.首次利用分子标记技术对山楂属植物资源进行遗传研究,表明山楂属植物存在较高的遗传多样性。用12个RAPD引物在96份山楂属植物资源上共检测到136个多态性位点,不同山楂种质资源之间的相异系数在0~0.73之间,UPGMA法聚类分析结果显示不同山楂种质资源之间距离系数在0~0.58之间;用13个ISSR引物在96份山楂属植物资源上共检测到130个多态性位点,不同山楂种质资源之间的相异系数在0~0.80之间,UPGMA法聚类分析结果显示不同山楂种质资源之间距离系数在0~0.65之间。
     6.分别绘制了基于RAPD标记和基于ISSR标记的山楂属植物分子系统进化树。基于RAPD标记的山楂属植物聚类结果与基于ISSR标记的聚类结果基本一致。但是与ISSR标记分析结果相比,基于RAPD标记的分类结果更接近于根据形态学特征进行的山楂传统植物学分类结果,RAPD标记更适合于山楂属植物的种内、种间的遗传变异分析。
     7.RAPD和ISSR标记的分析结果均表明:在植物学分类上的伏山楂(C.brettschneideri Schneid.)属于山楂(C.pinnatifida Bge.)的一个变种或亚种,而不是一个独立的新种;从辽宁省盖州市熊岳镇引入的表现为黑皮绿肉的‘绿肉山楂’资源属于绿肉山楂(C.chlorosarca Maxim.);而‘彰武山里红’是一个新种。
     8.全面地进行了山楂胚、胚轴和子叶离体再生的研究,结果表明:①山楂未成熟子叶、成熟子叶和子叶叶片的再生不定芽能力明显不同,其中子叶叶片具有较高的再生能力,其不定芽再生频率是成熟子叶的6倍以上,在附加BA和TDZ各1.0 mg/L的MS培养基上,秋金星子叶叶片的不定芽再生频率达到33.3%;②山楂的胚轴分化出不定芽,而胚根只形成了愈伤组织,未能分化不定芽;③花后40 d的山楂幼胚离体培养的成苗率很低,供试的15份资源的幼胚的成苗率都小于20%,而成熟胚离体培养的成苗率较高,在50%以上。
     9.用0.5%秋水仙碱+1%二甲基亚砜的混合溶液处理隆化粉肉的成熟胚48 h,然后在SC+IBA 0.1 mg/L+TDZ 1.0 mg/L培养基上诱导芽分化。染色体数目观察结果表明,67个检测植株中有3个是四倍体,变异率达4.5%。
Hawthorn (Crataegus spp.) is one of important germplasm resources of fruit trees. This research took hawthorn germplasm resources which are originally from China as the materials and RAPD system and ISSR system of hawthorn were established and optimized. Base on that, genetic diversity of the genus Crataegus was analyzed by RAPD markers and ISSR markers with the 96 accessions of the genus Crataegus growing at the National Hawthorn Germplasm Repository in Shenyang. Besides these, the in vitro regeneration system of hawthorn was established and the tetraploid plants were inducted. The main results were as follows:
     1. The modified CTAB method (3% CTAB in the extraction buffer) and the QIAGEN Plant DNeasy Kit were the suitable protocols for the extraction of total DNA of hawthorn. The production of total DNA was lower with the modified CTAB method, but the purity was relatively high and OD_(260)/OD_(280) value was between 1.638 and 1.889. Both the production and the purity of total DNA was high with the QIAGEN Plant DNeasy Kit, since total DNA of the 8 samples tested in this research were higher than 100μg/g and OD_(260)/OD_(280) value were between 1.758 and 1.850. RAPD and ISSR amplifications were carried on using total DNA of hawthorn with the modified CTAB method and the QIAGEN Plant DNeasy Kit, and several clear bands with better polymorphism, stability and repeatability could be obtained. Meanwhile, RAPD and ISSR amplifications were carried on using total DNA of hawthorn with the SDS method, but no band was obtained.
