重组高效抗肿瘤抗病毒蛋白对胰腺癌细胞BxPC-3的体内外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是常见的消化系统恶性肿瘤,也是世界范围内恶性程度最高的癌症之一,目前的治疗方法疗效均不佳,胰腺癌患者基本无法治愈,死亡率极高;5年相对生存率仅为5%。目前应用的胰腺癌化疗药物疗效有限,且容易引发多种药物不良反应;寻找到更为安全有效的药物或者治疗方案,将为胰腺癌的治疗带来新的希望。
     干扰素联合其他化疗药物治疗能够明显提高胰腺癌患者的5年生存率,缓解胰腺癌发展进程,但其应用具有局限性。重组高效抗肿瘤抗病毒蛋白注射液即乐复能是一种来源于干扰素的蛋白质工程药,对皮肤癌、前列腺癌、肝癌细胞的研究表明,重组高效抗肿瘤抗病毒蛋白的抗肿瘤活性是天然人干扰素的200多倍,抗病毒活性则达10倍以上;但其对胰腺癌细胞的作用及机制尚不清楚,研究重组高效抗肿瘤抗病毒蛋白对胰腺癌细胞的影响及作用机制,将为重组高效抗肿瘤抗病毒蛋白应用于胰腺癌临床治疗提供切实的理论与实验依据。
     本文第一章采用胰腺癌BxPC-3细胞作为研究对象,应用MTT法、流式细胞术、荧光染色、Transwell侵袭实验分别观察了不同浓度、不同时间重组高效抗肿瘤抗病毒蛋白对胰腺癌细胞增殖、凋亡及侵袭能力的影响,结果发现5ng/ml浓度的重组高效抗肿瘤抗病毒蛋白处理BxPC-3细胞24h和48h后对细胞生长有明显的抑制作用,随着重组高效抗肿瘤抗病毒蛋白浓度的增加,抑制作用越来越明显,胰腺癌细胞停滞在G1期,细胞凋亡率也随之升高,且细胞的侵袭能力也随着重组高效抗肿瘤抗病毒蛋白浓度的增加而减弱;重组高效抗肿瘤抗病毒蛋白的作用效果呈剂量依赖方式。
     为探讨重组高效抗肿瘤抗病毒蛋白抑制胰腺癌细胞增殖与侵袭、促进胰腺癌细胞凋亡的分子机制,本文第二章选取细胞凋亡、血管生成、细胞侵袭过程中的几个关键基因,采用RT-PCR和Western blot分别于mRNA和蛋白质水平检测重组高效抗肿瘤抗病毒蛋白对其表达的影响。结果表明,重组高效抗肿瘤抗病毒蛋白促进胰腺癌BxPC-3细胞caspase-3、caspase-8的表达,抑制VEGF-A和MMP-2的表达,作用呈剂量依赖方式;对caspase-9和MMP-9的表达无影响。
     前二章从体外细胞实验角度明确了重组高效抗肿瘤抗病毒蛋白抗胰腺癌细胞的作用,为了进一步明确其在体内的作用,本文第三章采用胰腺癌BxPC-3细胞异位种植瘤模型为研究对象,观察了重组高效抗肿瘤抗病毒蛋白对异位种植瘤瘤体生长的影响,结果表明10μg/kg治疗剂量的重组高效抗肿瘤抗病毒蛋白能够显著抑制胰腺癌细胞异位种植瘤的生长,组织切片与TUNEL实验观察到重组高效抗肿瘤抗病毒蛋白治疗组的瘤体内细胞发生退变,凋亡明显;采用Western blot检测cleaved caspase-3、caspase-8、VEGF-A、MMP-2的表达,结果与前述体外细胞实验一致,重组高效抗肿瘤抗病毒蛋白促进瘤体细胞cleaved caspase-3、caspase-8的表达,抑制VEGF-A(?)(?)MMP-2的表达;与阳性对照药物吉西他滨相比,重组高效抗肿瘤抗病毒蛋白对抗胰腺癌的效果相近,但剂量较吉西他滨明显减小。
     综上所述,重组高效抗肿瘤抗病毒蛋白能够通过促进死亡受体途径关键凋亡基因caspase-8的表达激活下游效应型caspase-3,从而促进胰腺癌细胞的凋亡;重组高效抗肿瘤抗病毒蛋白能够抑制血管生成因子VEGF-A的表达,从而抑制肿瘤内血管新生;重组高效抗肿瘤抗病毒蛋白能够抑制蛋白水解酶关键基因MMP-2的表达,从而抑制胰腺癌细胞的侵袭与转移;体外实验与体内实验的结果相符。重组高效抗肿瘤抗病毒蛋白的临床应用目前处于Ⅱ/Ⅲ临床试验阶段,本研究从体内和体外实验的角度明确其高效对抗胰腺癌的作用,可为药物的临床应用提供理论与实验依据,更可为新药物的开发、胰腺癌化疗方案的优化提供新的线索。
Pancreatic cancer is the common digestive carcinoma, with the high malignancy. Current treatment for pancreatic cancer is unsatisfactory, which the patients hold the high mobility, and the relative survival rate in5years is only5%. The chemotherapeutics will induce the multiple side effects and the curative effect is limited. Therefore, it will bring the new potential for pancreatic cancer patients to find out one new chemotherapeutic drug or scheme.
