大冶铁矿深部开采过渡期低贫损安全开采技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
崩落采矿法在我国地下开采矿山中应用十分广泛,随着地下开采深度的逐年增加,地下采场出现的地压问题越来越严重,为了维持采场的安全稳定,有必要对矿山的采矿方法进行改变。随着地下矿山进入深部开采,充填采矿法取代崩落采矿法回采矿石势在必行。充填采矿法的采用可有效减少高地压带来的诸多问题,并能达到低贫损的开采目标。
     以大冶铁矿东采区浅部转深部开采为研究背景,采用理论分析、数值模拟等方法,对采矿方法过渡区的稳定性进行分析,为过渡期低贫损开采提供指导,确保矿山产量顺利衔接,矿压显现可控,为大冶铁矿全面进入深部开采提供指导。论文的主要研究成果有:
     (1)阐述了深部开采条件下,岩体的力学特性以及破碎机理,分析了矿山压力的显现形式以及矿岩的破碎机理。
     (2)基于无底柱分段崩落法以及充填采矿法的适用条件,分析了深部开采条件下,充填采矿法取代无底柱分段崩落法的必要性、可行性以及合理性。
     (3)通过经典力学的方法设计的采矿方法过渡区厚度为10m,安全系数为1.3;应用大型数值计算软件FLAC3D建模,对过渡区在开采过程中的应力、应变状况进行模拟研究,研究了充填采矿法回采过程中采场以及过渡区应力、应变变化规律,验证了过渡区安全厚度设计的可行性。
     (4)基于不同的目标函数及其相关的约束条件,采用编程语言C#,开发了采矿方法过渡期实时配矿系统,该配矿系统对于大冶铁矿深部开采过渡期低贫损开采、出矿具有工程指导意义。
Caving mining method has been widely used in underground mines in our country. But with the underground mining depth increasing year by year, the mining ground pressure problems appearing in the mining field are more and more serious. In order to maintain the safety and stability of stope, it is necessary to transform the mining methods. With the development of deep mining, it is imperative to adopt filling mining method instead of caving mining method. Filling mining method can not only reduce many problems brought by high ground pressure, but also can achieve the goal of low-dilution-loss mining.
     Taking the transformation from shallow to deep mining in east section of Daye Iron mine as the background, the paper employs some methods such as theoretical analysis and numerical simulation methods to analyze the stability of transition zone of mining method and provide guidance for low-dilution-loss mining so as to ensure the smooth link of mine output and the control of mine pressure laws, thus provide guidance for overall transformation to deep mining of Daye iron mine. The main research achievements of this paper are as follows:
     (1) The paper elaborated on the mechanics properties of rock mass and the principle of crushing mechanism in the conditions of deep mining, and analyzed manifestation forms of mining pressure and crushing mechanism principles of rock.
     (2) Based on the applicable conditions of sub-level caving without sill pillar method and filling mining method, the paper analyzed the necessity, feasibility and rationality of filling mining method replacing sub-level caving without sill pillar method.
     (3) According to the method design in classical mechanics, the thickness of transition zone is10m, with1.3safety coefficient. By using large scale numerical calculation software FLAC3D modeling, the stress-strain condition of transition zone in the mining process were analogy studied and the stress-strain changing rules of mining stope during the process of filling mining were analyzed, as well as the feasibility of safety and thickness of transition zone was verified.
     (4) Based on different objective functions and their related constraints conditions, the real-time ore matching system of mining method transition was developed by adopting the programming language C#, which is of profound guiding significance to low-dilution-loss mining and ore engineering during the process of deep mining transition of Daye iron mine.
引文
[1]朱必勇.我国矿产资源安全及主要矿产品需求预测研究[D].中南大学,2007.
    [2]黄志国.深井巷道失稳分析及锚杆支护参数优化[D].中南大学,2010.
    [3]南世卿.露天转地下开采过渡期采矿方法及安全问题研究[J].现代矿业,2009(1):27-32.
    [4]杨承祥.深井金属矿床高效开采及地压监控技术研究[D].中南大学,2007.
    [5]王青,史维祥.采矿学[M].北京:冶金工业出版社,2007.
    [6]黄志国,深井巷道失稳分析及锚杆支护参数优化[D].中南大学,2010.
