钻井过程油气快速定量化检测技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻油气检测技术可以对钻井过程中的地下油气情况进行实时检测和评价,有助于及时发现并评价解释油气层。目前随钻油气检测的主要手段是气体色谱分析方法,利用色谱原理将钻井液体中的饱和烷烃脱离出来并进行检测、评价。该技术存在着检测方法不标准、分析速度慢、油气评价非定量化的问题,制约着该技术的发展和推广。论文针对随钻气体检测技术存在的问题进行了分析探讨,取得以下创新成果。
     提出了一种新型的定量钻井液的脱气方法。通过分析钻井液循环气体存在的运移模式,引入了钻井液引流概念,设计了一种泥浆引流装置,保证了钻井液流量的稳定性,并减少了钻井液运移中的气体散失;设计了一种新型隔离空气的脱气器,实现非空气接触的钻井液脱气;发明了一种新型的自动压力平衡器,实现了不补充空气条件下脱气器的压力平衡。
     通过对快速色谱技术理论分析,系统总结了提高气体检测分析速度的方法。从优化最小分辨率、色谱柱选择性、工作参数等三个基本途径入手,明确了影响气体检测分析速度的各个因素。通过实验研究,确定了适合现场气体分析的色谱柱条件,在此基础上研制了一种新型的专用快速色谱柱。以快速色谱柱为核心,结合微电流检测技术,研制了一种快速油气检测仪,提高了油气检测的精度和分析速度,指标达到了1ppm的检测浓度和30s分析周期。
     提出了一种可行的在线气体校正方法,通过标志性气体与地面检测气体值进行参照对比,可以进行实时的气体校正。实验证明该方法可以消除各种干扰因素,实现地下油气的定量化检测。研制了基于钻井油气检测技术综合录井仪并已在现场使用,录井仪采用模块化设计,核心模块采用了本文的研究成果。
     基于当今最新发展的气体检测技术,探讨了随钻地下油气检测的策略,构建了相应的系统框架。作为油气地下检测的技术关键,分析了基于电导率检测、红外气体检测、声波干涉检测的综合油气检测方法;对基于红外方式的油气检测模式进行了可行性论证和先导性研究。实验证明,红外气体检测方式与传统气体检测方式具有非常好的相关性,可以用于地下的气体检测。
     对气测法进行水平井钻井轨迹监测的可行性进行了研究,利用快速色谱分析结合油气实时评价进行水平井钻井轨迹监测。采用3h(湿度-Wh、平衡度-Bh、特征度-Ch)解释方法作为随钻的油气分层手段,建立了进行水平井轨迹监测的多种模型。通过油气解释评价模型结合随钻实时油气信息,在专家系统的指导下,能实现水平井钻井轨迹的实时监测,并实现了产品化。
The logging while drilling techniques of oil and gas helps to test and evaluate the conditions of the underground oil and gas during drilling, and to find, to evaluate and interpret the oil and gas zones. The main method of oil and gas testing is the gas chromatography. This method uses the chromatography principle to separate the saturated paraffin (such as methane, ethane, propane, normal butane, iso-butane, pentane, normal pentane, iso-pentane, etc) from the mud and then tests and evaluates them. This thesis is based on the objective of the well site logging while drilling practice. Through the researches of some key techniques concerning mud degassing, gas testing and analyses, oil evaluation and underground logging while drilling, etc , some remarkable progresses have been made in the research of several key factors in the detection of oil and gas. The main innovative achievements involved in this thesis are as follows:
     A newly developed mud degassing method is proposed. As responding to the low efficiency of existing degassers and their shortcomings of vulnerable to the environment, through analyzing the basic principle of mud degassing, a method of quantitative out flow of mud is put forward and designed to eliminate the leakage of gas in the mud from the well bore, to help realizing the quantification of mud degassing. Based on the analyses of the theory of mud degassing, a new degassing method of air isolation is drew out and a new type degasser is designed and an air equalizer is developed to realize air isolation degassing from the mud. Well site experiments have proved that the new degassing method possesses the advantages of high efficiency, low affection from the environment and quantitative.
     Through the fast chromatography analysis, a new method of fast gas testing and analyzing is put forward. Through the three basic approaches of optimizing the resolution; maximizing the range of sample selectivity of the chromatography and reducing the amount of time for analyzing the sample at the assurance of a stable resolution, various factors affecting the analysis of oil and gas have been analyzed. Through experiments, a new type of specific use of chromatography column is designed. Based on fast chromatography column and micro current amplifier, a new kind of online gas and oil instrument is designed. The span of detection is from 1×10-6 to 100%, the analysis period is shortened to 30s.