     The treatment of interferon combining with other chemotherapeutics can improve the5-year survival rate of pancreatic cancer patients, and alleviate the progression of pancreatic cancer, but the application of interferon is limited. Recombinant antitumor antivirus protein (RAAP; Trade name:Novaferon) is a kind of protein engineering drug derived from interferon, its anti-tumor efficacy has been established in skin, liver, lung, and prostate cancers. The antitumor activity of RAAP is the200times of natural human interferon, and the antivirus activity is above the10times. However, the effect of RAAP on pancreatic cancer cells and the related mechanism remain unknown. To investigate the effect of RAAP on pancreatic cancer cells will supply the confirmative evidences for the clinical application of RAAP in the treatment of pancreatic cancer.
     The first chapter used pancreatic cancer cell line BxPC-3, to observe the effect of RAAP in different concentrations and different time periods on proliferation, apoptosis and invasion of BxPC-3cells by MTT assay, flow cytometry, fluorescence staining, and Transwell assay. The results showed that RAAP in5ng/ml concentration could inhibit the proliferation of BxPC-3cells obviously, the time period of24hours was a positive time point. Moreover, with the increment of concentration of RAAP, the inhibitive effect was more significant, as well as the cell cycle arrest in G1stage, and the apoptotic rates of cells. On the contrary, the cell invasion was alleviated with the increment of RAAP concentration. All effects of RAAP on BxPC-3cells were dose dependent.
     In order to explore the molecular mechanism of RAAP inhibiting proliferation and invasion of BxPC-3cells, and promoting apoptosis of BxPC-3cells, the second chapter applied RT-PCR and Western blot to determine the expressions of some key genes during cell apoptosis, angiogenesis and cell invasion. The results showed that RAAP could increase the expressions of caspase-3and caspase-8, decrease the expressions of VEGF-A and MMP-2, while had no effect on the expressions of caspase-9and MMP-9.
     The first two chapters determined the effect of RAAP in vitro, and furthermore, in order to confirm the effect of RAAP in vivo, the third chapter used xenografts of nude mice by pancreatic cancer BxPC-3cells, to investigate the effect of RAAP on the development of xenografts. The results showed that RAAP (10μg/kg) could inhibit the growth of xenografts significantly; by histological sections and TUNEL assay, the tumor cells in the RAAP group were apoptotic obviously; meanwhile, RAAP could promote the expressions of caspase-3and caspase-8, and reduce the expressions of VEGF-A and MMP-2, which were consistent with the results in vitro. Compared with the positive drug Gemcitabine, the efficacy of RAAP is similar, but the effective dose is significantly reduced.