     2. A number of factors affected the amplification results of RAPD were investigated such as cycle numbers, Mg~(2+) concentration, quality of DNA template and kinds and concentration of Taq DNA polymerase etc. The optimized RAPD analysis system of the genus Crataegus was established for the first time, i.e., reaction mixture contained I×PCR buffer (Promega), 2.0 mM MgCl_2, 0.2 mM dNTPs (Promega), 0.3μM primer, 0.5 U Taq enzyme (Tiangen) and 50 ng total DNA of hawthorn extracted with the modified CTAB method or the QIAGEN Plant DNeasy Kit in a total volume of 20μl. The cycling conditions consisted of an initial denaturation step at 94℃for 30 s, followed by 45 cycles at 94℃for 30 s, 40℃for 2 min and 72℃for 3 min, and then a final elongation step at 72℃for 7 min. Thirty primers screened out from 146 RAPD primers were suitable for the genetic analysis of the genus Crataegus based on the number, polymorphism and clarity of the bands.
     3. A number of factors affected the results of ISSR were investigated such as annealing temperature, cycle numbers, Mg~(2+) concentration, quality of DNA template and kinds and concentration of Taq DNA polymerase etc. The optimized ISSR analysis system of the genus Crataegus was established for the first time, i.e., reaction mixture contained 1×PCR buffer (Promega), 3.0 mM MgCl_2, 0.2 mM dNTPs, 0.3μM primer, 0.5 U Taq enzyme (Tiangen) and 50 ng total DNA of hawthorn extracted with the modified CTAB method or the QIAGEN Plant DNeasy Kit in a total volume of 20μl. The cycling conditions consisted of an initial denaturation step at 94℃for 3 min, followed by 38 cycles at 94℃for 30s, suitable annealing temperature (screened out by temperature gradient PCR) for 1 min and 72℃for 2 min, and then a final elongation step at 72℃for 7 min. Thirteen primers, in which 8 primers were added 1~2 anchor bases in 3' end based on the repeated sequence of (GA/CT)_n or (AG/TC)_n, screened out from 36 ISSR primers were suitable for the genetic analysis of the genus Crataegus based on the number, polymorphism and clarity of the bands.
     4. After 1 polymorphism band of RAPD and 16 polymorphism bands of ISSR were recovered, cloned and sequenced, 9 different genome sequences of hawthorn were obtained. Based on the analysis of genome sequences of hawthorn, specific primers were designed and SCAR conversions of one RAPD marker and five ISSR markers were done successful.
     5. It is the first time to analyze the genetic diversity of Crataegus germplasms with molecular marker techniques and the results indicated that the genus Crataegus had abundance genetic diversity. One hundred and thirty-six polymorphism loci were detected from the 96 accessions of the genus Crataegus with 12 RAPD primers. The dissimilarity coefficients of different germplasms of hawthorn were between 0 and 0.73, and dendrogram with UPGMA method displayed that distance coefficients of different germplasm resources of hawthorn were between 0 and 0.58; 130 polymorphism loci were detected from the 96 accessions of the genus Crataegus with 13 RAPD primers. The dissimilarity coefficients of different germplasms of hawthorn were between 0 and 0.80, and dendrogram with UPGMA method displayed that distance coefficients of different germplasm resources of hawthorn were between 0 and 0.65.
     6. Dendrograms of the genus Crataegus were drawn separately based on the RAPD marker and the ISSR marker. Dendrogram based on the RAPD marker was nearly the same as that based on the ISSR marker. But compared with the analysis result of ISSR marker, the classification result based on the RAPD marker was more closed to traditional botany classification result which was mainly based on the morphological characteristics, therefore, RAPD marker was more suitable to study on the genetic diversity of intraspecies and interspecies of the genus Crataegus.
     7. Both the results of RAPD marker and ISSR marker indicated that C. brettschneideri Schneid. was a variety or a subspecies of C. pinnatifida Bge., but not a new independent species. Lvroushazha, a hawthorn resource introduced from Xiongyue Town, Gaizhou City, Liaoning Province, with black seed case and green flesh belonged to C. chlorosarca Maxim; Moreover, the hawthorn resource Zhangwushanlihong was a new species.
     8. In vitro regeneration from embryo, hypocotyl and cotyledon explants of hawthorn was investigated comprehensively and the results were as follows:①The regeneration abilities of immature cotyledon, mature cotyledon and cotyledon leaf were obviously different, especially the regeneration ability of cotyledon leaves was higher and regeneration percentage of its adventitious bud was six times higher than that of mature cotyledon. On MS medium supplemented with 1.0 mg/L BA and 1.0 mg/L TDZ, the percentage of bud regeneration from cotyledon leaves of cultivar 'Qiujinxing' was 33.3%.②Adventitious bud regenerated from hypocotyl of hawthorn and on radicel no adventitious bud but only callus formed.③The percentage of seedling forming in vitro from immature embryo of hawthorn harvested after 40 d of flowering was very low and it was lower than 20% for 15 accessions tested in this research. But the percentage of seedling forming in vitro from mature embryo was relatively high—more than 50%.