     By analyzing the uncertain factors which affect the performance of oil & gas test, a conclusion is drawn: mathematics revise can not successfully eliminate the uncertainties to realize the quantitative test of the underground gas & oil. Based on this conclusion, a new method is brought out to test the oil & gas underground quantitatively. In this method, the gas logging on the surface is compared with a certain density gas injected as a reference from the mud inlet and the actual gas density can be got in real time. Experiments show that the method can bypass uncertainties and realize the quantitative detection.
     Considering the defects of existing surface gas logging techniques, a new concept of underground gas logging while drilling is put forward and a prototype framework is constructed .As the key part , the gas detection methods based on the principals of electrical conductivity, infrared ray gas testing and the interference of sound waves is put forward. The feasibility of the infrared gas detecting mode is discussed. Experiments show that the infrared gas detection method has perfect coherence with the traditional FID gas detection method, and can be used in well site.
     The feasibility of using gas logging while drilling to monitor the drilling trajectory of horizontal well is discussed by analyzing the relationship between the variation of horizontal well’s drilling trajectory and oil & gas logging. A method integrating fast chromatography analysis and real-time oil & gas evaluation is proposed for the drilling trajectory monitoring of horizontal well. This method makes various models of horizontal well’s trajectory monitoring using the 3H method. An expert system uses these models and real-time oil & gas information to realize the real-time monitoring of horizontal well’s drilling trajectory. A novel mud logging instrument which has the world-leading performance (1ppm logging precision and 30s analysis cycle) is designed in a modularized manner based on the above mentioned techniques.
引文
[1] Whittaker, M. Mud Logging Handbook, Prentice- Hall Inc, 1991
    [2]曹来勇.随钻测量与井筒油气评价技术,东营:石油大学出版社,1997
    [3]张殿强,李联纬.地质录井方法与技术.北京:石油工业出版社,2001
    [4]庞增义,李洪盛.气相色谱仪及其应用.云南科技出版社,1988
    [5]姚汉光,傅殿英,徐有信.气测井.北京:石油工业出版社,1989
    [6] Pixler B.O. Formation evaluation by analysis of hydrocarbon ratios, SPE 2254,1968
    [7] Mercer R.F. The use of flame ionisation detection in oil exploration,2nd CWLS Formation Evaluation Symposium. 1968
    [8] Haworth J.H., Sellens M.P. , Gurvis R.L. Reservoir characterization by analysis of light hydrocarbon shows, SPE 12914,1984
    [9] Wolfgang Bach,Dirk Naumann, A helium,argon,and nitrogen record of the upper continental crust (KTB drill holes,oberpfalz,Germany):implications for crustal degassing ,Chemical Geology, 1999,16(10):81-101
    [10] Drescher J., Kirsten T., Sch?fer K. The rare gas inventory of the continental crust, recovered by the KTB Continental Deep Drilling Projec. Earth and Planetary Science Letters,1998, 154(1):247-263
    [11] Rauen A.,Lastovickova M. .Investigation of electrical anisotropy in the deep borehole KTB. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 1996, 33(1): 17-23
    [12] Bach, Wolfgang, Naumann, Dirk; Erzinger, J?rg . A helium, argon, and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing .Chemical Geology, 1999,160(1): 81-10
    [13]张殿强,李联玮,张卫,刘志勤,张立新.钻井泥浆在线气测系统,专利:ZL 02 2 35856.7,2004