     Taken together, RAAP could promote the apoptosis of pancreatic cancer cells by activating caspase-8and further caspase-3; RAAP could inhibit the angiogenesis by decreasing the expression of VEGF-A; RAAP could reduce the cell invasion by down-regulate the expression of MMP-2, which was the key gene for proteolysis of extracellular matrix; the results in vitro and in vivo were consistent. Currently, the clinical application of RAAP is still under phase II/III clinical trial, the investigation on RAAP anti-pancreatic cancer can supply the theoretic and laboratory evidences for the clinical application, also the new clues for the development of new drugs and the optimization of chemotherapy for pancreatic cancer.
引文
[1]S.M. Russo, R. Ove, M.W. Saif. Identification of prognostic and predictive markers in pancreatic adenocarcinoma. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011 [J]. JOP:2011,12 (2):92-95.
    [2]A. Jemal, R. Siegel, J. Xu, et al. Cancer statistics,2010 [J]. CA Cancer J Clin: 2010,60 (5):277-300.
    [3]A. Jemal, R. Siegel, E. Ward, et al. Cancer statistics,2009 [J]. CA Cancer J Clin: 2009,59 (4):225-249.
    [4]R. Herrmann, G Bodoky, T. Ruhstaller, et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer:a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group [J]. J Clin Oncol:2007,25 (16):2212-2217.
    [5]E.C. Borden, GC. Sen, G Uze, et al. Interferons at age 50:past, current and future impact on biomedicine [J]. Nat Rev Drug Discov:2007,6 (12):975-990.
    [6]H. Khallouf, A. Marten, S. Serba, et al.5-Fluorouracil and Interferon-alpha Immunochemotherapy Enhances Immunogenicity of Murine Pancreatic Cancer Through Upregulation of NKG2D Ligands and MHC Class I [J]. J Immunother: 2012,35 (3):245-253.
    [7]S.P. Grekova, M. Aprahamian, L. Daeffler, et al. Interferon gamma improves the vaccination potential of oncolytic parvovirus H-1PV for the treatment of peritoneal carcinomatosis in pancreatic cancer [J]. Cancer Biol Ther:2011,12 (10):888-895.
    [8]N.F. de Miranda, A. Bjorkman, Q. Pan-Hammarstrom. DNA repair:the link between primary immunodeficiency and cancer [J]. Ann N Y Acad Sci:2011, 1246:50-63.
    [9]K.K. Khanna. Cancer risk and the ATM gene:a continuing debate [J]. J Natl Cancer Inst:2000,92 (10):795-802.
    [10]D.J. Hartman, A.M. Krasinskas. Assessing treatment effect in pancreatic cancer [J]. Arch Pathol Lab Med:2012,136 (1):100-109.
    [11]卢兴兵,吴介恒,魏刚,et al.胰腺癌治疗的研究进展[J].吉林医药学院学报:2011,32(5):299-302.
    [12]C.J. Lord, A. Ashworth. The DNA damage response and cancer therapy [J]. Nature:2012,481 (7381):287-294.
    [13]A.V. Follis, C.A. Galea, R.W. Kriwacki. Intrinsic protein flexibility in regulation of cell proliferation:advantages for signaling and opportunities for novel therapeutics [J]. Adv Exp Med Biol:2012,725:27-49.
    [14]E.M. Pietras, M.R. Warr, E. Passegue. Cell cycle regulation in hematopoietic stem cells [J]. J Cell Biol:2011,195 (5):709-720.
    [15]杨永宗.动脉粥样硬化性心血管病基础与临床[M].北京:科学出版社,2004.
    [16]梁智辉,朱慧芬,陈九武.流式细胞术基本原理与实用技术[M].武汉:华中科技大学出版社,2008.
    [17]方伟岗.肿瘤细胞与微环境的相互作用决定肿瘤转移的最终归宿[J].前沿科学:2011,5(19):4-15.
    [18]赵广荣.重组人干扰素的研究进展[J].中国生物制品学杂志:2010,23(12):1384-1388.