     9. The mature embryo of Longhuafenrou was disposed by the mixed solution of 0.5% colchicine and 1% dimethyl sulfoxide for 48 h and transferred to SC medium supplemented with 0.1 mg/L IBA and 1.0 mg/L TDZ to induce bud differentiation. The result of chromosome number indicated that 3 out of 67 tested plants were tetraploid and the variation rate reached 4.5%.
引文
1.艾呈祥,余贤美,张力思,马玉敏,苑克俊,金松南,刘庆忠.2006.山东板栗遗传多样性分析.果树学报,23(5):681-684
    2.程运江,伊华林,庞晓明,郭文武,邓秀新.2001.几种木本果树DNA的有效提取.华中农业大学学报,30(5):481-483
    3.崔延萍,崔树玉.2000.山楂中牡荆素鼠李糖苷含量测定.中草药,31(12):906
    4.岛本功,佐木卓治.1997.植物PCR実験核酸单離法.日本,秀润社,57-60
    5.董玉琛.1995.生物多样性及作物遗传多样性检测.作物品种资源,3:1-5
    6.冯夏莲,何承忠,张志毅,安新民,杨凯,张有慧.2006.毛白杨ISSR反应体系的建立及优化.北京林业大学学报,28(3):61-65
    7.高丽,杨波.2006.春兰ISSR-PC R反应体系的优化.华中农业大学学报,25(3):305-309
    8.高光跃,冯毓秀,秦秀芹.1995.山楂类果实的化学成分分析及其质量评价.药学学报,30(2):138-143
    9.郭太君,丰宝田,焦培娟,李继海,孙宪忠.1991.利用过氧化物同工酶酶谱对山楂分类及亲缘关系的探讨.特产研究,(3):15-18
    10.江用文主编.2005.国家种质资源圃保存资源名录.北京:中国农业科学技术出版社.670-675
    11.景士西,李宝江.1990.山楂种质资源性状描述系统的研究.园艺学报,17(2):81-88
    12.景士西.1993.关于编制我国果树种质资源评价系统若干问题的商榷.园艺学报,20(4):353-357
    13.李宝江,张茂君。1990.山楂品种学研究初报—标准叶片调查.北方果树,(3):15-19
    14.李明芳,郑学勤.2004.开发SSR引物方法之研究动态.遗传,26(5):769-776
    15.李媛媛,代红艳,郭修武,刘海涛,常琳琳.2007.山楂总DNA提取方法的比较.果树学报,24(1):115-118
    16.李作轩,张育明,周传生.2000.山楂资源圃的建立与山楂种质资源研究概况.北方果树,(6):4-6
    17.李作轩,张育明.2000.山楂种质资源的鉴定评价研究.中国种业,(3):43-44
    18.刘勇,孙中海,刘德春等.2006.利用分子标记技术选择柚类核心种质资源.果树学报,23(3):339-345
    19.刘海河,侯喜林,张彦萍.2004.西瓜ISSR—PCR体系的正交优化研究.果树学报,21(6):615-617
    20.刘庆忠,赵红军,刘鹏,Rengong M,Hammerschlag F.2001.秋水仙素处理离体叶片获得皇家嘎拉苹果四倍体植株.果树学报,18(1):7-10
    21.吕德国,李作轩主编.2006.山楂种质资源描述规范和数据标准.北京:中国农业出版社.
    22.蒲富慎.1990.果树种质资源描述符.北京:农业出版社.
