三相电压型SVPWM整流器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,影响电力系统稳定运行的主要因素就是谐波污染,其危害体现在影响电力传输的质量,产生谐波损耗,严重的降低发电和用电设备的效率。随着电网中各种电力电子设备的不断增加,谐波的污染问题日益严重。因此,迫切需求高效的控制方法,使电力系统中的谐波污染得到有效的治理。高效节能对经济效益具有重要意义,电力系统传输过程中低损耗以及电能的高质量传输都是近些年研究的热点,其中涉及到功率开关的开关损耗与谐波都是处理此类问题的关键性的着手点,从控制与结构两方面入手,相继出现多种相应的控制方法,随着研究的不断深入,控制效果也越来越明显。
     本文以电力系统传输过程中的整流逆变过程为例,整流过程选用三相PWM整流器为研究对象,逆变过程选用永磁同步电机为负载模型,均采用空间矢量脉宽调制(SVPWM)方式,从系统仿真结果来看其具有能够输出电压可调,功率因数可控等优点,此外还能够保持网侧电流正弦化,实现能量双向流动。文中采用电压电流双闭环反馈控制方式,直流侧电压与参考电压作比较,PI控制器输出参考电流与直流侧反馈电流经坐标变换后做比较作为空间矢量的参考输入量,用以控制功率开关装置;针对电力系统非线性、强耦合的特性,以永磁同步电机为负载,采用磁场定向控制策略实现转矩电流与励磁电流的独立控制,无功功率部分给予零参考输入,实现网侧单位功率因数。
     通过仿真实验验证分析,空间矢量思想应用于电力系统中能够有效地降低谐波影响,使得交流侧电压电流同相位,直流侧能够快速跟踪给定电压参考,通过解耦控制策略实现了有功、无功独立控制,高效地解决了因系统中非线性元件所带来的谐波损耗,有效降低高频开关损耗,以及提高了直流侧电压的利用率。
The primary factor influence the stable operation of power system is the harmonicpollution which including reducing the quality of power transmission, bringing theharmonic losses, seriously reducing the efficiency of generate electricity. With theincreasing of a variety of power electronic devices, harmonic pollution is increasinglyserious, the efficient control method is of important to economic benefits. Lowerlosses and higher quality are both the hot point of research in recent years. Reducingthe losses of power switch and eliminating harmonic pollution are key point for us tofocus on so as to find the solutions in this field, Methods which were created fromcontrol and structure aspects are of important to further researcher.
     In this paper, the SVPWM rectifier which has the advantages of adjustable outputvoltage is introduced, it can be used to control power factor, make the grid currentapproach to sine wave by voltage and current double closed-loop feedback control.Torque current and excitation current are controlled separately by field orient controlstrategy for non-linear load, zero reference input is given to reactive power part inorder to achieve unity power factor.
     The validity has been testified by the simulation results, the harmonic pollution hasbeen reduced, the voltage and current in AC side have the same phase. That is, theunity power factor is realized. on the basis of vector control strategy and the theory ofSVPWM, the simulation model platform has advantage of well response, low loss andhigher utilization of DC source. The control method bring so many advantages, andmore benefits will be emerged with constantly further research in this field.
引文
[1]林渭勋等编著.现代电力电子技术[M].北京:机械工业出版社,2006
    [2]张晓东,王兵树,张军伟. PWM整流器的双闭环控制系统设计及仿真研究.电测与仪表[J],2009,01,73–76.
    [3] Carrasco, J.M., Galvan, E., Escobar, G., Stankovic, A.M., Oretege, R.Passivity–based controller for a three synchronous rectifier[J]. IEEE IECON,2000,1–6.
    [4]袁斌.三相高功率因数电压型PWM整流器的研究[J].西南交通大学,2003,18–19.
    [5] Drauo, A., Sato, Y., Kataoka. T. A new state feedback based transient control ofPWM AC to DC voltage type converters[J]. IEEE Trans on power Electron.1998,10,715–724.
    [6]梁锦泽.三相电压型PWM整流器及其控制策略研究[J].广东工业大学,2008,39–42.
    [7]王晓东.双向PWM整流器设计与研究[J].武汉理工大学,2007,23–24.
    [8] Singh, B.N. Praveen, J. Geza, J. Three–Phase PWM Voltage Source Rectifierwith a Reduced Number of Switches[J]. IEEE,2000,950–956.
    [9]徐小品.三相PWM整流器的研究[M].浙江大学,2004,3–6.
    [10]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [11]黄华,三相PWM大功率整流控制系统的研究[M].中南大学,2007,35–40.
    [12]黄俊,王兆安著.电力电子变流技术[M].北京:机械工业出版社.
    [13]吴守见,藏英杰.电气传动脉宽调制控制技术[M].北京:机械工业出版社.
    [14]王兆安,杨君.刘进军.谐波抑制和无功补偿[M].北京:机械工业出版社.
    [15]章云,谢萍等. DSP控制器及其应用[M].北京:机械工业出版社.
    [16]吕宏丽等.电压空间矢量三相整流器系统仿真研究[J].计算机仿真,2002,5.
    [17]刘康平等. PWM整流器的矢量控制[J].华中理工大学学报,2000,6.
    [18] TMS320C24X DSP controllers Peripheral Library and specific Devices. U.S.A:TEXAS INSTRUMENTS Company,1997.
    [19]胡崇岳等.现代交流调速技术[M].北京:机械工业出版社.
    [20]陈志强.三相电压型PWM整流器研究[J].华中科技大学,2006:5–6.