    [19]J. Folkman, R. Kalluri. Cancer without disease [J]. Nature:2004,427 (6977): 787.
    [20]A. Eastman, J.R. Rigas. Modulation of apoptosis signaling pathways and cell cycle regulation [J]. Semin Oncol:1999,26 (5 Suppl 16):7-16; discussion 41-12.
    [21]R.Z. Orlowski. The role of the ubiquitin-proteasome pathway in apoptosis [J]. Cell Death Differ:1999,6 (4):303-313.
    [22]S.B. Bratton, M. MacFarlane, K. Cain, et al. Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis [J]. Exp Cell Res:2000,256 (1):27-33.
    [23]N.L. Harvey, S. Kumar. The role of caspases in apoptosis [J]. Adv Biochem Eng Biotechnol:1998,62:107-128.
    [24]G.M. Cohen. Caspases:the executioners of apoptosis [J]. Biochem J:1997,326 (Pt 1):1-16.
    [25]E.S. Mocarski, J.W. Upton, W.J. Kaiser. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways [J]. Nat Rev Immunol:2012,12 (2):79-88.
    [26]Y. Cao, J. Arbiser, R.J. D'Amato, et al. Forty-year journey of angiogenesis translational research [J]. Sci Transl Med:2011,3 (114):114rv113.
    [27]M.W. Saif. Anti-angiogenesis therapy in pancreatic carcinoma [J]. JOP:2006,7 (2):163-173.
    [28]J.S. Wey, F. Fan, M.J. Gray, et al. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines [J]. Cancer: 2005,104 (2):427-438.
    [29]Y. Doi, M. Yashiro, N. Yamada, et al. VEGF-A/VEGFR-2 Signaling Plays an Important Role for the Motility of Pancreas Cancer Cells [J]. Ann Surg Oncol: 2011.
    [30]H. Takahashi, H. Sawai, H. Funahashi, et al. Antiproteases in preventing the invasive potential of pancreatic cancer cells [J]. JOP:2007,8 (4 Suppl): 501-508.
    [31]H. Kim, G Zhai, Z. Liu, et al. Extracelluar matrix metalloproteinase as a novel target for pancreatic cancer therapy [J]. Anticancer Drugs:2011,22 (9): 864-874.
    [32]B. Bauvois. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers:outside-in signaling and relationships to tumor progression [J]. Biochim Biophys Acta:2012,1825 (1):29-36.
    [33]E. Morgunova, A. Tuuttila, U. Bergmann, et al. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2 [J]. Proc Natl Acad Sci U S A:2002,99 (11):7414-7419.
    [34]Y. Ding, J.D. Cravero, K. Adrian, et al. Modeling pancreatic cancer in vivo: from xenograft and carcinogen-induced systems to genetically engineered mice [J]. Pancreas:2010,39 (3):283-292.
    [35]马青松,张小明,沈成义.胰腺癌动物模型的类型及特点[J].国际医学放射学杂志:2010,33(2):103-106.
    [36]P.S. Moore, B. Sipos, S. Orlandini, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4 [J]. Virchows Arch:2001,439 (6):798-802.
    [37]B. Sipos, S. Moser, H. Kalthoff, et al. A comprehensive characterization of pancreatic ductal carcinoma cell lines:towards the establishment of an in vitro research platform [J]. Virchows Arch:2003,442 (5):444-452.
    [38]I.J. Fidler. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis [J]. Cancer Metastasis Rev:1986,5 (1): 29-49.
    [39]A.A. Kyriazis, A.P. Kyriazis. Preferential sites of growth of human tumors in nude mice following subcutaneous transplantation [J]. Cancer Res:1980,40 (12):4509-4511.
    [40]M.H. Tan, T.M. Chu. Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice [J]. Tumour Biol:1985,6 (1):89-98.
    [41]H.G Hotz, H.A. Reber, B. Hotz, et al. An orthotopic nude mouse model for evaluating pathophysiology and therapy of pancreatic cancer [J].Pancreas:2003, 26 (4):89-98.