    [7]胡爱华,王维德.深部矿山采矿方法和开采工艺的基本发展趋势[J].1995,28:3-7.
    [8]陈从新,复杂条件下地下采矿稳定性研究[D].中国科学院武汉岩土力学研究所,2003.
    [9]前苏联C.T阿威尔辛著.煤矿地下开采的岩层移动[M].煤炭工业出版社,1959.
    [10][波]M.鲍菜茨基M.胡戴克著,于振海,刘天泉译.矿山岩体力学[M].煤炭工业出版社,1985.7.
    [11]M.D.G沙拉蒙.地下工程的岩石力学[M].冶金工业出版社,1982.
    [12]Kratcsch, H.Mining. Subsidence Engineering Springer Verlag[M].Berlin,1983.
    [13]Brauner. Subsidence due to underground mining. Bureau of Mines[M].USA, 1973.
    [14]刘宝探,廖国华.煤矿地表移动的基本规律[M].中国工业出版社,1965.
    [15]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].煤炭工业出版社,1981.
    [16]何国清,马伟民,王金庄.威布尔型影响函数在地表移动的计算中的应用[J].中国矿业学院学报,1982(1).
    [17]周国锉,崔继宪等.建筑物下采煤[M].煤炭工业出版社,1983.
    [18]何万龙.山区地表移动规律及变形预计[J].山西矿业学院学报,1985.2.
    [19]白矛,刘天泉.条带法开采中条带尺寸的研究[J].煤炭学报,1983(4):19-26.
    [20]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983(2):18-28.
    [21]张玉卓,仲惟林等.岩层移动的错位理论解与边界元法计算[J].煤炭学报,1987.2.
    [22]张玉卓,仲惟林等.断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1987.1.
    [23]谢和平,陈至达.非线性大变形有限元分析及在岩层移动中应用[J].中国矿业大学学报,1988.2.
    [24]何满潮.中国矿业大学北京研究生部博士后研究报告.1994.
    [25]杨伦,于广明.采矿下沉的再认识[C].第七届国际矿测学术会议文集,1987.
    [26]刘文生.条带法开采采留宽度合尺寸研究[D].阜新矿业学院硕士论文,1988.
    [27]杨硕等.水平移动曲面的力学预测法[J].煤炭学报,1995,20(2):214-217.
    [28]王泳嘉.离散元法及其在岩石力学中的应用[J].金属矿山,1986(8):13-17,5.
    [29]邓喀中.开采沉陷中的岩体结构效应研究[D].中国矿业大学博士学位论文,1993.
    [30]吴立新,干金庄等著.建(构)筑物下压煤条带开采理论与实践[M].中国矿业大学出版社,1994.
    [31]麻凤海.岩层移动的时空过程[D].东北大学博士学位论文,1996.
    [32]于广明.分形及损伤力学在开采沉陷中的应用研究[D].中国矿业大学北京研究生部博士学位论文,1997.
    [33]唐春安等.岩层移动过程的数值模拟新方法[J].阜新矿业学院学报,1997.3.
    [34]王泳嘉,麻凤海.岩层移动的复合介质模型及其工程验证[J].东北大学学报:自然科学版,1997,18(3):229-233.
    [35]麻凤海,范学理,王泳嘉.巨系统复合介质岩层移动模型及工程应用[J].岩石力学与工程学报,1997,16(6):536-543.
    [36]梁运培.采场覆岩移动的组合岩梁理论[J].地下空间,2001,21(5):341-345.
    [37]隋惠权,于广明.地质动力引起岩层移动变异及突变灾害研究[J].辽宁工程技术大学学报:自然科学版,2002,21(1):25-27.
    [38]郭文兵,邓喀中,邹友峰.条带开采下沉系数计算与优化设计的神经网络模型[J].中国安全科学学报,2006,16(6):40-45.
    [39]王悦汉,邓喀中,吴侃等.采动岩体动态力学模型[J].岩石力学与工程学报,2003,22(3):352-357.
    [40]汪华君.四面采空采场“0”型覆岩多层空间结构运动及控制研究[D].山东科技大学,2006.
    [41]张东明,尹光志,魏作安.重庆某矿开采过程中岩层移动的分形特征及其预测[J].有色金属,2003,55(4):131-134.