    23.乔玉山,房经贵,沈志军,章镇.2004.果树农艺性状基因的分子标记及其应用.果树学报,21(2):158-163
    24.乔玉山,章镇,房经贵,沈志军,赵密珍.2003.李种质资源ISSR反应体系的建立.果树学报,20(4):270-274
    25.宋烨,翟衡,姚玉新,李明,杜远鹏.2006.苹果加工品种遗传多样性分析.中国农业科学,39(1):139-144
    26.孙立立,谢鸿霞,孙敬勇,杨书斌,于文强.2001.比色法测定山楂中总黄酮的含量.中成药,23(10):748-750
    27.孙汝泽,蒋志东.1993.云南省通海县山楂种质资源调查.经济林研究,11(1):70-73
    28.田兴军.2005.生物多样性及其保护生物学.北京:化学工业出版社,1-28
    29.王倩,王斌.2000.DNA分子标记在果树遗传学研究上的应用.遗传,22(5):339-344
    30.王长泉,张文胜,李雅志,崔得才.1999.苹果叶片离体培养中秋水仙素加倍效应的研究.果树科学,16(2):104-109
    31.王光全,孟庆杰,张永忠,李强,王光珍.2000.沂蒙山区山楂品种资源及其利用研究.植物遗传资源科学,1(1):46-50
    32.王际轩,李淑玲,李博文.1982.山楂砧木苗的种胚培养.园艺学报,9(4):7-9
    33.王明昌,杨平厚.1994.陕西野生山楂种质资源调查.西北林学院学报,9(1):67-71
    34.王志刚.2005.利用分子标记进行草莓品种鉴定的研究.[硕十学位论文].沈阳:沈阳农业大学
    35.文晓鹏,庞晓明,邓秀新.2003.不同自然分布区刺梨遗传多样性的RAPD分析.中国农业科学,36(7):823-828
    36.吴子龙,方连玉,王军,沈育杰.2006.15份葡萄种质亲缘关系的ISSR分析.果树学报,23(4):605-608
    37.肖敏,张志宏,代红艳,杨洪一,李贺.2005.PCR检测草莓镶脉病毒的稳定性研究.果树学报,22(5):483-487
    38.辛孝贵.1986.我国山楂属一些主要种花粉形态的研究.沈阳农业大学学报,17(3):70-78
    39.辛孝贵.1991.我国山楂属和山楂栽培品种染色体数目的研究.洗阳农业大学学报,22(1):27-35
    40.辛孝贵.2006.山楂.见:贾敬贤,贾定贤,任庆棉主编.中国作物及其野生近缘植物·果树卷.北京:中国农业出版社,118-161
    41.宣朴,邓婧,陈新,尹春蓉,陈放.2006.苦瓜ISSR扩增条件优化的研究.核农学报,20(3):215-217
    42.宣继萍,章镇.2002.适合于苹果的ISSR反应体系的建立.植物生理学通讯,38(6):549-510
    43.杨戈.1989.Cratsaegus grayana的组织培养.干旱区研究,(3):53-57
    44.杨洪一,张志宏,杜国栋,代红艳,高秀岩.2005。利用内标为基础的RT-PCR技术检测草莓斑驳病毒.植物病理学报,35(2):116-122
    45.杨继.2001.植物多倍体基因组的形成与进化.植物分类学报,39(4):357-371
    46.俞德浚.1984.蔷薇科植物的起源和进化.植物分类学报,22(6):431-444
    47.张培成,徐绥绪.2001.山楂叶化学成分研究.药学学报,36(10):754-757
    48.张培玉.1989.我国山楂科研的主要成就和展望.中国果树,(3):6-10
    49.张青林,罗正荣.2004.ISSR及其在果树上的应用.果树学报,21(1):54-58
    50.张绍铃,曹生民,吴华清.2003.果树自交不亲和性基因型及其鉴定方法.果树学报,20(5):358-363
    51.张玉兰,李雄,敖特根,文奇,吴玉峰.1993.内蒙古山楂属植物种质资源.内蒙古农牧学院学报,18(1):36-39
    52.张育明,辛孝贵,于巨.1986.中国山楂属植物染色体数目和同工酶的研究.中国农业科学,(3):37-44
    53.张志宏.1991.大山楂幼叶诱导不定芽及植株再生.[学士学位论文].沈阳:沈阳农业大学
    54.赵焕谆,丰宝田.1996.中国果树志·山楂卷.北京:中国林业出版社
    55.中国科学院植物研究所编.1970.中国植物志·第36卷.北京:科学出版社
    56.朱元娣,李光晨,李春雨,董利民,王涛.2003.苹果柱型基因的ISSR分子标记研究.园艺学报,30(5):505-510
    57.邹喻苹,葛颂,王晓东.2002.系统与进化植物学中的分子标记.北京:科学出版社,15-29
    58. Albani MC, Battey NH, Wilkinson MJ. 2004. The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca. Theor Appl Genet, 109(3): 571-579
    59. Arnau G, Lallemand J, Bourgoin M. 2002. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica, 129(1): 69-79
    60. Asins M J, Bernet G P, Ruiz C, Cambra M, Guerri J, Carbonell E A. 2004. QTL analysis of citrus tristeza virus-citradia interaction. Theor Appl Genet, 108(4):603-611
    61. Benson E E. 2000. In vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant, 36: 141-148
    62. Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32(3): 314-331
    63. Dermen H. 1940. Colchicine polyploidy and technique. Bot Rev, 6:599-635
    64. Dermen H. 1952. Polyploidy in the apple: Found seven years after colchicine treatment. J Hered, 43(1): 7-8
    65. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P. 2004. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Nati Acad Sci USA, 101 (26):9891-9896
    66. Donmez A A. 2004. The genus Crataegus L. (Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turk J Bot, 28:29-37
    67. Dunemann F, Kahnau R, Schmidt H. 1994. Genetic relationships in Malus evaluated by RAPD 'fingerprinting' of cultivars and wild species. Plant Breeding, 113(2): 150-159
    68. Eeckhaut T G R, Werbrouck S P O, Leus L W H, Van Bockstaele E J, Debergh PC.2004. Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tiss Org Cult, 78:241-246
    69. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando M S. 2005. QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet, 111(4): 658-664