    [1]Antoniou K M,Ferdoutsis E,Bouros D.Interferons and their application in the disease of the lung[J].Chest,2003,123(1):209-216.
    [2]杨吉成,李丽娥,盛伟华,等.基因工程IFNa2a和IFNa2b对肿瘤细胞生长的抑制作用[J].实用癌症杂志,1999,14(3):164-166.
    [3]魏海明,吴惠联.IFN对癌基因调控的研究[J].中国肿瘤生物治疗杂志,1996,3(3):233-235.
    [4]Jing H,Linj J,Tao J,et al.Suppression of human ribsomae protein L23A expression during cell growth inhibition by IFNP [J].Oncogene,1997, 14(4):473-476.
    [5]陈汉春,罗志勇,罗赛群,等.羟基脲联合IFNa对K562细胞生长及凋亡相关基因表达的影响[J].中华医学杂志,2000,80(8):606-609.
    [6]Hussain S P,Amatad P,He P,et al.p53-induced up-regulation of MnSOD and GPx but not catalase increases stress and apoptosis[J].Cancer Res,2004,64(7): 2350-2356.
    [7]Polyak K,Xia Y,Zweier L,et al.A model for P53-induced apoptosis [J]. Nature, 2003,424(6948):516-523.
    [8]Darnell J E Jr,Kerr I M,Stark G R.Jak-STAT pathway and transcriptional activation in response to IFN and other extracellular signaling proteins [J].Science,1994,264 (5164):1415-1421.
    [9]Haque S J, Williams B R. Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor3-independent signaling pathway for IFNa[J].J Biol Chem,1994,269(30):19523-19529.
    [10]Bluyssen A R, Durbin J E, Levy D E. ISGF3 gamma p48, a specificity switch for interferon activated transcription factors [J]. Cytokine Growth Factor Rev, 1996,7(1):11-17.
    [11]Gribaudo G,Ravaglia S,Guandalini L,et al.Molecular cloning and expression of an interferon-inducible protein encoded by gene 203 from the gene 200 cluster[J].Eur J Biochem,1997,249(1):258-264.
    [12]Dawson M J,Trapani J A.HIN-200:a novel family of IFN-inducible nuclear proteins expressed in leukocytes[J].J Leukoc Biol,1996,60(3):310-316.
    [13]Landolfo S,Gariglio M,Gribaudo G,et,al. The Ifi 200 genes:an emerging family of IFN-inducible genes[J].Biochem,1998,80(8-9)721-728.
    [14]Johnstone R W,Wei W,Greenway A,et al.Functional interaction between p53 and the interferon-inducible nucleoprotein IFI16[J].Oncogene,2000,19(52):6033-6042.
    [15]Arita K,Utsumi T,Kato A,et al.Mechanism of dibucaine-induced apoptosis in promyelocytic leukemia cell(HL-60)[J].Biochem Pharmacol,2000,8(3),237-249.
    [16]Kaser A,Nagata S,Tilget H,et al.Interferon-alpha augments activation-induced T cell death by upregulation of Fas(CD95/APO-1) and Fas ligand expression. Cytokine,1999,11(10):736-743.
    [17]Zella D,Barabitskaja O,Casareto L,et al.Recombinant IFN-alpha(2b) increase the expression of apoptosis receptor CD95 and chemokine receptors CCRland CCR3 in monocytoid cells[J].Immumol,1999,163:3169-3175.
    [18]Kelly J D, Dai J, Eschwege P, et al. Downregulation of Bcl-2 sensitises interferon-resistant renal cancer cells to Fas[J].Br J Cancer,200491(1):164-170.
    [19]Ossina N K, Cannas A, Powers V C, et al. Interferon-gamma modulates a p53-independent apoptotic pathway and apoptosis-related gene expression[J]. J Biol Chem,1997,272(26):16351-16357.
    [20]Rathbun R K,Christianson T A, Faulkner G R, et al. Interferon-gamma-induced apoptotic responses of Fanconi anemia group hematopoietic progenitor cells involve caspase8-dependent activation of caspase3 family members [J]. Blood, 2000,96(13):4204-4211.