    [14]李干生.世界泥浆录井技术发展概况及我们的对策.世界石油工业.1995,2(10):15-18
    [15]何宏,靳世久.对气测录井检测与分析的研究.电子测量与仪器学报,2003, 17(01):40-45
    [16] Wellsite Gas Detection INC. http://www.wellsitegas.com/wirless.htm
    [17]严国平,武庆河,脱气器的现状及发展趋势探讨.录井技术,1999,10(1):10-14
    [18] Wright A.C et al: Gas Trap, U.S. Patent # 5,199,509, 1993
    [19] Wright A.C., Hanson S.W., De Laune, P.L. A New quantitative technique for surface gas measurements, SPWLA 34th Annual Logging Symposium, 1993
    [20] Geoservice INC. GZG Handbook,1998
    [21] Hawker D.P.Direct gas in mud measurement at the well site Petroleum Engineer International, 1999,72(9):31-33
    [22] Brumboiu A.O., Hawker D.P.; Norquay D.A., Wolcott D.K. Application of Semipermeable membrane technology in the measurement of hydrocarbon gases in drilling fluids. 2000, SPE 62525
    [23] Wolcott D.K. Use of capillary-membrane sampling device to monitor oil drilling muds, US Patent # 5, 469, 917, 1995
    [24] F.W. Karasek, L.R. Field.Ionization detectors in gas chromatography, Res./Dev., 1977,28, 42–44
    [25] Carel A. Cramers. High-speed gas chromatography: an overview of various concepts. J. Chromatogr. A, 1999, 856:315-329
    [26] Carel A. Cramers, piet A.Leclerq. Strategies for speed optimization in gas chromatography: an overview. J. Chromatogr. A, 1999,842:3-13
    [27]张卫.快速色谱技术原理及发展前景研究,录井工程,2005,6(2):1-4
    [28]李江陵.快速气相色谱及其在石油勘探中的应用.录井技术,2002,3(4):54-61
    [29] Breviere J., Herzaft B., Mueller N.Gas chromatography-mass spectrometry (GCMS)-a new wellsite tool for continuous C1-C8 gas measurement in drilling mud-including original gas extractor and gas line concepts. SPWLA 43rd Annual Logging Symposium, 2002
    [30] Hibino, Takashia; Wang, Shuqiang .A novel sensor for C1–C8 hydrocarbons using two zirconia-based electrochemical cells. Sensors and Actuators B: Chemical. 1999,61(1):20-26
    [31] Holdway D., Heggie D. T. Direct hydrocarbon detection of produced formation water discharge on the northwest shelf, Australia. Estuarine, Coastal and Shelf Science, 2000,50(3):15-30
    [32] David Cleaver. The analysis of process gases: a review.Accred QualAssur, 2001,22 (2): 165-168
    [33] Haworth J.H,Sellens M.and Whittaker A. Interpretation of hydrocarbon shows using light(C1-C5) hydrocarbon gases from mud log data,.AAPG BULL,1985, 69(8): 1305-1310
    [34] Whittaker A,Sellens G.Advances in mud logging-Analysis uses alkane ratios from chromatography.Oil&Gas Joural,1987,5:42-49
    [35]沈疆海,徐宁.基于神经网络的录井资料油气识别方法.电脑开发与应用,2003,16(2):43-43
    [36]黄继翔,陈新益,李启德.大位移定向井录井方法初探.录井技术,录井技术文集,2004,4:159-163
    [37]杨登科,郑俊杰,李新社。水平井录井及色谱气体比值的导向作用. 2003,14(1):48-52
    [38]李相方,庄湘琦,隋秀香.气侵期间环空气液两相流动研究.工程热物理学报, 2004, 25(1):73-76
    [39] Kelessidis VC.,Dukler A E. Modeling flow pattern transistions for upward Gas-Liguid flow in vertical concentric and eccentric annuls, Int. J.Multiphase Flow,1989, 15 :173-191
    [40]李相方,刚涛,隋秀香.欠平衡钻井期间地层流体流入规律研究.石油学报,2002,23(2):48-52
    [41] Shale L T. Underbalanced drilling:formation damage control during high-angle or horizontal drilling[c]. 1994,SPE 27351
    [42] Philip Wodlks,Henrik Tirsgaard,Adamsen C J. Underbalanced coiled tubing drilled horizongtal well in the north sea. 1995,SPE 29359
    [43] Mercer R.F. Liberated, produced, recycled or contamination. SPWLA 15th Annual Logging Symposium, 1974
    [44]徐光国,徐春,胡斌.XG—AVMS 2型自动真空蒸馏定量脱气器简介.录井技术,1999,10(4):50-51
    [45]何宏,申茜,童锡骏.对真空蒸馏脱气自动控制系统的研究.天津工业大学学报,2002,21(1):6-8