    [21] Li, Q. Li, Y.D. Research of closed–loop control of Three–Phase PWMRectifier[J].2007,37,18–21.
    [22]李波,安群涛.空间矢量脉宽调制的仿真与实现[J].电机与控制应用,2006,33,40–44.
    [23] Bender, A. Modeling and Design of a Neutral Point Regulator for a Three LevelDiode Clamped Rectifier[A]. IEEE conf. rec. of IAS[C]. Salt Lake,2003,1758–1765.
    [24]李平,永磁同步电机的建模与参数辨识[J].计算机仿真,2011,15,8.
    [25]肖卫文,熊芝耀,李世春.基于变参数PI的永磁同步电机矢量控制系统[J].电力电子技术,2009,43,32–33.
    [26]王建宽,崔巍,江建中. SVPWM技术的理论分析及仿真[J].微特电机,2006,18,15–18.
    [27] Li, S.H., Liu, Z.G., Adaptive Speed Control For Permanent Magnet SynchronousMotor System With Variations Of Load Inertia[J]. IEEE Transactionson IndustrialElectronics,2009,56,3050–3059.
    [28] Mai, T.S., Chak, R.C., Sengupta, S. Simulation study on model referenceadaptive controller based speed estimation technique for the vector controlledpermanent magnet synchronous motor drive[J]. Simulation Modelling Practiceand Theory,2009,17,585–596.
    [29] Singh, B. Singh B.P. Dwivedi, S. DSP based implantation of Sliding ModelSpeed Controller for vector controlled Permanent Magnet Synchronous Motordrive[C]. IEEE Power Electronics Conference,2006,22–27.
    [30]赵荣,罗耀华.采用SVPWM的永磁同步电机伺服系统建模与仿真[J].应用科技,2008,35,49–52.
    [31]何杰,王家军.基于SVPWM的永磁同步电动机系统建模与仿真[J].机电工程,2009,26,77–82.
    [32]李培江,尤婷.永磁同步电机控制系统的仿真研究[J].计算机仿真,2011,28,255–258.
    [33]盖廓,万健如,许镇林.高性能永磁同步电机位置伺服系统建模与仿真[J].计算机仿真,2007,24,311–315.
    [34]李志勇,朱建林.矩阵式交–交变换器的空间矢量调制原理[J].变频器世界,2001,26–31.
    [35]陈桂明,张明照,张宝峻.应用MATLAB建模与仿真[M].北京:科学出版社,2001.
    [36]徐德宏,电力电子系统建模与控制[M].北京:机械工业出版社,2007.
    [37] Bender. A. Modeling and Design of a neutral point Regulator for a Three LevelDiode Champed Rectifie[A], IEEE Conf. Rec of IAS[C], Salt. Lake,2003,1758–1765.
    [38]熊健,康永.三相电压型PWM整流器控制技术研究[J].电力电子技术,2008,33,5–7.
    [39]钟彦儒,高永军,普光.采用空间矢量PWM方法的三电平逆变器的研究[J].电力电子技术,2002,36,10–13.
    [40]陈铁涵,孙佩石,张国荣.三相电压型SVPWM整流器的控制策略研究与实验[J].电力电子技术,2009,43,64–66.
    [41]刘凤军.现代逆变技术及应用[M].电子工业出版社,2006.
    [42]陈国呈. PWM逆变技术及应用[M].中国电力出版社,2007.
    [43] Bilim, K.B. Modern Power Electronics and AC Drives[M].机械工业出版社,2003.
    [44]张雄伟,邹霞,贾冲. DSP芯片原理与应用[M].机械工业出版社,2005.
    [45]王小明,王玲.电动机的DSP控制–TI公司DSP应用[M].北京航空航天大学,2004.
    [46]孙弛,鲁军勇,马伟明.一种新的三相四桥臂逆变器控制方法[J].中国电机工程学报,2007,22,57–66.
    [47]李传琦,盛世发,邹其洪.电力电子技术计算机仿真实验[M].电子工业出版社,2006.
    [48]林飞,杜欣.电力电子技术的MATLAB仿真[M].中国电力出版社,2008.
    [49]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].机械工业出版社,2006.
    [50] Jang, D.H. Yoon, D.Y. Space Vector PWM Technique For Two–PhaseInverter–Fed Single–Phase Induction Motor[C]. Industry Application Conference,1999,1,47–53.
    [51]李学华,景爽,李强,徐飞.单相电机变频调速系统的设计[J].电机与控制应用,2008,35,52–55.
    [52]陈坚.电力电子学–电力电子变换和控制技术(第二版)[M].高等教育出版社,2004.
    [53]王兆安,黄俊.电力电子技术[M].机械工业出版社,2000.
    [54]刘锦波,张承慧.电机与拖动[M].清华大学出版社,2006.
    [55] Young, C.M. Liu, C.C. Liu, C.H. New inverter–Driver designed and controlmethod for two–phase induction motor drives[J]. Electric Power Applications,IEEE Proceedings,1996,43,458–466.
    [56]李波,安群涛,孙军成.空间矢量脉宽调制的反正研究及其实现[J].电机与控制应用,2006,33,40–44.
    [57]陈伯时.电力拖动控制系统[M].北京:机械工业出版社,2003.
    [58]何洁,王家军.基于SVPWM的永磁同步电机系统建模与仿真[J].机电工程,2009,7,77–82.
    [59]刘胜,荆兆寿. PWM BDCM高精度伺服系统设计与实现[J].哈尔滨工程大学学报,1997,18,47–53.
    [60]高景德,李发海.交流电机及其系统的分析[M].北京:清华大学出版社,2004.
    [61]姚俊,马松辉. Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700