    [21]Green D R.Apoptotic pathways:the roads to ruin[J].Cell,1998,94(6):695-698.
    [22]De Marco F,Giannoni F,Marcante M L.Interferon-beta strong cytopathic effect on human papillomavirus type 16-immortalized HPK-IAcell line,unexpectedly not shared by interferon-alpha[J].J Gen Virol,1995,76(pt2):445-450.
    [23]Marcelli M,Cunningham G R,Walkup M,et al.Signaling pathway activated during apoptosis of the proSTATe cancer cell line LNCaP:overexpression of caspase-7 as a new gene therapy strategy for proSTATe cancer [J].Cancer Res,1999,59(2):382-390.
    [24]Schaefer T S,Sanders L K,Nathans D.Cooperative transcriptional activity of Jun and STAT3 beta, a short form of STAT3[J]. Proc Natl Acad Sci USA,1995,92 (20):9097-9101.
    [25]Ihle J N. STATs:signal transducers and activtors of transcription[J]. Cell,1996, 84(3)331-334.
    [26]Wang S H,Mezosi E,Wolf J M et al.IFN-gamma sensitization to TRAIL-induced apoptosis in human thyroid carcinoma cells by upregulating Bakexpression[J]. Oncogene,2004,23(4):928-935.
    [27]Tecchio C, Huber V, Scapini P,et al.IFN alpha-stimulated neutrophils and monocytes release asolublr form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2ligand) displaying apoptotic activity on leukemic cells [J]. Blood, 2004,103(10):3837-3844.
    [28]Ruiz de Almodovar C,Lopez-Rivas A,Ruiz-Ruiz C.Interferon-gamma and TRAIL in human breast tumor cells[J].Vitam Horm,2004,67:291-318.
    [29]Park S Y,Seol J W,Lee Y J,et al.IFN-gamma enhances TRAIL-induced apoptosis through IRF-l[J].Eur J Biochem,2004,271(21):4222-4228.
    [30]Johnstone R W,Wei W,Greenway A, et al.Functional interaction between p53 and the interferon-inducible nucleoprotein IFI16 [J].Oncogen,2000,19(52): 6033-6042.
    [31]Wang J,Wei Q,Wang C Y,et al.Minocycline up regulates Bcl-2 and protects against cell death in mitochondria[J].J Biol Chem,2004,279(19):19948-19954.
    [32]Panareta T,Pokrvskaja K,Shoshan M C,et al.Interferon-alpha-induced apoptosis in U266 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax[J].Oncogen,2003,22(29):4543-4546.
    [33]Chen Q,Gong B,Mahmoud-Ahmed A S,et al.Apo21/TRAIL and BCL-2-related proteins regulate typeI interferon-induced apoptosis inmultiple myeloma[J]. Blood,2001,98(7):2183-2192.
    [34]Tiefenbrun N,melamed D,Levy N,et al.Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible GO-like arrest. Mol Cell Biol 1996,16:3934-3944.
    [35]Sato am,Taniguchi T,Tanaka N,et al.The interferon system and interferon regulatory factor transcription factors-studies from gene knockout mice.Cytokine Growth Factor Rev,2001,12(2-3):133-142.
    [36]Stark QKerret I,Williams B, et al. How cells respond to interferons.Annu Rev Biochem,1998,67:227-264.
    [37]Pfeffer L, Dinarello C, Herberman R, et al. Biologic properties of recombinant interferons:40th anniversary of the discovery of interferons. Cancer Res,1998, 58:2489-2499.
    [38]Jonathan I,Paul S,Paul P,et al.Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from variou antiangiogenic effects including endothelial cell apoptosis.Clin Cancer Res,2002,8:1258-1270.
    [39]Folkman J.Angiogenesis:an organizing principle for drug discovery.Nat Rev Drug Discov,2007,6(4):273-286.