    [42]戴华阳,王世斌,易四海等.深部隔离煤柱对岩层与地表移动的影响规律[J].岩石力学与工程学报,2005,24(16):2929-2933.
    [43]杨帆,麻凤海,刘书贤等.采空区岩层移动的动态过程与可视化研究[J].中国地质灾害与防治学报,2005,16(1):84-88.
    [44]朱刘娟,陈俊杰,邹友峰.深部开采条件下岩层移动角确定研究[J].煤炭工程,2006(2):45-47.
    [45]抚顺矿务局,阜新矿业学院.抚顺倾斜特厚煤层上覆岩层高压注浆减缓地表沉降保护建筑物试验项目总结报告[R].1988.
    [46]张玉卓,徐乃忠.地表沉陷控制新技术[M].中国矿业大学出版社,1998.
    [47]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].中国矿业大学北京研究生部博十学位论文,2000.
    [48]郭增长.极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究[D].中国矿业大学北京研究生部博士学位论文,2000.
    [49]李其增,杨硕.筑构物下开采集中位移应变漏与大变形:矿山压力、岩层移动和地表移动的三维力学计算方法及其应用[M].科学出版社,2003,1.
    [50]Richard McCreary,John McGaughey,Yves Potvin et al..Results from microseismic monitoring, conventional instrumentation, and tomography surveys in the creation and thinning of a burst-prone sill pillar[J].Pure and Applied Geophysics,1992,139(3): 349-373.
    [51]R. P. Young, S. Talebi, D. A. Hutchins et al.,Analysis of mining-induced microseismic events at Strathcona Mine, Subdury, Canada[J].Pure and Applied Geophysics,1989,129(4): 455-474.
    [52]何姣云.矿山采动灾害监测及控制技术研究[D].武汉理工大学,2007.
    [53]杨国春,徐兵.应用声发射技术预测采场稳定性[J].铜业工程,2004(3):14-18.
    [54]来兴平.基于非线性动力学采空区稳定性集成监测分析与预报系统研究及应用[D].北京:北京科技大学,2002.
    [55]李庶林.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
    [56]李新平,陈俊桦,李友华等.溪洛渡电站地下厂房爆破损伤范围及判据研究[J].岩石力学与工程学报,2010,29(10):2042-2049.
    [57]杨红伟,深部矿岩工程条件与开挖稳定性分析[D].中南大学,2010.
    [58]冯福康,盘区隔离矿柱开采方案数值模拟优化研究[D].中南大学,2011.
    [59]董卫军,苏永华,孙玉堂等.乳山金矿深部采场结构参数的数值模拟[J].采矿技术,2002,2(2):15-17,28.
    [60]吴贤振,饶运章FLAC-3D软件在优化深部高硫品位矿体采场结构参数中的应用[J].有色金属,2004,56(6).
    [61]强辉,赵才智,常庆粮.南洺河铁矿膏体充填的FLAC 2D数值模拟[J].山东煤炭科技,2006(3):45,47.
    [62]刘强,许新启,桑守勤.下向充填采矿法充填程度与采场稳定性数值模拟[J].有色金属,2000,52(1):17-21.
    [63]韩斌.金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研究[D].中南大学,2004.
    [64]《采矿手册》编辑委员会.采矿手册.第7卷[M].北京:冶金工业出版社,1991.
    [65]胡明清,申其鸿.应用Mintec软件优化露天矿山开采规划与设计[J].国外金属矿山,2000,(3):57-60.
    [66]王连印,骆中洲.矿石品位控制的原理与方法[J].金属矿山,1992,(2):20-22.
    [67]R.Jerez.美国塞普路斯科珀通金矿计算机矿石控制方法的应用效果[J].国外金属矿山1992.
    [68]王连印,骆中洲.露天矿铁路运输计算机实时调度系统[J].煤炭学报,1991,16(4):40-46.
    [69]丁良平.平果铝土矿配矿系统及其应用效益[J].采矿技术,2001,1(2):56-58.
    [70]张世雄.固体矿物资源开发工程[M].武汉理工大学出版社,2005.8.
    [71]黄醒春,陶连金,曹文贵.岩石力学[M].北京:高等教育出版社,2005.
    [72]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究[D].山东大学,2007.