    [46]李联玮,张卫,刘志勤,朱祥华.钻井泥浆样品在线脱气器.专利:ZL02 255872.1,2003
    [47]李联玮,张卫,刘志勤,朱祥华.钻井泥浆样品在线引流装置,专利:ZL02 2 5871.3,2004
    [48]李浩春,分析化学手册第五册气相色谱分析.北京:化学工业出版社,1999
    [49]刘国诠,余兆楼.色谱柱技术.北京:化工工业出版社,2001
    [50] Eva Matisova. Fast gas chromatography and its use in trace analysis. J. Chromatogr A, 2003,1000:199-221
    [51] Naijun Wu, Juan Carlos Medina, Milton Lee. Fast gas charomatography: packed column solvating gas chromatography versus open tubular gas chromatography. J. Chromatogr. A, 2000,892 :3-13
    [52] K.J. Hyver, P. Sandra, High resolution gas chromatography, Hewlett-Packard Corporation, 1989
    [53] B. Thompson, Fundamentals of gas analysis by gas chromatography, VarianAssociates, Inc., 1977
    [54] H.W. Moody, Evaluation of the parameters in the van deemter equation, J. Chem. Educ., 1982,59(4), 290-301
    [55] R.H. Perrett, J.H. Purnell.Contribution of diffusion and mass transfer processes to efficiency of gas liquid chromatography columns’, Anal. Chem., 1963, 430:35-51
    [56] F.C.Y. Wang, A.D. Burleson. The development of pyrolysis fast gas chromatography for analysis of synthetic polymers.J.Chromatogr,A,1999,833:111-119
    [57] Y. Shen, M.L. Lee. High speed solbatin gas chromatography using packed capillaries containing sub-5 um particles, J. Chromatogr. A, 1997,778:31–4
    [58] M.A. Klemp, A. Peters, R.D. Sacks, High-speed GC analysis of VOCs: samplecollection and inlet systems,Environ. Sci. Technol., 1994,28(8) :369– 37
    [59] H. Yun, M.L. Lee, Fast gas chromatography of light hydrocarbons and permanent gases on porous-layer open-tubular columns, FieldAnal. Chem.Technol., 1996,1(1):60–64
    [60] Carlo Bicchi,Claudio Brunelli,Mario Galli,Albino Sironi..Conventional inner diameter short capillary columns: an approach to speeding up gas chromatographic analysis of medium complexity samples. Journal of Chromatography A, 2001,931:129–140
    [61] Ted K. Chen , Joseph G. Phillips , William Durr .Analysis of residual solvents by fast gas chromatography, Journal of Chromatography A, 1998,811:145–150
    [62] Gail L.Reed.Fast GC :applications and theoretical studies.PHD Dissertation,Virginia Polytechnic Institute and State University ,1999
    [63] Gwen M.L. The development of novel chromatographic tools for application in high speed and muti-dimensional gas and liguid chromatography. PHD Dissertation,University of Washington ,2004
    [64] Kevin David Cleaver, The analysis of process gases: a review ,Accred Qual Assur, 2001,6:8–15
    [65] H.L.C. Meuzelaar, W.H. McClennen, J.P. Dworzanski, N.S. Arnold, W.-H. Du. Measurement and data management of air pollutants. Proc. Annu. Meet.-Air Waste Manage. Assoc., 1995,88(10):95-102
    [66] E.U. Ehrmann, H.P. Dharmasena,K. Carney, E.B. Overton. Novel column heater for fast capillary gas chromatography. J. Chromatogr. Sci., 1996,34(12): 533–539
    [67] F. David , D.R. Gere , F. Scanlan , P. Sandra.Instrumentation and applications of fast high-resolution capillary gas chromatography. Journal of Chromatography A,1999,842:309–319
    [68] M.A. Klemp, M.L. Akard, R.D. Sacks. Cryofusing inlet with reverse flow sample collection for gas-chromatography, Anal. Chem., 1993,65(18): 2516–2521
    [69]吴浩,高胜友,朱德恒.便携式变压器油中溶解气体色谱分析装置的研制,变压器,2003,40(7):30-32
    [70]武杰.高压快速气相色谱法的理论与实验研究.第六届全国毛细管龟谱学术报告会论文集,1999
    [71]陈志敏.快速气相色谱分析与实验.录井技术,2002,3:49-52
    [72]陈俊.浅谈快速色谱的特点和外围设备.录井技术,2001,3:68-15
    [73]王立新,傅崇岗. pA级微电流测量技术研究.仪表技术,1999,4:34-37