    [40]Ma Z,Qin H, Etty N, et al. Transcriptional suppression of matrix metalloproteinas9 gen expression by IFN-gamma and IFN-beta:critical role of STAT-1[J]. Immunol,2001,167:5150-5159.
    [41]Zhou M,Zhang Y,Jeanette A,et al.Interferon-gamma differentially regulates monocyte matrix metalloproteinase-land-9 through tumor necrosis factor-alpha and caspase8[J].Biol Chem,2003,278:45406-45413.
    [42]孙晗笑,王声涌.人类疱疹病毒8的致瘤作用[J].生命的化学,1999,19(6):286-287.
    [43]梁彦,魏熙胤,李凯,等.IFN及三氧化二砷诱导淋巴瘤细胞凋亡及细胞周期阻滞的研究[J].肿瘤防治杂志,2002,9(2):127-130.
    [44]李放,王秋娟,高文青.家蚕细胞基因工程人aIFN对小鼠的免疫调节作用[J].中国现代应用药学杂志,1999,16(5)31-34.
    [45]Saily M,Koiistenen P,Soppi E,et al.Effect of interferorr-alpha on immunoglobulin production by peripheral blood mononuclear cells in multiple milkman[J].Eur J Haematol 1996,57(2):171-173.
    [46]钱绩虎,邵荣标,丁昌慧,等.IFNa对人体液免疫功能调节作用的实验研究[J].南通医学院学报,1999,19(2):164-165.
    [47]Damdinswren B, Nagano H, Sakon M, et al. Interferon-beta is more potent than interferon-alpha in inhibition of human hepatocellular carcinoma cell growth when used a lone and in combination with anticancer drugs[J]. Ann Surg Oncol, 2003,10(10):1184-1190.
    [48]Murphy D, Detjen K M, Wdzel M et al. Interferon-alpha delays s-phase progression in human hepatocellular carcinoma cells via inhibition of specific cyclin-dependent kinases[J].Hepatology,2001,33(2):346-356.
    [49]肖成祖.IFN研究进展和技术[M].北京:人民军医出版社,2001.50-87.
    [50]张伟,于颖彦,ム本良夫.5FU,TNF和IFN联合诱导结肠癌细胞凋亡的实验研究[J].中华消化杂志,1999,19(6)375-377。
    [1]Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin 2010; 60:277-300.
    [2]Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer:a randomized trial. J Clin Oncol 1997; 15:2403-13.
    [3]Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer:a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1960-1966.
    [4]Conroy T, Desseigne F, Ychou M, et al. Randomized phase Ⅲ trial comparing FOLFIRINOX (F:5FU/leucovorin [LV], irinotecan [I], and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA):Preplanned interim analysis results of the PRODIGE 4/ACCORD 11 trial. J Clin Oncol 2010; 28:4010.
    [5]Neoptolemos JP, Stocken DD, Bassi C, et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection:a randomized controlled trial. JAMA 2010; 304:1073-1081.
    [6]Neoptolemos JP, Stocken DD, Friess H, et al. A randomized trial of chemo-radiotherapy and chemotherapy after resection of pancreatic cancer.N Engl J Med 2004; 350:1200-1210.
    [7]Oettle H, Post S, Neuhaus P, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297:267-277.
    [8]Regine WF, Winter KA, Abrams RA, et al. Fluorouracil vs gemcitabine chemo-therapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma:a randomized controlled trial. JAMA 2008;299: 1019-1026.
    [9]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    [10]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell 2011; 144:646-674.
    [11]Egeblad M, Nakasone ES, Werb Z. Tumors as organs:complex tissues that interface with the entire organism. Dev Cell 2010; 18:884-901.
    [12]Korc M. Pancreatic cancer-associated stroma production. Am J Surg 2007; 194:S84-S86.
    [13]Pandol S, Edderkaoui M, Gukovsky I, et al. Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 2009; 7:S44-S47.
    [14]Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol 2009; 44:249-260.
    [15]Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19:257-272.
    [16]Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 2010; 21:19-25.
    [17]Ikenaga N,Ohuchida K, Mizumoto K et al.CD10+pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology 2010;139:1041-1051.