    70. Fernandez M E, Figueiras A M, Benito C. 2002. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet, 104:845-851
    71. Goulao L, Oliveira C M. 2001. Molecular characterisation of cuitivars of apple (Malus x domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica, 122(1): 81-89
    72. Grodzicker T, Williams J, Sharp P, Sambrook J. 1974. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symp Quant Biol, 39:439-446
    73. Gu X F, Yang A F, Meng H, Zhang J R. 2005. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua. Plant Cell Rep, 24:671-676
    74. Guilford P, Prakash S, Zhu J M, Rikkerink E, Gardiner S, Bassett H, Forster R. 1997. Microsatellites in Malus xdomestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet, 94: 249-254
    75. Hallden C, Hansen M, Nilsson N-O, Hijerdin A. 1996. Competition as a source of error in RAPD analysis. Theor Apple Genet, 93:1185-1192
    76. Hansen A L, Gertz A, Joersbo M, Andersen S B. 1998. Antimicrotubule herbicides for in vitro chromosome doubling in Beta vulgaris L. ovule culture. Euphytica, 101 : 231-237
    77. Harada T, Matsukawa K, Sato T, Ishikawa R, Niizeki M, Saito K. 1992. DNA-RAPDs detect genetic variation and paternity in Malus. Euphytica, 65(2): 87-91
    78. Haymes K M, Henken B, Davis T M, van de Weg W E. 1997. Identification of RAPD markers linked to a Phytophthora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor Appl Genet, 94(8): 1097-1101
    79. Hemmat M, Weeden N F, Manganaris A (5, Lawson D M. 1994. Molecular marker linkage map for apple. J Hered, 85(1): 4-11
    80. Howell E C, Newbury H J, Swennen R L, Withers L A, Ford-Lloyd B V. 1994. The use of RAPD for identifying and classifying Musa germplasm. Genome, 37(2): 328-332
    81. Huaracha E, Xu M, Korban S S. 2004. Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs. Theor Appl Genet, 108(2): 274-279
    82. Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H. 2006. Identification of RAPD marker linked to fruit skin color in japanese pear (Pyruspyrifolia Nakai). Sci Hortic, 107(3): 254-258
    83. Iyer C P A, Randhawa G S. 1965. Incresing colchicine effectiveness in woody plants with special refenence to fruit crops. Euphytica, 14:293-295
    84. James D J, Passey A J, Rugini E. 1988. Factors affecting high frequency plant regeneration from apple leaf tissues cultured in vitro. J Plant Physiol, 132:149-154
    85. Jeong T S, Hwang E I, Lee H B, Lee E S, Kim Y K, Min B S, Bae K H, Bok S H, Kim S U. 1999. Chitin synthase Ⅱ inhibitory activity of ursolic acid, isolated from Crataegus pinnatifida. Planta Med, 65(3): 261-263
    86. Kadota M, Niimi Y. 2002. In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyruspyrifolia N. cv. Hosui). Plant Cell Rep, 21:282-286
    87. Kantety R V, Zeng X P, Bennetzen J L, Zehr B E. 1995. Assessment of genetic diversity in Dent and Popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breeding, 1:365-373
    88. Kanzaki S, Yonemori K, Sato A. 2000. Analysis of the genetic relationships among Pollination-Constant and Non-astrigent (PCNA) Cultivars of Persimmon (Diospyros kald Thunb.) from Japan and China using Amplified Fragment Length Polymorphism (AFLP). J Jap Soc Hort Sci, 69(6): 665-670
    89. Kanzaki S, Yonemori K, Sugiura A, Sato A, Yamada M. 2000. Analysis of the genetic relationships among Pollination-constant and Non-astrigent (PCNA) cultivars of Persimmon (Diospyros kaki Thunb.) from Japan and China using Amplified Fragment Length Polymorphism(AFLP). J Jpn Soc Hort Sci, 69:665-670
    90. Kao E S, Wang C J, Lin W L, Yin Y F, Wang C P, Tseng T H. 2005. Anti-inflammatory potential of flavonoid contents from dried fruit of Crataegus pinnatifida in vitro and in vivo. J Agric Food Chem, 53:430-436