    [73]Paterson M S. Experimental deformation and faulting in Wombeyan marble [J].Bull.Geol.Soc.Am.,1958,69:465-467.
    [74]Mogi K. Deformation and fracture of rocks under confining pressure:elasticity and plasticity of some rocks[J].Bull.Earthquake Res. Inst. Tokyo Univ,1965,43:349-379.
    [75]Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow [J].Bull.Earthquake Res. Inst. Tokyo Univ.,1966,44:215-232.
    [76]Paterson MS. Experimental Rock Deformation—the Brittle Field[M].Berlin:Springer, 1978.
    [77]Heard H C. Transitionfrom brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure [J].Bull.Geol. Soc. Am.,1960,79:193-226.
    [78]Singh J. Strength of rocks at depth [A].In:Rock at Great Depth [C]. Rotterdam:A. A. Balkema,1989.37-44.
    [79]Kwasniewski M A. Laws of brittle failure and of B-D transition in sandstone [A].In:Rock at Great Depth[C].Rotterdam:A. A. Balkema,1989.45-58.
    [80]陈顺,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001,17-38.
    [81]Meissner R, Kusznir N J.Crustal viscosity and the reflectivity of the lower crust[J]. Ann. Geophys,1987, (5B): 365-373.
    [82]Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987,132:281-295.
    [83]Shimada M. Lithosphere strength inferred from fracture strength of rocks at high confining pressures and temperatures [J].Tectonophysics,1993,217:55-64.
    [84]Sibson R H. Fault rock and sand fault mechanism [J].J. Geol. Soc. London,1977, 133:191-213.
    [85]Sibson R H. Power dissipation and stress levels on faults in the upper crust[J].J. Geophys. Res.,1980,85:6239-6247.
    [86]Blacic J D. Importance of creep failure of hard rock joints in the near field of a nuclear waste repository [A].In:Proc. Workshop on near field Phenomenon in Geologic Repositories for Radioactive Waste[C]. [s.l.]:[s.n.],1981.121-132.
    [87]Pusch R. Mechanisms and consequences of creep in crystalline rock [A].In:Hudson J A ed. Comprehensive Rock Engineering[C].Oxford:Pergam on Press 1993.227-241.
    [88]Malan D F.Tim e-dependent behavior of deep level tabular excavations in hard rock[J].Rock Mechanics and Rock Engineering,1999,32:123-155.
    [89]Malan D F. Simulation of the time-dependent behavior of excavations in hard rock[J].Rock Mechanics and Rock Engineering,2002,35(4):225-254.
    [90]Muirwood A M. Tunnels for roads and motorways [J]. Quart. J. Eng. Geol.,1972, 5:119-120.
    [91]Barla G. Squeezing rocks in tunnels [J].ISRM, New J.1995,2:44-49.
    [92]Aydan O, Akagi T, Kavamoto T. The squeezing potential of rock around tunnels: theory and prediction with examples taken from Japan [J].Rock Mechanics and Rock Engineering, 1996,29:125-143.
    [93]Malan D F, Basson F R P. Ultra-deep mining: the increase potential for squeezing conditions [J].J. S. Afr. Inst. Min. Metall.,1998,353-363.
    [94]Malan D F, Spottiswoode S M. Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations [A].In:Rock burst and Seismicity in Mines[C].Rotterdam:A. A. Balkema,1997.173-177.
    [95]Bridgman P W. Volume changes in the plastic stages simple compression [J]. J. Appl. Phys., 1949,20:1241-1251.
    [96][Matsushima S. On the flow and fracture of igneous rocks and on the deformation and fracture of granite under high confining pressure[J],Bull.Disaster Prevention Res. Inst.,Kyoto Univ.,1960,36:20-26.
    [97]Shimada M, Liu J T. Temperature dependence of granite strength under high confining pressures and the brittle-ductile hypothesis for seismogenic zones in the crust[A]. In:Proc. Int. Conf. on" Deformation Mechanism, Rheology and Microstructures" [C]. [s.l.]:[s.n.], 1999.46-54.
    [98]Cleary M. Effectsof depth on rock fracture[A]. In:Rock at Great Depth[C].Rotterdam: A.A.Balkema,1989.1153-1163.