    [18]Farrow B, Rowley D, Dang T, Berger DH. Characterization of tumor-derived pancreatic stellate cells. J Surg Res 2009; 157:96-102.
    [19]Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008; 68:918-926.
    [20]Kikuta K, Masamune A, Watanabe T, et al. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 2010; 403:380-384.
    [21]Fujita H, Ohuchida K, Mizumoto K, et al. Alpha-smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas 2010; 39:1254-1262.
    [22]Xu Z, Vonlaufen A, Phillips PA, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 2010; 177:2585-2596.
    [23]Gao Z, Wang X, Wu K, et al. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology 2010;10:186-193.
    [24]Marechal R, Demetter P, Nagy N, et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer 2009; 100: 1444-1451.
    [25]Saur D, Seidler B, Schneider G, et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 2005; 129:1237-1250.
    [26]Singh S, Srivastava SK, Bhardwaj A, et al. CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells:a novel target for therapy. Br J Cancer 2010; 103:1671-1679.
    [27]Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1:313-323.
    [28]Dosch JS, Pasca di Magliano M, Simeone DM. Pancreatic cancer and hedgehog pathway signaling:new insights. Pancreatology 2010; 10:151-157.
    [29]Rohatgi R, Milenkovic L, Scott MP. Patchedl regulates hedgehog signaling at the primary cilium. Science 2007; 317:372-376.
    [30]Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 2009; 28:3513-3525.
    [31]Seeley ES, Carriere C, Goetze T, et al. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 2009;69:422-430.
    [32]Lauth M, Bergstrom A, Shimokawa T, et al. DYRKIB-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010;17:718-725.
    [33]Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A 2009; 106:4254-4259.
    [34]Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008; 455:406-410.
    [35]Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324:1457-1461.
    [36]Chang Q, Jurisica Ⅰ, Do T, Hedley DW. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically-grown primary xenografts of human pancreatic cancer. Cancer Res 2011; 71:3110-3120.
    [37]Komar G, Kauhanen S, Liukko K, et al. Decreased blood flow with increased metabolic activity:a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 2009; 15:5511-5517.
    [38]Couvelard A, O'Toole D, Leek R, et al. Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 2005; 46:668-676.
    [39]Erkan M, Reiser-Erkan C, Michalski CW, et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 2009; 11:497-508.
    [40]Cheng BQ, Segersvard R, Permert J, Wang F. Pancreatic cancer cells expressing hypoxia-inducible factor-lalpha tend to be adjacent to intratumoral blood vessels. Eur Surg Res 2010; 45:134-137.
    [41]Zhang JJ, Wu HS, Wang L, et al. Expression and significance of TLR4 and HIF-lalpha in pancreatic ductal adenocarcinoma. World J Gastroenterol 2010; 16:2881-2888.
    [42]Onozuka H, Tsuchihara K, Esumi H. Hypoglycemic/hypoxic condition in vitro mimicking the tumor microenvironment markedly reduced the efficacy of anticancer drugs. Cancer Sci 2011; 102:975-982.
    [43]Onishi H, Kai M, Odate S, et al. Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci 2011; 102:1144-1150.
    [44]Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67:9518-9527.
    [45]Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17:135-147.
    [46]Kraman M, Bambrough PJ, Arnold JN, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 2010; 330:827-830.
    [47]Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331:1612-1616.
    [48]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100:3983-3988.
    [49]Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65:10946-10951.
    [50]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445:106-110.
    [51]Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007; 104:973-978.
    [52]Yang ZF, Ho DW, Ng MN, et al. Significance of CD90+cancer stem cells in human liver cancer. Cancer Cell 2008; 13:153-166.
    [53]Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67:1030-1037.
    [54]Dylla SJ, Beviglia L, Park IK, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3:e2428.
    [55]Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100:672-679.
    [56]Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-1806.
    [57]Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467:1114-1117.
    [58]Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467:1109-1113.
    [59]Kern SE, Shi C, Hruban RH. The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 2011; 223:295-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700