    91. King G J, Alston F H, Battle I, Chevreau E, Gessler C, Janse J, Lindhout P, Manganaris A G, Sansavini S, Schmidt H, Tobutt K. 1991. The European Apple Genome Mapping Project-developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica, 56(1): 89-94
    92. Kobayashi S, Goto-Yamamoto N, Hirochika H. 2004. Retrotransposon-induced mutations in grape skin color. Science, 304(5673): 982
    93. Krens F A, Trifonova A, Keizer L C P, Hall R D. 1996. The effect of exogenously-applied phytohormones on gene transfer efficiency in sugarbeet (Beta vulgaris L.). Plant Sci, 116:97-106
    94. Kunihisa M, Fukino N, Matsumoto S. 2005. CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fragaria×ananassa Duch.) cultivars, and their disomic inheritance. Theor Appl Genet, 110:1410-1418
    95. Labra M, Imazio S, Grassi F, Rossoni M, Sala F. 2004. Retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breeding, 123(2): 180-185
    96. Lambert P, Hagen LS, Arus P, Audergon JM. 2004. Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas~peach Earlygold reference map for Prunus. Theor Appl Genet, 108:1120-1130
    97. Lanham P G, Brennan R M. 1999. Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. J Hortic Sci Biotech, 74(3): 361-366
    98. Liebhard R, Koller B, Gianfranceschi L, Gessler C. 2003. Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet, 106(8): 1497-1508
    99. Lodhi M A, Weeden N F, Reisch B I. 1997. Characterization of RAPD markers in Vitis. Vitis, 36(3): 133-140
    100. Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science, 264:421-424
    101. McCown B H. 2000. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predetermination. In Vitro Cell Dev Biol Plant, 36:149-154
    102. McGregor C E, Lambert C A, Greyling M M, Louw J H, Warnich L. 2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica, 113(2): 135-144
    103. Meier K, Reuther G. 1994. Factor controlling micropropagation of mature Fagus sylvatica. Plant Cell Tiss Org Cult. 39:231-238
    104. Michelmore R W, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad USA, 88:9828-9832
    105. Min B S, Jung H J, Lee J S, Kim Y H, Bok S H, Ma C M, Nakamura N, Hattori M, Bae K. 1999. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med, 65(4): 374-375
    106. Min B S, Kim Y H, Lee S M, Jung H J, Lee J S, Na M K, Lee C O, Lee J P, Bae K. 2000. Cytotoxic triterpenes from Crataegus pinnatifida. Arch Pharm Res, 23(2):155-158
    107. Nadel B L, Altman A, Pleban S. 1991. In vitro development of mature Fagus sylvatica buds Ⅱ. Seasonal changes in response to plant growth regulators. J Plant Physiol, 138:136-141
    108. Nagaoka T, Ogihara Y. 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet, 94:597-602
    109. Naqvi N I, Chattoo B B. 1996. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome, 39(1): 26-30
    110. Nicolosi E, Deng Z N, Gentile A, La Malfa S, Continella G, Tribulato E. 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet, 100(8): 1155-1166
    111. Palmer E J. 1932. The Crataegus problem. J Arnold Arbor, 13:342-362
    112. Parra R, Amo-Marco J B. 1998. Factors affecting in vitro shoot proliferation of Myrtus communis L.: A comparison of adult and seedling material. In Vitro Cell Dev Biol Plant 34:104-107
    113. Parsons B J, Newbury H J, Jackson M T, Ford-Lloyd B V. 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mol Breeding, 3(2): 115-125
    114. Petersen K K, Hagberg P, Kristiansen K. 2003. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tiss Org Cult, 73:137-146