    [74]施联玉,王俊,韦立华.微机化微电流电分析仪的电路设计.福州大学学报(自然科学版),1997,25(2):45-49
    [75] Hung Hsuanjung,He Peixin,Faulkener Larry R.Current multipliter for use with ulteramicroelectrodes.Anal Chem,1986,58:2889-2891
    [76]陈新,何坚,王春芳.一种微电流直流放大器的研制.集美航海学院学报,1998,16(3):22-24
    [77] D. Kandel , R. Quagiiaroli , G. segalini , B . Barraud. Improved intergrated reservoir interpretation using gas while drilling data. SPE 75307 ,2001
    [78]吴侃,刘景龙,赵宏权.不同钻井液条件下气测资料校正方法.世界地质,2003,22(3):274-278
    [79]赵玉娟,岳兴举,韩建国.不同钻井液条件下录井气体检测解释标准研究.大庆石油地质与开发, 2004,23(4):19-23
    [80]王家亮,周治明.钻井液密度对气测录井影响分析.钻井液与完井液,2003,20(3):57-58
    [81] G. Beda , R. Quagliaroli , G. Segalini , B . Barraud. Gas while drilling (GWD) : areal time geologic and reservoir interpretation tool . 40th SPWLA Annual Logging Symposium,1999
    [82] De pazzis L.,Delahaye T.R.,Besson L.J. and Lombez J.P. New gas logging systemimprovees gas shows analysis and interpretation. SPE 19605,1989
    [83]姜延武徐东旭.人工神经网络系统在储层评价中的应用.录井技术,2001,12(2):8-12
    [84]胡红.录井神经网络油气层解释模型研究.油气地质与采收率,2003,10(2):36-37
    [85] Wan YiI-Fa, (2001), Real-Time expert control system for Artificial intelligence drilling. Actapetrolei Sinica ,2001,22 (2):33-36
    [86] Inglis.Directional drilling. London:BostonGraham&Trotman,1987
    [87] Patton B J, etal. Development and successful testing of a continuous wave,Logging-While-Drilling telemetry system.Journal of Petroleum Technology, 1977,29(10):1215-1221
    [88]苏义脑,盛利民,李林,邓乐,窦修荣.地质导向钻井技术及其在我国的研究进展.中国石油天然气集团公司钻井承包商协会论文集.北京:石油工业出版社, 2003
    [89]苏义脑.井下控制工程学研究进展.北京:石油工业出版社, 2001
    [90]李健,布志虹.国外录井新技术文集.石油工业出版社,1998
    [91] ArpsJ, ArpsJ L.The Subsurface telemetry problem-a practical solution . Journal of Petroleum Technology,1964,16(5):487-493
    [92] Hutin R. ,Tennent R.W,Kashikar S.V . New mud pulse Ttelemetry techniques for deepwater applications and improved real-time data capabilities .SPE/IADC67762
    [93]周静,尚海燕,李长星.钻井时从地面向井下的通讯系统的解码方法.西安石油学院学报,1999,2(14):10-16
    [94] Westlake ,Wolcott D.K. Semipermeable membrane technology, US Patent # 5, 317, 932, 1994
    [95] Douglas E,Fain. Mixed gas separation technology using inorganic membrane. Membr Tech, 2000,120:9-13
    [96] Antonio B Fuertes, Adsorption-selective carbon membrane for gas separation .J Membr Sci ,2000,177:9-16
    [97]董子丰.气体膜分离技术在石油工业中的应用.北京:膜科学与技术,2000
    [98]汤明,肖泽仪,史晓燕.膜技术在含烃类气体分离中的研究及前景.过滤与分离,2005,15(4):21-23
    [99]熊友辉,蒋泰毅.电调制非分光红外(NDIR)气体传感器.仪表技术与传感器,2003,11:15-18
    [100]张长江,丁万山.一种新型红外气体分析装置的硬件设计,仪器仪表用户,2004,11(5): 23-25
    [101]戴永寿,马西庚,张卫.基于现场总线的生产井录井仪及其专家系统.仪器仪表学报,2003,25(1):5-9
    [102] Pattan BJ. Methed an apparatus for surface to down-hole communication[P]. US:3800277
    [103] Zhang Wei ,Bin Hongzan. A new well drilling monitoring system based on field bus and expert system.IEEE International conference on mechatronics and automation ,2006
    [104]李玲玲.根据气测录井数据预测油气比的探讨.录井技术,1998,9(3):31-3
    [105]王升永,宋庆田,李富强.综合录井在水平井钻进中的作用.大庆石油地质与开发, 2004,23(3):29-30
    [106] Wright.A.C. Estimation of gas/oil ratios and detection of unusual formation fluids from mud logging gas data.SPWLA 37th Annual Logging Symposium,1996
    [107] Aure Brumboiu, David Hawker , Darre Norquay ,Douglas Law. Advances in chromatographic analysis of hydrocarbongases in drilling fluids– The application of semipermeable membrane technology to high speed Tcd Gas chromatography. SPWLA 46th Annual Logging Symposium,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700