    [99]Gibowicz S J, Kijko A.An Introduction to Mining Seismology [M]. San Diego:Academic Press 1994.
    [100]Ortlepp W D.High ground displacement velocities associated with rock burst damage[A]. In:Rockburst and Seismicity in Mines[C].Rotterdam:A.A.Balkema,1993.101-106.
    [101]Marcak H.The structure of seismic events sequences obtained from Polish deep mines [A].In:Rockburst and Seismicity in Mines[C].Rotterdam:A.A.Balkema,1997.107-109.
    [102]郝珠成.急倾斜矿床深部开采围岩运动规律研究[D].西安科技大学,2011.
    [103]古德生.金属矿床深部开采中的科学问题[A].见:香山科学会议编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社,2002.192-201.
    [104]李夕兵,古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[A].见:香山科学会议编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社,2002.101-108.
    [105]古真宝.矿山压力与矿压显现关系探析[J].陕西煤炭,2011,30(2):22-23.
    [106]王宏.浅析采后煤层顶板岩层下沉机理与移动规律[J].煤矿安全,2010,10:122-115.
    [107]高磊.矿山岩体力学[M].北京:冶金上业出版社,1988.
    [108]王振安,荆自刚等.回采工作面底板矿压显现规律的研究[J].煤炭科学技术,1982(7):11-16.
    [109]骆银龙.采矿工艺技术发展现状[J].经济技术协作信息,2009(30):183.
    [110]刘春波,孙光华,李富平.我国地下矿山采矿技术发展及趋势[J].河北理工大学学报.2009(2):6-8.
    [111]周爱民,刘德茂.用充填法取代无底粒分段崩落法的探讨[J].矿山设计研究.1990(3):6-12.
    [112]丁德强.矿山地下采空区膏体充填理论与技术研究[D].中南大学,2007.
    [113]郭树林,金家瑞,孙立明.地下金属矿山采矿技术进展及研究方向[J].黄 金.2003,24(1):17-21.
    [114]秦豫辉,田朝晖.我国地下矿山开采技术综述及展望[J].采矿技术.2008,8(2):1-2,34.
    [115]亓俊峰.胶结充填取代崩落法回采铁矿石的可行性初探[J].中国矿业.1997(5):81-83.
    [116]李鼎权.论露天转地下开采的若干特点[J].金属矿山.1994(2):9-12,23.
    [117]李斯基.露天转地下开采不停产过渡的探讨[J].冶金矿山设计与建设.1999(5):3-8.
    [118]程运材.平果铝土矿资源合理规划综合利用研究[D].中南大学.2008.
    [119]李俊平,冯长根,郭新亚等.矿柱参数计算研究[J].北京理工大学学报,2002,22(5):662-664.
    [120]徐长佑.露天转地下开采[M].武汉:武汉工业大学出版社,1989.
    [121]赵兴东.谦比希矿深部开采隔离矿柱稳定性分析[J].岩石力学与工程学报,2010,29(增1):2616-2622.
    [122]任青文,余天堂.边坡稳定的块体单元法分析[J].岩石力学与工程学报,2001,20(1):20-24.
    [123]谭晓慧.多滑面边坡的可靠性分析[J].岩石力学与工程学报,2001,20(6):822-825.
    [124]桓仁矿业公司地质灾害治理及资源可持续开采与综合利用可行性研究报告[R].辽宁省环境检测总站,2007.
    [125]平朔安家岭露井矿之间岩体(边坡)稳定性技术咨询报告[R].中国国际工程咨询公司,2004.
    [126]刘波,韩彦辉(美国)FLAC原理实例与应用指南[M].北京:人民交通出版社,2005.
    [127]马英.露天矿配矿工作浅析[J].有色矿冶,2008,24(5):13-15.
    [128]李国乔.苏联露天矿配矿研究和实践[J].1988(7):45,51-55.
    [129]卢会军,宋长葆.浅析配矿管理[J].黄金科学技术,2006,4(1):45-47.
    [130]Jason Price, Mike Gunderloy. Mastering Visual C#.NET [M]. London:Sybex,2002.
    [131]Brian A. LaMacchia..NET Framework Security[M]. America:Pearson Education.2002.
    [132]Watts s. Humphrey. A Discipline for Software Engineering [M]. America:Sybex, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700