    115. Pharmawati M, Yan G, Finnegan P M. 2005. Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot, 95(7): 1163-1170
    116. Phipps J B, O'Kennon R J, Lance R W. 2003. Hawthorns and medlars. Royal Horticultural Society, Cambridge, UK.
    117. Phipps J B. 1983. Biogeographic, taxonomic, and cladistic relationships between east Asiatic and North American Crataegus. Ann Mo Bot Gard, 70(4): 667-700
    118. Pierantoni L, Cho K H, Shin I S, Chiodini R, Tartarini S, Dondini L, Kang S J, Sansavini S. 2004. Characterisation and transferability of apple SSRs to two European pear FI populations. Theor Appl Genet, 109(7):1519-1524
    119. Potter D, Gao FY, Aiello G, Leslie G, McGranahan G. 2002. Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut (Juglans regia) cultivars. J Amer Soc Hort Sci, 127(1): 75-81
    120. Queen R A, Gribbon B M, James C, Jack P, Flavell A J. 2004. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Molecular Genetics and Genomics, 271(1): 91-97
    121. Ramsey J R, Schemske D W. 1998. Pathways, mechanisms, and rates of polyploid formation in flowing plant. Annu Rev Ecol Syst, 29:467-501
    122. Rigelsky J M, Sweet B V. 2002. Hawthorn: Pharmacology and therapeutic uses. Am J Heath-Syst Pharm, 59:417-422
    123. Sargent C S. 1921. Notes on North American trees. Ⅸ. New species and varieties of Crataegus. J Arnold Arbor, 3:1-11
    124. Shao J, Chen C, Deng X. 2003. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tiss Org Cult, 75:241-246
    125. Shi Y, Wang Q, Zhou G, Wang J. 1992. Genome engineering of apple in vitro. Acta Hort, 317:13-21
    126. Singh A K, Chand S, Pattnaik S, Chand P K. 2002. Adventitious shoot organogenesis and plant regeneration from cotyledons of Dalbergia sissoo Roxb., a timber yielding tree legume. Plant Cell Tiss Org Cult, 68:203-209
    127. Sparrow P A C, Townsend T M, Morgan C L, Dale P L, Arthur A E, Irwin J A. 2004. Genetic analysis of in vitro shoot regenerationfrom cotyledonary petioles of Brassica oleracea. Theor Appl Genet, 108: 1249-1252
    128. Tikunov Y M, Khrustaleva L 1, Karlov G I. 2003. Application of ISSR markers in the genus Lycopersicon. Euphytica, 131 (1): 71-80
    129. Venturi S, Dondini L, Donini P, Sansavini S. 2006. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet, 112(3): 440-444
    130. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23(21): 4407-4414
    131. Waugh R, McLean K, Flavell A J, Pearce S R, Kumar A, Thomas B B, Powell W. 1997. Genetic distribution of Bare-l-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet, 253(6): 687-694
    132. Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polyrnorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18(22):6531-6535
    133. Xu M, Huaracha E, Korban S S. 2001. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome, 44(1): 63-70
    134. Yang X M, Cao Z Y, An L Z, Wang Y M, Fang X W. 2006. In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica, 152(2): 217-224
    135. Yao J, Dong Y, Morris B A. 2001. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci U S A, 98(3): 1306-1311
    136. Zhang P C, Xu S X. 2003. C-glucoside flavonoids from the leaves of Crataegus pinnatifida Bge. var. major N.E.Br. J Asian Nat Prod Res, 5(2):131-136
    137. Zhang P C, Zhou Y J, Xu S X. 2001. Two novel flavonoid glycosides from Crataegus pinnatifida Bge.var.major N.E.Br. J Asian Nat Prod Res, 3(1): 77-82
    138. Zhang Z, Fukino N, Mochizuki T, Matsumoto S. 2003. Single-copy RAPD marker loci undetectable in octoploid strawberry. J Hort Sci Biotech, 78(5): 689-694
    139. Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2): 176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700